Category: Grants

Professor Linda Doerrer Awarded Two-Year Grant from The American Chemical Society

December 6th, 2017 in ACS, Department, Doerrer, Linda, Grants, Grants & Funding, Recognition, Research

We are happy to announce that Associate Professor Linda Doerrer was recently awarded a $110,000, grant titled “Lanthanide-Based Polymerization Catalysts with Water Resistant Ligands” from The American Chemical Society. The funding, which will last for 2 Years, will help Professor Doerrer explore a family of O-donor ligands, both aryloxide and alkoxide, that are heavily fluorinated in order to further the development of more water-tolerant catalysts, which would be a boon to many industrial polymerization reactions.

Associate Professor Linda Doerrer

 

 

 

 

 

 

 

 

Congratulations to Dr. Doerrer for this exciting Award!

Melissa Marquez, 2017 NSF Graduate Research Fellowship Recipient

October 16th, 2017 in BUWIC, Graduate, Grants, Grants & Funding, NSF, Perlstein, Deborah, Recognition, Students

Melissa MarquezMelissa Marquez, a second-year graduate student in Professor Deborah Perlstein’s group, has recently received a 2017 NSF Graduate Research Fellowship. She earned a Bachelor of Science in biochemistry with a minor in mathematics from Mount Saint Mary’s University and as an undergraduate conducted research in Dr. Eric Stemp’s lab focusing on DNA-protein cross-linking resulting from oxidative damage to DNA. She was introduced to Boston by participating in Tufts University’s NSF Research Experience for Undergraduates (REU) program in the summer of 2013 and worked in Dr. Mitch McVey’s lab where she focused on determining the lethality stages in Drosophila melanogaster Werner Syndrome exonuclease mutants. Along with chemistry, Melissa enjoys serving others in their journey toward their science aspirations. She is currently a fellow for the BU NSF GK-12 Global Change Initiative (GLACIER) program where she works at Pierce School in Brookline with a 6th grade science teacher, an officer for BU Women in Chemistry, and a co-leader of the BU Graduate Women in Science and Engineering (GWSE) Girls with Goggles club, an outreach program that provides weekly hands-on activities for middle school girls.

 

Through the support of the NSF, Melissa aims to obtain a greater understanding of how iron cofactors are biosynthesized through the cytosolic iron sulfur cluster assembly (CIA) pathway. This system is responsible for iron sulfur (FeS) cluster biogenesis for proteins found outside of the mitochondria in eukaryotic organisms. Essential processes such as DNA replication and repair, transcription, and translation, are all dependent on at least one FeS cluster containing enzyme. A key question is: how are these DNA metabolizing enzymes, also termed targets, recognized by the CIA pathway? Melissa plans to discern the mechanism of CIA target recognition by investigating Cia2, a vital component of the CIA targeting complex known for executing target identification in the last step of the system. Not only is cluster targeting poorly understood for the CIA pathway, but it is not known how any cluster biogenesis pathway identifies its targets. By examining how targets are recognized, this work can provide a model for how target recognition is executed for other cluster biogenesis systems. Melissa is primarily interested in pursuing a career in which she can simultaneously work on innovative experimentations closely related to therapeutic development and reigniting students’ appreciation for deeper learning and, ultimately, love for science.

Tagged

Professor Adrian Whitty Awarded 4 Years of Funding from the NIH.

July 5th, 2017 in Allen, Karen, Grants, Grants & Funding, NIH, Research, Whitty, Adrian

Professor Whitty was awarded a 4 Year grant by the National Institute of Health (NIH) to further his studies of NF-kB Modulators. The title of the Research Project is: Structure and Mechanism of NF-kB Essential Modulator (NEMO).

This funding will allow Professor Whitty and his Co-PIs Professors Karen Allen of Chemistry and Thomas Gilmore of Biology to advance our understanding of the signaling scaffold protein NF-κB essential modulator (NEMO), a component of the inhibitor of κB kinase (IKK) complex, which is a key regulatory node for NF-κB signaling. In addition to NEMO playing a role in the chronic hyperactivity of NF-κB in human diseases, mutations in NEMO are found in several human immunodeficiency diseases. The long-term goals of the project are to understand how scaffolding proteins such as NEMO use conformational change to regulate the functional interactions between the signaling proteins that are bound to them, to elucidate the structural basis for disease-causing mutations in key regions of NEMO, and to identify new target sites for small molecule drugs that modulate NEMO activity.

Congratulations to Professors Whitty, Allen and Gilmore and their research team!

Prof. David Coker Awarded $435,000 NSF Grant

June 14th, 2017 in Award, Coker, David, Faculty, Front Page, Grants, Grants & Funding, NSF, Research, Uncategorized

Coker NSF Story DiagramCongratulations to Professor David Coker for receiving a National Science Foundation Grant (NSF) totally $435,000. This project will fund Dr. Coker and his team’s research into two areas. The first project will focus on extending, first principles, excited state quantum chemical methods and conformational sampling techniques to compute the distributions of parameters in models of the biological light harvesting systems that have received much attention in recent ultrafast nonlinear spectroscopy studies. Such models are usually employed to interpret the results of these averaged experiments. These best-fit, average models have many parameters that can be difficult to estimate and they are not generally unique, often leading to ambiguous interpretation. The theoretical methods being developed by the Coker group, however, enable detailed analysis of fluctuations underlying the average and the sampling of an ensemble of unique models that include, for example, highly performing structural outliers whose characteristics will give important understanding for optimal design, rather than mean behavior. In the second project, dissipative quantum dynamical methods are employed to compute spectroscopic properties and study relaxation processes including energy transport and charge separation using the ensembles of computed models. Preliminary work on these projects was featured in a recent publication in the Journal of the American Chemical Society.[1]

 

Dr. Coker is a Professor of Theoretical and Physical Chemistry and is the Director for BU’s Center for Computational Science (BU CCS). The Coker Group focus their research the development of new theoretical and computational methods to explore how electronic and vibrational excitation of reactant molecules in different environments can influence the outcome of chemical reactions of these molecules. Because electronic and vibrational relaxation of excited reactants is fundamentally quantum mechanical in nature, the methods they use must accurately describe the transfer of energy between the classical environment and the quantal reactive system.

[1] “First-Principles Models for Biological Light-Harvesting: Phycobiliprotein Complexes from Cryptophyte Algae”, M.K. Lee, K. Bravaya, and D.F. Coker, J. Am. Chem. Soc., 2017, 139 (23), pp 7803–7814

Melissa Marquez of the Perlstein Group award NSF-GRFP Fellowship

April 6th, 2017 in Award, Graduate, Grants, Grants & Funding, NSF, Perlstein, Deborah, Recognition

2nd Year Grdaaute Student Melissa Marquez, of the Perlstein Group

2nd Year Graduate Student Melissa Marquez, of the Perlstein Group

Melissa Marquez, a second-year graduate student in Professor Deborah Perlstein’s group, has recently received a 2017 NSF Graduate Research Fellowship. She earned a Bachelor of Science in biochemistry with a minor in mathematics from Mount Saint Mary’s University and as an undergraduate conducted research in Dr. Eric Stemp’s lab focusing on DNA-protein cross-linking resulting from oxidative damage to DNA. She was introduced to Boston by participating in Tufts University’s NSF Research Experience for Undergraduates (REU) program in the summer of 2013 and worked in Dr. Mitch McVey’s lab where she focused on determining the lethality stages in Drosophila melanogaster Werner Syndrome exonuclease mutants. Along with chemistry, Melissa enjoys serving others in their journey toward their science aspirations. She is currently a fellow for the BU NSF GK-12 Global Change Initiative (GLACIER) program where she works at Pierce School in Brookline with a 6th grade science teacher, an officer for BU Women in Chemistry, and a co-leader of the BU Graduate Women in Science and Engineering (GWSE) Girls with Goggles club, an outreach program that provides weekly hands-on activities for middle school girls.

Through the support of the NSF, Melissa aims to obtain a greater understanding of how iron cofactors are biosynthesized through the cytosolic iron sulfur cluster assembly (CIA) pathway. This system is responsible for iron sulfur (FeS) cluster biogenesis for proteins found outside of the mitochondria in eukaryotic organisms. Essential processes such as DNA replication and repair, transcription, and translation, are all dependent on at least one FeS cluster containing enzyme. A key question is: how are these DNA metabolizing enzymes, also termed targets, recognized by the CIA pathway? Melissa plans to discern the mechanism of CIA target recognition by investigating Cia2, a vital component of the CIA targeting complex known for executing target identification in the last step of the system. Not only is cluster targeting poorly understood for the CIA pathway, but it is not known how any cluster biogenesis pathway identifies its targets. By examining how targets are recognized, this work can provide a model for how target recognition is executed for other cluster biogenesis systems. Melissa is primarily interested in pursuing a career in which she can simultaneously work on innovative experimentations closely related to therapeutic development and reigniting students’ appreciation for deeper learning and, ultimately, love for science.

Tagged , ,

Dr. Sean Elliott Receives 4 Year National Institute of Health Grant to study “Structure, Function and Diversity in the Bacterial Cytochrome c Peroxidase Family”

January 10th, 2017 in Award, Elliott, Sean, Grants, Grants & Funding, NIH, Research, Uncategorized

bccp_v1

 

 

 

 

 

 

 

 

 
Dr. Sean Elliott was recently awarded 4 years of support from the National Institute of Health (NIH) for his research into bCCPs.

The new grant will enable studies in the Elliott Group to dissect the way in which nature has made use of a common motif of bioinorganic chemistry, the iron-bearing structure known as a c-type heme, and to utilize it for diverse chemistry. While Elliott has a long-running interest in heme and redox chemistry, here the group studies the titular ‘bacterial cytochrome c peroxidase’ (or, bCCP) family of enzymes. While prototypical bCCPs are found in gram negative microorganisms where they detoxify endogenous or exogenous hydrogen peroxide (H2O2), the Elliott group has realized that there exist in microbes novel bCCPs which engage in unknown chemistry. In the work sponsored by the NIH, the Elliott group will use a combination of biochemistry, electrochemistry, spectroscopy and structural biology to elucidate the bCCPs found in under appreciated microbes, and attempt to rationalize why the enzymes work as they do.

The work to be supported is a team effort where the enzymes discovered and produced in the Elliott Group will be examined here at BU, but also in collaboration with structural biologists at MIT and spectroscopists at Carnegie Mellon and the University of Michigan.

As bCCPs are enzymes on the front-line of the native defenses of NIH Select List pathogens including Pseudomonas aeruginosa, Burkholderia complex species, Vibrio cholerae, Campylobacter jejuni, and Yersinia pestis, these studies will provide fundamental insight into the long-term development of new antimicrobial compounds that will target the novel features of bCCP structure.”

Dr. Elliott, who is also a two time recipient of the Scialog® Award Research Corporation (2010-2011), and received the 2007 Gitner Award for Distinguished Teaching in 2007 and an NSF CAREER Award in 2005 (among other honors), works with the Elliott Research Group to investigate the interplay between biological systems and redox-active species (e.g., metal ions, organic radicals, disulfide bonds, reactive oxygen species). Their emphasis is on the kinetic and thermodynamic basis for catalytic redox chemistry, as well as the molecular basis of how nature tune redox cofactors do the hard work of Life.

Professors Snyder and Abrams collaborate with colleagues in Biology and Neuroscience to create novel, interdisciplinary courses: Integrated Science Experience 1 & 2

January 5th, 2017 in Abrams, Binyomin, Department, Faculty, Grants, Snyder, John, Teaching, Uncategorized, Undergraduate

curcumin

Curcumin Compound

 

 

Interdisciplinary, Integrated Course Ideas Receive Provost Grants

Chemistry faculty, John Snyder and Binyomin Abrams, in conjunction with colleagues in the Departments of Biology (Kathryn Spilios and John “Chip” Celenza) and Neuroscience (Paul Lipton and Lucia Pastorino) have successfully proposed ideas to develop integrated, inquiry-based laboratory courses for first and second year biology, chemistry, and neuroscience students.   Jointly funded by the Office of the Provost, the Center Teaching & Learning, and the College of Arts and Sciences, these interdisciplinary course development grants aim to promote faculty and student collaboration across disciplines in support of innovative, research-oriented undergraduate laboratory education.   The new courses that are being developed, Integrated Science Experience 1 (ISE 1, for second semester freshmen) and ISE 2 (for first semester sophomores) will facilitate students making connections across biology, chemistry, and neuroscience early in their undergraduate careers. Such interdisciplinary insights will better prepare for advanced courses and undergraduate research. Developed in 2015 and 2016, ISE 1 and ISE 2 were piloted in the Spring and Fall 2016 terms, respectively.

Interdisciplinary Science Experience 1

The first-semester ISE1 course was piloted in the Spring 2016 semester. Forty students with majors ranging from biology to philosophy engaged in a semester-long study focused around characterizing the kinetics of tyrosinase-catalyzed production of L-Dopa and screening of small-molecule inhibitors. The labs integrated teaching on the basics of instrumentation, lab practices/skills, research practices in STEM, working with scientific literature, and writing in the sciences, while synthesizing information related to chemistry, biology, and neuroscience.

Interdisciplinary Science Experience 2

A pilot of this first semester, sophomore program began this fall semester (2016) supported by Boston University. In this program, eleven students enrolled in Organic Chemistry 1 (CH 203), and Cell Biology (BI 203 or 213) or Neuroscience I (NE 203) work on a specific project that combines labs in both Organic Chemistry and Cell Biology, with an emphasis on Neuroscience, modeling a drug discovery effort for Alzheimer’s disease. This project, which was organized as a graduate level research group would be, with weekly group meetings replacing pre-lab lectures, focused on the isolation of curcumin from turmeric, and the synthesis of specific analogues in the organic chemistry lab, with parallel biological experiments probing the activities of these compounds as relates to Alzheimer’s dementia. Curcumin has a well-validated biological activities to launch the biology lab. The analogues prepared in the organic lab were selected for their practicality of preparation at the sophomore level, as well as to probe specific structural features of curcumin that might be responsible for the activity. In addition, the procedures in both labs were designed as an educational vehicle that would greatly enhance the lectures in Organic Chemistry 1, Cell Biology, and Neuroscience. This pilot program culminated with students designing their own capstone projects in both the chemistry and biology labs.

Professor Snyder said “The results from our first year experience have been even better than expected. New analogues of curcumin have been prepared, and the biological effects of these analogues have never been reported before. We are now seeking funding from the AAU to expand this pilot project with a second, research oriented project centered around capsaicin, the ‘hot’ ingredient of habanero which has also been implicated as having beneficial neurological effects.”

Tagged , , , , ,

Dr. Arturo Vegas Highlighted in BU Today

December 21st, 2016 in Arturo Vegas, Award, Faculty, Front Page, Grants, Grants & Funding, NIH, Research

Chemist Arturo Vegas wins $1.4 million NIH grant to develop therapies that intervene at early stage of disease

Chemist Arturo Vegas wins $1.4 million NIH grant to develop therapies that intervene at early stage of disease

 

 

 

 

 

 

 

 

 

 

 

Dr. Arturo Vegas was recently featured in BU Today for his research into Type 1 Diabetes. The full article is called “New Targets to Treat Type 1 Diabetes” and there’s an excerpt from the article by Barbara Moran is below.

For more information about Dr. Vegas visit his Faculty Page and for more on his research group visit the Vegas Group Page.

“Type 1 diabetes is rare but devastating. A person’s own immune system attacks the pancreas, destroying insulin-producing tissue and the body’s ability to regulate blood sugar. About five percent of people with diabetes—approximately 1.25 million Americans—have this form of the disease, according to the American Diabetes Association. Unregulated blood sugar can lead to blindness, kidney failure, and death.

Scientists aren’t sure what causes type 1 diabetes, though they suspect that a genetic predisposition, combined with an environmental trigger, causes a sudden disruption in the immune system that causes it to attack the body’s own tissue. The only treatment is a lifetime of careful blood sugar monitoring, with insulin injections as needed.

But what if there were a way to block the immune system before the damage was done, preserving at least some of the pancreas’ ability to produce insulin? That’s the goal of Arturo Vegas, a Boston University College of Arts & Sciences assistant professor of chemistry, whose lab combines biology, chemistry, materials science, and engineering to develop targeted therapies for complex diseases like diabetes. He recently was awarded a prestigious $1.4 million Type 1 Diabetes Pathfinder Award from the National Institutes of Health (NIH) to pursue the work.”

 

Congratulations Dr. Vegas!

Tagged , , ,

Bjoern Reinhard Awarded 3 Year National Science Foundation Research Grant

September 26th, 2016 in Faculty, Grants, Grants & Funding, NSF, Recognition, Reinhard, Björn, Research

apchd5_v002i007-e1436968544782 (1)Dr. Reinhard recently received 3 Years of research funding for his proposal titled: “OP: Plasmonic Enhancement of Chiral Forces for Enantiomer Separation.”

An object is chiral if it cannot be mapped to its mirror image by rotations and translations alone. Chiral molecules can exist a priori in two nonsuperimposable mirror images, that is, enantiomeric forms. Enantiomers can differ in their chemical behavior and reactivity, which can have drastic consequences. In drugs, for instance, one enantiomer may have a desired physiologic effect, while the other enantiomer can be inactive or even harmful. The most infamous example is thalidomide (“contergan”), for which one enantiomer is an effective sedative, whereas the other is teratogen. Administration of the racemic mix to pregnant women led to the birth of thousands of children with malformed limbs. This example illustrates the need for highly sensitive detection and especially separation of chiral biomolecules in research and drug development.

The proposal will help develop a new general separation scheme that uses chiral light matter interactions enhanced by resonant plasmonic antennas to separate enantiomers through discriminatory chiral forces acting on different enantiomers. The new technique will have important analytical and preparative applications. It will facilitate both to monitor the enantiomeric purity of chiral species and provide the means to separate enantiomeric or diastereomeric mixtures.

Congratulations to Dr. Reinhard and his Group on this award!

Tagged

Arturo Vegas awarded 5 Year New Innovator Award from National Institute of Health

September 26th, 2016 in Award, Grants, Grants & Funding, NIH, Recognition, Research

Melton-cells

Dr. Arturo Vegas was awarded 5 years of research support from the National Institute of Health through the New Innovator Award for his proposal entitled “Targeted Immunomodulation of the Diabetic Islet Microenvironment.”

His interest in the project springs for the fact there are currently no effective treatments for the autoimmunity that causes type 1 diabetes. Generalized immunosuppressive therapies are impractical for long-term care, and there remains a critical need to develop targeted therapies to treat diabetes-causing autoimmunity. To address this important challenge to the treatment of type 1 diabetes, this research focuses on the development of novel islet-targeted conjugates, nanomaterials, and targeting ligands to localize immunosuppressive agents to the islet microenvironment and enable drug release upon the onset of islet inflammation.

Congratulations to Dr. Vegas and his research group! For more information about Dr. Vegas click here, and about his group click here!

Tagged ,