Alumni News and Events

Proteomics on the Silk Road

January 8th, 2013

Since his retirement in 2009, Prof. Emeritus Richard Laursen, a protein chemist for most of his career, has focused on using modern chemical instrumentation to analyze textiles, paint, and other art and archaeological objects.  Utilizing LC-MS, he has become a world-renowned expert in the analysis of dyes from natural sources in historical textiles, including those associated with the legendary Silk Road.  As such he was invited to participate in the celebration of the 20th anniversary of the China National Silk Museum (CNSM), the largest such museum in the world, in Hangzhou, China (November 29 – December 2, 2012).

Prof. Laursen with members of the Committee of the Research Base for Textile Conservation of the CNSM

Prof. Laursen with members of the Committee of the Research Base for Textile Conservation of the CNSM

The event marked the establishment of the first academic Committee of the Research Base for Textile Conservation of the CNSM.  Three members of the Committee are from outside of China:  Richard Laursen; Susan Whitfield, Director of the International Dunhuang Project, British Library, London; and Marie-Louise Nosch, Director of the Danish National Research Foundation’s Centre for Textile Research and Professor of Ancient History, University of Copenhagen.  Named for a period of three years (2013-2015), Committee members Laursen and Whitfield entered into collaborative agreements with Zhao Feng, Director of the CNSM.

On the last day Richard Laursen presented a talk at the commemorative conference, “Researches on and conservation of textiles from the Silk Road.”  His talk was on “Natural Dyes in Textiles from the Silk Road.”Laursen-China-Lecture

The following day, Prof. Laursen met with Liang Songping, Professor of Biology at Hunan Normal University and a former Laursen group postdoc, and with Zhao Feng, and members of the Conservation Science Department of the CNSM to discuss using proteomics for distinguishing between different species of silk in archaeological specimens.

Chemistry Alumni Connect with Current Students

October 2nd, 2012

2012 Alumni Symposium posterAs part of BU’s September 2012 annual alumni weekend celebrations, the Department of Chemistry invited four distinguished alumni to describe some highlights of their varied careers in science and technology and how their BU education launched them on these career paths. The speakers ranged in fields (theoretical chemistry to organic chemistry to physical chemistry) and careers (academia, entrepreneurship, law, industry) and BU educational experiences (undergraduate to Ph.D.). The symposium proved to be both practical in terms of career advice and touching in the tribute speakers paid to their advisors, and demonstrated the substantial impact that their BU Chemistry training had in helping to shape these successful careers. The photo shows the speakers with their advisors: Dr. Victor Battista, GRS ’96, now Professor of Chemistry at Yale, with Prof. John Straub (standing in for Victor’s advisor, David Coker); Dr. Les Dakin, GRS ’03, now scientist at Constellation Pharmaceuticals with advisor, Jim Panek; Dr. Jack Driscoll, GRS ’67, founder of HNU PID with advisor Professor Emeritus, Morton Hoffman; and Dr. Matt Zisk, CAS ’85, now partner and patent counsel at Skadden, Arps, Slate, Meagher & Flom LLP & Affiliates with advisor, Professor Emeritus Gil Jones.

Professor Emeritus Norman Lichtin, 1922-2012

June 4th, 2012

Norman Lichtin

In this tribute, Professor Scott Mohr remembers his colleague and friend, Norman Lichtin


1959 – Associate Professor Lichtin

Norman N. Lichtin, longtime member of the faculty of Boston University’s Department of Chemistry and its fifth chairman, passed away on April 30, 2012, aged 89. Norman played a major role in building the department and had a distinguished research career spanning 51 years that resulted in more than 80 publications in top-tier journals. He mentored 27 PhD graduates, 15 master’s students, and 28 post-doctoral research associates. His teaching spanned the range from undergraduate courses in general chemistry, organic chemistry, and physical chemistry, and a seminar on “Man and Energy,” to graduate courses in advanced organic chemistry, physical organic chemistry, photo- and radiation chemistry and chemical kinetics. More

Renovation Inspires Technology Innovation in Undergrad Organic Lab

March 16th, 2012

Undergraduate Organic Lab

BU Chemistry has dramatically improved the undergraduate organic chemistry laboratory by giving students access to major research instrumentation and state-of-the-art technology. By enabling more modern experimentation, these resources foster critical thinking and problem solving skills that prepare undergraduates for  graduate and pre-professional schools or for careers in industry. Advanced experimentation also enables more sophisticated student-designed research-type projects.

Undergraduate Organic Lab Undergraduate Organic Lab

Renovations and instrumentation

Renovations in the Metcalf Center for Science and Engineering (Summer 2011) have transformed our organic chemistry instructional laboratories into an 6,350 sq. ft. suite with fume hoods and bench areas for each student, auxiliary support space, and a chemical stockroom. Space has been dedicated for an undergraduate instrumentation center for with fully automated high field nuclear magnetic resonance (NMR), ultra-performance liquid chromatography–mass spectrometry (UPLC-MS), Fourier transform infrared spectroscopy (FT-IR), and gas chromatography-mass spectrometry (GC-MS). Microwave reactors allow for rapid reaction rates, enabling multistep syntheses to be undertaken in a single day.

Undergraduate Organic Lab Undergraduate Organic Lab

Advanced Technology in the Laboratory Curriculum

The entire laboratory curriculum of our sophomore-level organic chemistry sequence has been transformed with the adoption of the “paperless laboratory” through the use of electronic laboratory notebooks. Spearheaded by Professor John Snyder and Professor Scott Schaus and Postdoctoral Faculty Fellow, Seann Mulcahy, integration of these technology resources have enabled the creation of an open-access repository of laboratory protocols, design of laboratory experiments that facilitate sharing of data between students and between disciplines, exposure to automated NMR, GC-MS, and UPLC-MS, and remote download and manipulation of spectroscopic data.

  • Undergraduate Organic LabFast Forward to the 21st Century -The new instrumentation advances undergraduate capabilities well beyond those in traditional sophomore organic textbooks that repeat traditional experiments. Instead, we have designed novel, research-oriented, exploratory experiments that have applicability to modern organic chemistry. These include cross-coupling experiments, olefin metathesis, and many others. Experiment protocols are available on BU’s Digital Common site (DCommon), an open-access online repository that is accessible not only by our students, but by outside instructors as well. Users can be granted upload privileges to deposit modified or new protocols thereby creating a rich resource to the worldwide research community. In addition, a DCommon collection of NMR and UPLC-MS spectra is being compiled as a teaching tool for organic chemistry courses.

Undergraduate Organic Lab

  • Major Instrumentation – BU is unique in using the latest instrumentation for routine, hands-on training at the sophomore level. The laboratory’s state-of-the-art instrumentation also allows comprehensive characterization of synthetic material prepared in each experiment. Students now routinely run 1H and 13C NMR (and 2D COSY), UPLC/MS, GC/MS, and FT-IR on their own samples and to obtain a set of data which approaches the quality needed for publication.


Undergraduate Organic Lab

  • Into the Cloud – Our students are now using fully electronic laboratory notebooks, which they populate  on their laptops with reaction details, procedural notes, and safety protocols. Analytic data and spectra (manipulated and interpreted remotely) are uploaded into the notebook and serve as part of their final laboratory reports.

Professor Emeritus Hoffman meets Former Student at ACS

September 8th, 2011

Professor Mort Hoffman & Former Student Elisa Miller

Professor Mort Hoffman & Former Student Elisa Miller

Professor Emeritus Morton Hoffman met his former CH111-112 general chemistry student, Elisa Miller (CAS ’05), at the 242nd ACS National Meeting in Denver at the end of August.

Elisa served as a Peer-Led Team Learning (PLTL) workshop leader in that course as a sophomore, and she conducted undergraduate research for two and a half years on chemical dynamics of high energy molecules with Professor Amy Mullin.

While at BU, she was named the Beckman Foundation Scholar for 2003-2005. She is currently finishing her Ph.D. in physical chemistry with Professor Carl Lineberger on anion photoelectron spectroscopy in the gas phase at the University of Colorado at Boulder.

Laursen Fund Halfway to Goal

July 21st, 2011

Professor Richard Laursen Then Professor Richard Laursen Now

Professor Richard Laursen Then & Now

When Professor Emeritus Richard Laursen retired in 2009, his students and colleagues wanted to recognize his 43 years of excellent research, teaching, and mentoring by establishing the Laursen Fund in his honor. The goal is to raise $100,000.  We are now halfway to meeting that goal.

Led by Chemistry alumnus Luis Ruzo (CAS 1970), a former Laursen undergraduate, the fund will help provide an annual summer research stipend for a graduate or undergraduate student from candidates nominated by their advisors.

Known for his exceptional mentoring, Rich Laursen, who is still actively pursuing his research interests in Chemistry, would very much like to see the capital grow so that the interest can annually support the training and nurturing of exceptional young scientists.

Chemistry’s Renovated Front Office

May 27th, 2011

Front Office - Post RenovationsChemistry friends and alumni are invited to view our completely redesigned and renovated front office by clicking here or — better yet — by visiting.  While looking radically different, the new front office fits seamlessly into the original footprint. The College of Arts and Sciences (CAS) commissioned the design from Kristine Stoller and Alan Westman (LEED Green Associate at KSID, LLC) and the construction from JK Blackstone. Led by the Chair of Chemistry, Professor John Straub, and the Director of Operations, Paul Ferrari, staff members were consulted throughout the process and their recommendations and requests informed the new design.

The design highlight of office is the wall-mounted periodic table designed by Professor Dan Dill. Suggested by Kris Stoller, the image brilliantly connects the office to “Chemistry” and immediately points to the mission of the Department. So how did Dan Dill design his periodic table? Read on!

Chemistry’s “New” Periodic Table

May 27th, 2011

Periodic Table in the Reception Area

Periodic Table in the Reception Area

When we needed a graphically compelling representation of the Periodic Table for the Chemistry front office, we turned to Professor Dan Dill.  In addition to his theoretical and physical chemistry expertise, Professor Dill is an accomplished photographer, who received a Kodak Award in 2006.  Here is his recounting of the process:

“I received an e-mail from our Chair, John Straub, in which he related designer Kristine Stoller’s idea for a periodic table in the new office. John ended his message with:

I was thinking of the very nice Periodic Table that you created years ago, and that has been much used in our Department.

The tools I used to create that original Periodic Table have been lost in the sands of digital time, and so it was necessary to begin anew, using the latest version of Adobe Illustrator.

Xenon Sample From the Peroidic Table of Elements in the Chemistry


The first step in the new design was to  settle on the format of the element boxes. The box for Xenon shows what we settled on, using the typeface Adobe Myriad Pro. (The dark chevron indicates that at room temperature Xenon is a gas.)

With that done, the next step was to assemble the elements into the traditional periodic table format, adapted to the dimensions of the wall in the new chemistry office.  It was then that Kristine mentioned her plan to have the table printed on six resin panels. Her innovative concept allowed us to break with convention by partitioning the table itself into six portions.

Nitrogen Sample From the Peroidic Table of Elements in the Chemistry


At this point we thought that the only thing left to do was to check and recheck all entries for errors.  Everyone in the department enthusiastically helped with this task.  Just as we were completing it, the International Union of Pure and Applied Chemistry published its technical report, “Atomic weights of the elements 2009” (Wieser & Coplen, 12 December 2010).  It recommended that atomic weights for Boron, Carbon, Chlorine, Hydrogen, Lithium, Nitrogen, Oxygen, Sulfur, Silicon and Thallium span intervals (shown, for example, for Nitrogen as 14.00643–14.00728), due to variation in isotopic composition of their stable isotopes.

We consider it good fortune to have been able to incorporate these latest recommendations into the table.  After many new rounds of proof reading, the completed design was printed on the resin panels displayed in the office.

PFF Alumnus Receives Teacher of the Year Award

May 10th, 2011

Professor John R. Miecznikowski

John R. Miecznikowski

In March 2011, John Miecznikowski, Ph.D., Assistant Professor of Chemistry, received Fairfield University’s Teacher of the Year Award. He was nominated by the Fairfield student body and selected from among 75 undergraduate professors.

Professor Miecznikowski began his teaching career as a Postdoctoral Faculty Fellow (PFF) in the Boston University Department of Chemistry (2004-2007). At BU, Dr. Miecznikowski taught “General Chemistry” (CH101) and “Inorganic Chemistry” (CH 232).

His research was conducted in Professor John Caradonna’s laboratory and focused on the development, synthesis, and characterization of ligand precursors and iron, gallium and zinc model complexes of phenylalanine hydroxylase and other mononuclear nonheme enzymes with N and O atoms bound to the metal center.

Professor Miecznikowski started his tenure track teaching position at Fairfield in 2007.

Connecting to Chemistry Alumnae in California

April 22nd, 2011

In April, Chemistry Professor Emeritus Morton Z. Hoffman was invited by Concordia University Irvine to deliver an International Year of Chemistry (IYC) lecture, “The IYC: Our Life, Our Future,” as well as to serve as a consultant to the Chemistry Department, at Concordia, as they developed their 10-year strategic plan. While in the “the neighborhood,” he caught up with two BU alumnae, Professor Catherine Clark (GRS 1996), whose thesis research he directed, and Ms. Jenny Talbot (CAS 2004), who was a student in his CH111/112 class (2000-01) and served as a PLTL workshop leader (2001-02).

Catherine Clark with Professor Hoffman

Catherine Clark with Professor Hoffman

Alumna  Catherine Clark is now Professor of Chemistry and Associate Dean of the School of Earth and Environmental Sciences in the Schmid College of Science of Chapman University in Orange, CA.

Jenny Talbot with Professor Hoffman

Jenny Talbot with Professor Hoffman

Alumna Jenny Talbot did undergraduate and post-baccalaureate research with Dr. Adrien Finzi in the Biology Department on forest ecology and biogeochemistry. She will receive her Ph.D. from the Department of Ecology and Evolutionary Biology at the University of California Irvine next month, and will begin a postdoctoral appointment at the University of Minnesota at the end of the summer.