Synthetic Organic Chemistry

Synthetic organic chemistry is a vital component of Boston University’s commitment to research and teaching in the life sciences.  The Department of Chemistry is now at the forefront of new methodologies in the synthesis of complex natural product molecules, macromolecules, stereochemistry, asymmetric synthesis, and catalysis.  The scientific creativity, exceptional productivity, and training excellence of our research groups are demonstrated by uninterrupted, large-scale grant support, numerous patents, and highly successful graduate students who have achieved leadership positions in academia, industry, and federal research agencies.

Core Faculty

Prof. Aaron Beeler

Aaron Beeler

Area: Medicinal chemistry, synthetic organic chemistry, microfluidics

The Beeler Research Group is truly multidisciplinary, combining organic chemistry, engineering, and biology to solve problems in medicinal chemistry. Focused medicinal chemistry projects utilize synthetic organic chemistry to address goals such as: a) developing a probe that may be utilized as a tool in biological studies; b) developing a lead molecule to facilitate future therapeutics; and c) utilizing small molecules to enhance understanding of biological targets. More broad impact research aims to develop new paradigms in medicinal chemistry through technology such as microfluidics. With this collaborative, multidisciplinary approach they are working to address significant problems in human health.

Professor Mark Grinstaff

Mark Grinstaff

Area: Macromolecular, bioinorganic, and biological chemistry

The Grinstaff Group pursues highly interdisciplinary translational research in biological and macromolecular chemistry. Among their projects are novel dendrimers, “biodendrimers,” for tissue engineering and biotechnological applications (corneal lacerations, delivery of anti-cancer drugs and DNA, and biodegradable scaffolds for cartilage repair). They also create “interfacial biomaterials” that control biology on plastic, metal, and ceramic surfaces and electrochemical-based sensors/devices using conducting polymer nanostructures and specific DNA structural motifs.

Jim Panek

James Panek

Area: Stereocontrolled synthesis of complex organic molecules

The Panek Group focuses on the design and development of new methods for stereocontrolled synthesis of complex organic molecules. Once the scope of a methodology is determined, it is utilized in stereocontrolled synthesis of a natural product or a group of related natural product targets. These targets enable the preparation of chemical entities through diversity-oriented synthesis. The research goals are to enhance structural diversity available from Nature and to prepare molecules with novel chemical or biological properties. These studies are often carried out in conjunction with the CMLD-BU.

Professor John Porco

John Porco

Area: Organic synthesis and combinatorial chemistry

Research in the Porco Group is focused in two major areas: the development of new synthetic methodologies for efficient chemical synthesis of complex molecules and synthesis of complex chemical libraries, the latter conducted at the CMLD-BU. Synthetic methodologies developed in the Porco Group include copper (I)-mediated formation of enamides, oxa-electrocyclization/dimerization of dienals enroute to complex epoxyquinoids; enantioselective oxidative dearomatization using chiral copper complexes and molecular oxygen; photocycloaddition using oxidopyryliums enroute to the rocaglamides and related natural products, and catalytic ester-amide exchange using group (IV) metal alkoxide-activator complexes.

Scott Schaus

Scott Schaus

Area: Chemical methodologies, natural product synthesis, and chemical genomics

The Schaus Group new chemical methodologies, synthesizes natural products and small molecules with interesting biological activities, and uses chemical genomics techniques to study the effects of compounds on cellular processes. They use chemical synthesis, functional genomics, and bioinformatics to gain understanding of the effects of antiproliferative compounds on cellular processes. Exploiting the synergy among their research projects, they develop new asymmetric methodologies, which they apply to interesting natural products. They use and develop techniques in genomics and biology to understand how these compounds affect cellular processes. Their work in chemical methodology focuses on the development of direct asymmetric carbon-carbon bond-forming reactions. They have been studying the Morita-Baylis-Hillman (MBH) reaction, a long-standing challenge in asymmetric catalysis, concentrating on the phosphine-promoted reaction. They have successfully identified a highly enantioselective Brønsted-acid-catalyzed MBH reaction. The reaction not only addresses a gap in asymmetric synthetic methodology but also identified a unique example of chiral Brønsted acid catalysis.

Professor John Snyder

John Snyder

Area: Organic synthesis and natural products

The goals of the research of the Snyder Group are to discover new chemistry and delineate the potential applications of this chemistry to issues in health, agriculture, and other areas that society faces. They are highly motivated to explore new reactivities and apply them to diversity-oriented synthesis in the generation of relatively small libraries (100 compounds) that can then be submitted for biological screening to a variety of collaborators. On occasion, target-oriented projects will arise, particularly if the pursuit of that biologically significant target reveals unique applications of innovative chemistry, and can also lead to an intriguing collection of analogues for screening. The research efforts in the Snyder Group fall into four categories:  novel heterocyclic synthesis; Homo Diels-Alder Chemistry; chiral anthracene templates, and the chemistry of natural products.

Arturo Vegas

Areas: Organic synthesis, biological chemistry, and drug delivery

The Vegas group pursues general and systematic approaches to developing targeted therapeutic carriers for the treatment of multiple human diseases. Projects in the lab are focused on developing novel chemical tools, materials and approaches for targeting therapeutics to diseased tissues, with an emphasis on cancer and diabetes. For cancer, the primary focus will be developing conjugate and nanoparticle based approaches that control the physiological distribution and uptake of therapeutic molecules to tumors and use of materials to immunomodulate the tumor microenvironment. For diabetes, our focus will be selective destruction or functional blocking of cells responsible for the underlying type 1 autoimmunity.

 

Resources and Affiliations

To revitalize chemical libraries in the public domain, which are critical to the drug development process, the National Institutes of Health has funded the CMLD-BU as one of the five national Centers of Excellence in chemical diversity.

The Boston University CMLD, directed by Dr. John Porco, puts the Department of Chemistry at the forefront of one of the most exciting frontiers of synthetic organic chemistry. It is pioneering new methods for synthesizing and purifying a more diverse library of molecules.  By developing new, enabling chemical methodology that can be translated into parallel synthesis and purification campaigns, the CMLD-BU enriches the nation’s compound screening collection and provides new chemotypes for the broader biomedical research community. The CMLD-BU has also contributed compounds to Roadmap Initiatives under a Pilot-Scale Libraries Initiative, and to the CMLD-BU Chemical Library Consortium (CLC), a world-wide group of biological collaborators. To achieve these goals, the Center performs rapid assembly of complex molecules using diversity-oriented synthesis (DOS) as a means of discovering novel chemotypes and pharmacological tools. These techniques explore both stereochemical and skeletal diversity based on core scaffolds derived from natural products and are augmented by extensive infrastructure for library synthesis, multidimensional reaction screening, high-throughput purification, and structural determination. To date, over 5,000 compounds from CMLD-BU libraries have been assessed in over 220 assays, and 130 validated hit compounds have been identified.

See other areas of research