Tagged: NSF

Chemistry Receives NSF REU Site Award

August 8th, 2012 in Doerrer, Linda, Front Page, NSF, Snyder, John, Undergraduate

Professor Linda Doerrer

Professor Linda Doerrer

Professor John Snyder

Professor John Snyder

National Science Foundation

The National Science Foundation’s Research Experience for Undergraduates Program supports active research participation by undergraduate students in any of the areas of research funded by the National Science Foundation. For the second time, BU Chemistry has received one of these coveted site awards. Focused on the theme “Fundamental Research in Chemistry Addressing Problems in Biology,” the 3-year program (2012-2015) is led by Professors John Snyder (Principal Investigator) and Linda Doerrer (Co-PI).
More

Tagged , , ,

NSF Funds Reinhard Group to Develop Optical Multiparametric BioSensors

August 7th, 2012 in Faculty, Front Page, Reinhard, Björn

Professor Bjoern Reinhard

Professor Bjoern Reinhard

The NSF Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBETS) has funded Bjoern Reinhard and his Co-Investigator, Professor Luca Dal Negro (Electrical & Computer Engineering,) to combine the advantageous photonic and plasmonic properties of nanostructured surfaces to develop a multiparametric responder that improves sensitivity and selectivity of conventional biosensing platforms through combined analysis of elastic and inelastic light-scattering processes. The award, “Multiparametric Optical Sensing of Microbes on Plasmonic Nanostructures,” is for $300K over three years.
More

Tagged , , , , ,

NSF Funds Ziegler to Continue Exploration of Ultrafast Dynamics of Supercritical Fluids

June 5th, 2012 in Front Page, Grants & Funding, Ziegler, Larry

Professor Larry ZieglerProfessor Larry Ziegler and his group have received continued support from the NSF ($450K over 3 years) to use cutting edge spectroscopic techniques to advance understanding of supercritical fluids (SCFs) as a medium for chemical activity. Using ultrafast vibrational or rotational spectroscopic techniques, they will study the femtosecond to picosecond solvation dynamics of a range of SCF solutions as a function of density for isotherms close to the critical temperature. The insights gained will identify those solvent motions coupled to the spectroscopically tagged solutes in the femtosecond to tens of picoseconds regime providing a dynamical description of solvation in the compressible fluid regime of SCFs. Such dynamics are important to understand, because they are intimately involved in the unique microscopic solvation phenomena that give super critical fluids their interesting and useful properties. Given the very high relevance of supercritical liquids for applied chemistry on the one hand and the lack of detailed knowledge on their microscopic dynamics on the other, this research is expected to provide new and important insight into structural fluctuations and local interactions governing solvation processes and, thus, chemical dynamics.

Tagged , , , ,

John Straub Serves as Phi Beta Kappa Visiting Scholar

February 13th, 2012 in Faculty, Front Page, Straub, John

Professor Straub Visiting Scholar Program

Professor Straub Visiting Scholar Program

The Phi Beta Kappa’s Visiting Scholar Program (VSP) offers undergraduates the opportunity to spend time with some of America’s most distinguished scholars. It aims to contribute to the intellectual life of the campus by making possible an exchange of ideas between the Visiting Scholars and the resident faculty and students.

Professor John Straub is one of the 14 scholars selected by the 2011-2012 VSP Committee.  Visiting eight schools (five in Fall 2011 and three in Spring 2012), he spends two days at each,  giving a public lecture, meeting with undergraduates and faculty members, and participating in classroom discussions and seminars.

The schools on his itinerary are:

Professor Straub’s research focuses on the development and use of mathematical and computational models to uncover the principles governing the fundamental processes of energy transfer, signaling, folding, misfolding, and aggregation that underlie protein function. His excellence as an educator has been recognized by Boston University by Gitner and Metcalf Awards. Committed to scientific outreach and communication, he has served as chair of the Theoretical Chemistry Subdivision of the American Chemical Society and as president of the Telluride Science Research Center, as well as on advisory panels to the Pinhead Institute, the National Science Foundation and the National Institutes of Health.

Tagged , , , , ,

NSF Funds Elliott Group to Probe Mysteries of the Disulfide Bond

September 7th, 2011 in Award, Elliott, Sean, Faculty, Front Page, NSF

Professor Sean Elliott

Professor Sean Elliott

Disulfide bonds play critical catalytic, structural and signaling roles throughout nature. However, little is known about what governs their reactivity at the molecular level. To gain insights into disulfide bonds, the National Science Foundation, has funded Professor Sean Elliott and his Research Group to use direct electrochemistry to characterize the influence of protein sequence and structure on the redox properties and reactivity of the thioredoxin superfamily.

National Science Foundation

National Science Foundation

The 4-year award, which is valued at nearly $700K will provide a new detailed understanding of how thioredoxins are used in Nature to maintain redox homeostasis. The broader impacts of this work will touch deeply on the interface of chemistry and biology. Whether in plant biochemistry, bioenergy sciences or microbial physiology – thioredoxins will provide insights on how disulfide bonds are used to achieve chemical change in life.

Illuminating this process in a fundamental way will translate into new appreciation of fundamental biology. At the same time, the research will advance the training of at all levels (undergraduates, graduate students, post-doctoral faculty fellows) to think quantitatively and chemically in the field of redox biochemistry.

Tagged , , , , , , ,

Straub Group Receives NSF Award to Simulate Phase Changes

August 30th, 2011 in Award, Faculty, Front Page, NSF, Straub, John

Professor John Straub

Professor John Straub

As theoretical chemists John Straub and his Research Group apply mathematical statements of basic physical laws to accurately simulate known phenomena, and then from this basis, make predictions about the unknown. The intellectual challenge they face is first choosing the appropriate mathematical description of a problem that embodies its basic physics, and then coming up with an elegant way to implement it in a calculation that will illuminate the phenomenon.

National Science Foundation

National Science Foundation

In June, 2011, the group was funded by the National Science Foundation (NSF) to determine the “Algorithms for the simulation of strong phase changes in complex molecular systems” (CH-1114676, $600K over 3 years). This continuing award from the Chemical Theory, Models and Computational Methods program in the NSF Chemistry division is to develop algorithms for the simulation of molecular systems undergoing strong phase transitions, including the characterization of metastable and unstable states.

The group has developed generalized simulated tempering and replica exchange algorithms which exhibit superior scaling and sampling efficiency for a series of benchmark systems. In this work, they are extending and generalizing these algorithms to simulate a variety of outstanding problems, including vapor-liquid phase change in simple fluids, freezing of nano-confined water, and the aggregation and assembly of peptides into functional channels. Phase changes, such as the melting of ice or evaporation of water, are ubiquitous in nature but are very difficult to simulate on a computer. This research enables scientists and engineers to model nature more realistically.

John Straub is also involved in science outreach activities in collaboration with the Pinhead Institute, a non-profit group devoted to K-12 science education and outreach to the economically and ethnically diverse population of Southwestern Colorado. This grant from the National Science Foundation will help support Pinhead’s Scholars in the Schools program, that bring scientists to the region for middle and high school visits, and the Pinhead Internship Program, through which talented students from the region are supported in carrying out summer research in laboratories across the US, including Boston University.

Tagged , , , ,

Chemistry Receives NSF Multi-User Research Instrument Award

August 4th, 2011 in Allen, Karen, CIC, Faculty, Front Page, Research

National Science Foundation

National Science Foundation

The Boston University Department of Chemistry has received funds from the NSF MRI program to acquire a Circular Dichroism (CD) Spectrometer, which will enhance the research of scientists in several departments encompassing biological and organic chemistry.

In addition to the Principal Investigator, Professor Karen Allen, there are five major users at BU whose research will benefit from this instrument and more than ten other scientists whose research capabilities will be significantly advanced.

The new CD spectrophotometer will be housed in the Chemistry Instrumentation Center (CIC) located in the Boston University Chemistry Department and headed by Dr. Norman Lee, who will manage the acquisition and integration of the new instrument.  Dr. Jeffrey Bacon will oversee the instrument’s maintenance, user training, and data collection.

BU Chemical Instrumentation Center

The results of the research that use the CD will be disseminated broadly to enhance scientific and technology understanding. At the same time that it advances discovery and understanding, the new CD will promote training in the analytical training of physical properties of organic and inorganic molecules at both the graduate and undergraduate levels in Chemistry and Biology Departments and in the Biochemistry and Molecular Biology program.

Tagged , , , , ,