M-I Coupling Physics: Issues, Strategy, Progress

William Lotko, John Gagne, David Murr, John Lyon, Paul Melanson

Energization Regions

- **Gap** exists between the upper boundary of TING (or TIEGCM) and the lower boundary of LFM.
- The gap is a primary site of plasma transport where electromagnetic power is converted into field-aligned electrons, ion outflows and heat.
- Modifications of the ionospheric conductivity by the electron precipitation is included in global MHD models via the "Knight relation"; crucial physics is missing:
 - Collisionless dissipation in the gap region;
 - Heat flux carried by upward accelerated electrons;
 - Conductivity depletion in downward current regions;
 - Ion parallel transport \(\rightarrow \) outflowing ions, esp. \(O^+ \).

Conductivity Modifications

- The mediating transport processes occur on spatial scales smaller than the grid sizes of the LFM and TING/TIEGCM global models.

Issues

- Reconciled \(E_\perp \) mapping and collisionless Joule dissipation with Knight relation in LFM.
- Developed and implemented empirical outflow model – \(O^+ \) flux indexed to EM power and electron precipitation flowing into gap from LFM (\(S_\perp \otimes F_\parallel \)).
- Initiated validation of LFM Poynting fluxes with global statistical results from DE, Astrid, Polar and 3rd/2nd/DARN events (Gagne thesis + student poster by Melanson).

Strategy

1. Current-voltage relation in regions of downward field-aligned current;
2. Ion transport in regions 1 and 3;

EM Power In \(\rightarrow \) Ions Out

- Collisionless Joule dissipation and electron energization in Alfvénic regions – mainly cusp and auroral BPS regions;
- Ion outflow model in the polar cap (polar wind).

Priorities

- Implement multifluid LFM (1)
- Implement CMW (2005) current-voltage relation in downward current regions
 - Include electron exodus from ionosphere \(\rightarrow \) conductivity depletion
 - Accommodate upward electron energy flux into LFM
 - Advance empirical outflow model

Facts

- Develop model for particle energization in Alfvénic regions (scale issues!)
- Need to explore frequency dependence of fluctuation spectrum at LFM inner boundary
- Parallel transport model for gap region (long term)

Global Effects of \(O^+ \) Outflow

- Where does the mass go?

Percent Change in Mass Density

- 12:00 UT

Empirical “Causal” Relations

Alfvénic Electron Energization

Alfvénic Ion Energization

Cosponsored by NASA SECTP

Challenge: Develop models for subgrid processes using dependent, large-scale variables available from the global models as causal drivers.