An Introduction to Molecular Docking

Paul Sanschagrin

22-Nov-2010
What is Docking?

• *In silico* (computer-based) approach
• Identification of bound conformation
• Prediction of binding affinity
• Docking vs. (Virtual) Screening

• 2 “Modes”:
 – Respective: How does your molecule bind? What is its mode of action? What might be the reaction mechanism?
 – Prospective: What compounds might be good leads? What compound(s) should you make?
Docking Basics

- Initially – Receptor (protein) and ligand rigid
- Most current approaches – Receptor rigid, ligand flexible
- Advanced approaches – Receptor (to a degree) and ligand flexible
2 Stages of Docking

• Pose generation
 – Place the ligand in the binding site
 – Generally well solved

• Pose selection
 – Determine the proper pose
 – The hard part
Pose Generation

• Rigid docking with a series of conformers
 – Most techniques use this approach
 – Most techniques will generate the conformers internally rather than using conformers as inputs

• Incremental construction (FlexX)
 – Split ligand into base fragment and side-chains
 – Place base
 – Add side-chains to grow, scoring as you grow

• In general, use a very basic vdW shape function

• Often see variability with input conformers
Pose Selection/Scoring

• Where most of the current research focused
• More sophisticated scoring functions take longer
 – Balance need for speed vs. need for accuracy
 – Virtual screening needs to be very fast
 – Studies on single compounds can be much slower
 – Can do multi-stage studies
Example Multi-Stage Screening Workflow

2x10^6 Compounds

Glide HTVS – 10 seconds/compound = 2.3 days on 100 CPUs

2x10^5 Compounds

Glide SP – 120 seconds/compound = 2.7 days on 100 CPUs

2x10^4 Compounds

Glide XP – 10 minutes/compound = 1.4 days on 100 CPUs

2x10^3 Compounds

Visual Analysis, further refinement, synthetic considerations
Scoring Strategies

- Many tools use scoring grids to increase speed
 - AutoDock, UCSF DOCK, Glide

- Scoring function types
 - Force-field – electrostatic + vdW (+ solvation)
 - Empirical – many (LUDI, ChemScore), often combined with FFs
 - Knowledge-based – compare interactions to some reference set (DrugScore)

\[S_{total} = \sum_{i \rightarrow \# f} w_i S_i \]

Weights from fitting to empirical binding data
Dealing with Protein Flexibility

• Reduce vdW radii
• Use flatter vdW function (e.g., 4-8 instead of 6-12)
• Alanine mutations
• Ensemble docking – use multiple input receptor structures
• Side-chain rotations – SLIDE
• Induced Fit Docking – far slower, Glide
What makes a good docking target?

• Deep, well defined pocket
 – Shallow pockets have too many options

• Sites for specific interactions
 + Many charge-charge or h-bonding sites
 – Mostly hydrophobic vdW interactions bad

• Well ordered side-chains
Receptor Preparation

- Dependent on docking program used
- Structure selection
- Site selection
- Add charges
- Often have to add hydrogens, some programs more sensitive to positions than other
- Remove/include waters, cofactors, metals
- Pre-docking refinement
- Remember to consider missing residues or atoms
Ligand preparation

• Input structures (extract from PDB, draw, convert from SMILES)
• Add bond orders
• Generate isomers if chiral centers
• Calculate charges
 – Predict pKa’s for each potential charged atom
 – Generate a structure for each charge combination for a given pH range (e.g., 5-9)
• Minimize structures
 – Generally using a molecular mechanics forcefield
• For Screening, can download public sets from ZINC (available compounds) or PubChem
How do we rate docking programs?

• Accuracy measures
 – Generally take average RMSD (comparing to crystal structures)
 – Better analyses consider interactions
 – Screening enrichment
 • Screen set of known actives + inactives
 • Do we see actives disproportionally represented in top x%?
How do we rate docking programs?

- Accuracy measures
 - Generally take average RMSD (comparing to crystal structures)
 - Better analyses consider interactions
- Screening enrichment
 - Screen set of known actives + inactives
 - Do we see actives disproportionally represented in top x%?

How do we rate docking programs?

• Accuracy measures
 – Generally take average RMSD (comparing to crystal structures)
 – Better analyses consider interactions
 – Screening enrichment
 • Screen set of known actives + inactives
 • Do we see actives disproportionally represented in top x%?
How do we rate docking programs?

- Accuracy measures:
 - Generally take average RMSD (comparing to crystal structures)
 - Better analyses consider interactions
 - Screening enrichment
 - Screen set of known actives + inactives
 - Do we see actives disproportionally represented in top x%?

Docking Packages

• Free
 – AutoDock (Art Olsen, David Goodsell, Scripps)
 – UCSF DOCK (Kuntz Group)

• Commercial
 – Glide (Schroedinger)
 – GOLD (CCDC)
 – FlexX (BiosolveIT)
 – ICM (Molsoft)
 – Surflex (Tripos)
Autodock Demo

- p38 (PDB code 1w83)