Ziegler Funded to Develop New Forensics Tool

Prof. Lawrence Ziegler, Principal Investigator of the New NIJ Award
Prof. Lawrence Ziegler, Principal Investigator of the New NIJ Award

Among the most important forensic evidence that can be collected at a crime scene are body fluids.   The National Institute of Justice (NIJ) has funded Prof. Lawrence Ziegler and his group to develop a novel detection and identification platform for these fluids based on the optical methodology,  Surface Enhanced Raman Spectroscopy (SERS).

SERS Spectra showing the unique, distinguishable, and reproducible signature of each body fluid type
SERS Spectra showing the unique, distinguishable, and reproducible signature of each body fluid type

The purpose of this research is to learn about the fundamental capabilities of SERS for detecting, identifying, and characterizing trace amounts of body fluids as a new forensics tool.  The investigators believe that development of this optical methodology will lead to a single instrumental platform for the rapid, sensitive, easy-to-use, cost-effective, on-site, non-destructive, detection and identification of human body fluids at a crime scene.  No such platform is currently available for this purpose. The successful development of their SERS technology could be transformative allowing the identification of the type of biological materials/fluids with minimal destruction to evidence samples at crime scene locations or from evidence taken from crime scenes.  Due to the sensitivity of SERS, suspected human body fluid samples that may be invisible to the eye (but may be evident with the aid of alternate light sources), may be identified leaving sufficient quantity for subsequent DNA analysis.  In forensic lab settings, SERS can be used to identify the original body fluid at the time of genetic analysis.  The molecular basis for these characteristic SERS signatures will b determined.  In addition, SERS can determine the age of some biological stains and corresponding time since a violent crime.  Thus, these SERS measurements have the capability to inform criminal investigation directions prior to traditional confirmatory laboratory testing.

NIJLogoThis project leverages the Ziegler group’s expertise developed for other SERS-based bioanalytical applications. At the end of this award period, all the elements for an integrated SERS-based, portable trace body fluid detection and identification platform (sample preparation protocols, spectral reference library, software procedures) will be available for field deployment and testing.