CMLD-BU Scientists Awarded National Institutes of Health Grant in Pilot-Scale Libraries for High-Throughput Screening Program

in CMLD, Faculty, Panek, James, Porco, John, Schaus, Scott, Snyder, John
December 15th, 2005

Co-investigators of the Boston University Chemical Methodology and Library Development Center (CMLD-BU) (http://cmld.bu.edu) have been awarded a three-year grant for their joint proposal “Generation of Stereochemically and Structurally Complex Chemical Libraries.” The goal of the work by Professors Porco, and co-Principal Investigators Panek, Schaus, and Snyder, is to generate a number of stereochemically and structurally complex chemical libraries for inclusion in the National Institutes of Health (NIH) Molecular Repository (http://mlsmr.glpg.com/MLSMR_HomePage/index.html). They will develop five library projects that are distinct from ongoing and planned CMLD-BU library projects, but which utilize novel chemistries previously developed in their laboratories. Target pilot libraries include complex dihydropyrimidones, azaphilone-derived libraries, tetracyclic alkaloid-type libraries, exo-methylene scaffolds and derived spirocycles, and macrocyclic lactams. In addition, all planned libraries have been designed to include unique structures that do not overlap in chemical space with molecules currently in the PubChem database. Data will be shared using an internet-based structure-searchable database of synthesis protocols.

The Molecular Libraries and Imaging Initiative is a component of the “New Pathways to Discovery” theme of the NIH Roadmap, which seeks to enable the rapid transformation of new scientific knowledge into tangible benefits for public health. While high-throughput screening (HTS) of small-molecule libraries is widespread in the pharmaceutical industry, the goal of the Molecular Libraries (ML) Roadmap Initiative is to facilitate the use of HTS and chemical libraries within the academic community. It is anticipated that the ML initiative will produce research tools (including novel small-molecule modulators of cellular function and phenotypic assays) to facilitate studies of biology and physiology (http://nihroadmap.nih.gov/molecularlibraries). It is anticipated that the initiative will complement private sector drug development efforts by contributing to the identification and validation of novel drug targets, as well as molecular structure classes with potential for development into therapeutics. The initiative promises benefits to public health, especially for rare or marginalized disorders.

John PorcoProfessor James PanekScott SchausProfessor John Snyder