Focusing on Spectral Characteristics of Pc5 ULF Waves into 3D Radiation Belt Modeling

Kara L. Perry 1 and Mary K. Hudson 2

1 Boston College, 2 Dartmouth College

ABSTRACT

The influence of ultra low frequency (ULF) waves in the Pc5 frequency range on radiation belt electrons in a compressed dipole magnetic field is examined. A model is developed describing the magnetic and electric fields associated with poloidal-mode Pc5 ULF waves. Frequency and L dependence of the ULF wave power is included in this model by incorporating published ground-based magnetometer data. This ULF model is used as input to a three dimensional guiding center particle code from which the L, energy and pitch angle dependence of the diffusion rates are analyzed. Results from a dipole magnetic field model are compared to a compressed dipole model in the equatorial plane.

CALCULATING 3D FIELDS

- Magnetic and electric field equations:
 \[B = B_{\text{dipole}} + B_{c} + B_{\text{pol}} \]
 \[E = E_{0} + E_{\phi} \]

where: \(B_{\text{dipole}} = B_{r} + B_{0} \)

- 3D dipole equation
 \[B_{\text{dipole}} = \frac{2B_{0}R_{c}}{r^{3}} \cos(\theta) \hat{r} - \frac{B_{0}R_{c}}{r^{3}} \sin(\theta) \hat{\theta} \]

- Compression added to z component of magnetic fields
 \[B_{z} = (b_{z} \cos \phi) \hat{z} \]

- ULF fields given by:
 \[\nabla \times B = 0 \]
 \[\frac{\partial}{\partial t} B = \nabla \times E_{\phi} \]

- Poloidal fields
 - Includes both radial AND compressional components

- Diffusion Coefficients
 - To calculate, use slope of best fit line of \(\langle AL \rangle_{\phi} \) vs time

RESULTS

- 4 case
 1) \(m_{1}=0, m_{2}=0 \)
 2) \(m_{1}=0, m_{2}=-2 \)
 3) \(m_{1}=1/3, m_{2}=0 \)
 4) \(m_{1}=1/3, m_{2}=-2 \)

- \(H_{(L)} = 100.5m_{1}L \)
- \(F_{(f)} = f^{0.5m_{1}} \)

Symbols:
- \(P_{\phi} \) - power of fields (nT/Hz)
- \(\phi \) - longitude
- \(m_{1} \) - slope of line, figure 2
- \(\omega \) - angular frequency
- \(L \) - background \(L \)
- \(\theta_{0} \) - initial phase
- \(f \) - frequency
- \(\theta \) - colatitude
- \(m \) - azimuthal mode
- \(m_{\phi} \) - slope of line, figure 4

RESULTS

- 4 case
 1) \(m_{1}=0, m_{2}=0 \)
 2) \(m_{1}=0, m_{2}=-2 \)
 3) \(m_{1}=1/3, m_{2}=0 \)
 4) \(m_{1}=1/3, m_{2}=-2 \)

- \(H_{(L)} = 100.5m_{1}L \)
- \(F_{(f)} = f^{0.5m_{1}} \)

- \(J_{(\alpha,\omega)} = \cos(m_{\phi} - \alpha - \phi_{0}) \)

where:
- \(H_{(L)} = 100.5m_{1}L \)
- \(F_{(f)} = f^{0.5m_{1}} \)
- \(J_{(\alpha,\omega)} = \cos(m_{\phi} - \alpha - \phi_{0}) \)

value used: \(m = 2 \)

CONCLUSIONS

- Frequency-dependent ULF Wave Power
 - Causes \(D_{L} \) to decrease with increasing energy (fig 4)
 - Less power at higher resonances

- L-dependent ULF Wave Power
 - Changes \(L \) dependence of \(D_{L} \) from \(n=6 \) to \(n=18 \) (fig 5)

- Produces \(D_{L} \) max at equator => 2D good upper limit for space weather forecasting

- Adding compression to dipole
 - Offsets effects of additional resonances (fig 5)

Figure 1: Azimuthal wave power during a simulation of the Sept. 24-26, 1998 geoeagnetic storm using the LFM MHD magnetospheric model from Elkington [2004]. Slope of total power is \(m_{1} \) in \(H_{(L)} \) equation.

Figure 2: Baseband magnetometer observations of power vs frequency reported by Bloom and Singer [1995]. Slope is \(m_{1} \) in \(F_{(f)} \) equation.

Figure 3: Latitude dependence of magnetic and electric fields at \(L=6.6 \). Panel (a) is \(m_{1}=0 \) of \(|B|_{\text{pol}} = |B_{c} + B_{dip} \) off equator. Panel (b) is \(m_{1}=1/3 \) of \(|B| \) at equator. Panel (c) is poloidal electric field: max at equator.

Figure 4: \(W_{d} \) dependence of \(D_{L} \) in a dipole at \(L=5 \) for \(m_{1}=0 \). For (a), \(m_{2}=0 \), \(U_{c} = E^{2} + B^{2} \mu _{0} \) increases as frequency increases. Therefore, as energy gets larger, the drift frequency gets larger and so does the power. This leads to \(D_{L} \) increasing as energy increases. The opposite is true for (b), \(m_{2}=-2 \), \(U_{c} \) decreases as frequency increases \(\Rightarrow D_{L} \) gets smaller as energy gets larger.

Figure 5: \(L \) and pitch angle dependence of \(D_{L} \) in a dipole for \(m_{2}=-2 \). For (a), \(m_{2}=0 \), \(D_{L} \) gives \(n=6 \). For (b), \(m_{2}=1/3 \), \(n=18 \). For (a), \(m_{2}=0 \), \(|B| \) from fig. 3 is relatively constant with a max at equator leading to a weak pitch angle dependence of \(D_{L} \) with a max at \(\alpha_{0}=50-53^{\circ} \). For (b), \(m_{2}=1/3 \), \(|B| \) increases with \(\alpha_{0} \), leading to a larger diffusion coefficient at the equator, \(\alpha_{0}=90^{\circ} \).