Mammalian Species No. 802, pp. 1–5, 3 figs.

Cynopterus horsfieldii. By Polly Campbell and Thomas H. Kunz

Published 4 December 2006 by the American Society of Mammalogists

Cynopterus horsfieldii (Gray, 1843)

Horsfield’s Fruit Bat

Cynopterus horsfieldii Gray, 1843:38. Type locality “Java,” Indonesia.

Pachysoma horsfieldii: Fitzinger, 1869:33. Name combination.

Cynopterus marginatus var. horsfieldii: Gray, 1870:123. Name combination.

Cynopterus princeps Miller, 1906:61. Type locality “Mojiea River, Nias Island, west Sumatra.”

Niadius minor Lyon, 1908:665. Type locality “confluence of Gasip and Siak rivers, eastern Sumatra.” Preoccupied by *Cynopterus* (Cynonycteris) minor Trouessart, 1878:206.

Cynopterus horsfieldi Anderson, 1912a:627. Name combination and unjustified emendation.

Cynopterus persimilis Andersen, 1912b:641. Type locality “Sarawak, Borneo.”

CONTEXT AND CONTENT. Order Chiroptera, suborder Megachiroptera, family Pteropodidae, subfamily Pteropodinae, tribe Cynopterini, subtribe Cynopterina, genus *Cynopterus*. *Niadius* was synonymized with *Cynopterus* and the combined genus was divided in 2 sections (Anderson 1912a); the *Niadius* section with *C. harpax* and *C. horsfieldii*, and the *Cynopterus* section with *C. angulatus* (= *C. s. angulatus*), *C. brachyotis*, *C. sphinx*, and *C. s. titthaecheilus* (= *C. titthaecheilus*). *C. harpax* Thomas and Wroughton, 1909 was synonymized with *C. h. minor* by Hill (1961), who considered the type specimen to be morphologically indistinguishable from the Sumatran subspecies. *C. h. lyoni* Andersen, 1912a was considered the valid name and *C. h. minor* a homonym (Hill 1933). However, Koopman (1994) treated *C. h. lyoni* as a junior synonym of *C. h. harpax*. Four subspecies are recognized (Corbet and Hill 1992; Koopman 1994; Mickleburgh et al. 1992):

- *C. h. harpax* Thomas and Wroughton, 1909:439; see above; *lyoni* (Andersen) and *minor* (Lyon) are synonyms.
- *C. h. persimilis* Andersen, 1912b:641; see above.
- *C. h. princeps* Miller, 1906:61; see above.

DIAGNOSIS. *Cynopterus horsfieldii* (Fig. 1) is readily distinguished from *Pteropus* by its smaller size. *Aethalops alecto*, *Balionycteris maculata*, *Chironax melanopenchus*, and *Macroglossus* are all considerably smaller than *C. horsfieldii*. *Rousettus* has 5 cheek teeth in upper toothrow and is generally larger than *C. horsfieldii* (Lekagul and McNeely 1977; Payne et al. 1985). Among medium-sized members of Pteropodidae, *C. horsfieldii* can be differentiated as follows: *Megaerops* and *Penthetor lucasi* lack white ear margins and have 1 pair of lower incisors whereas *C. horsfieldii* has 2; *Megaerops* lacks a tail. *Eonycteris* has a longer, narrower rostrum than *C. horsfieldii* and lacks claw on 2nd digit. *Dyacopterus spadiceus* is slightly larger than *C. horsfieldii*, with a broader rostrum, deeper jaw, massive squared cheek teeth, and 2 upper premolars as compared to 3 in *C. horsfieldii* (Lekagul and McNeely 1977; Medway 1983; Payne et al. 1985). *Cynopterus horsfieldii* is distinguished from all other congers by having peglike cusps on the 3rd and 4th lower cheek teeth (p3, m1—Corbet and Hill 1992; Lekagul and McNeely 1977; Medway 1983; Payne et al. 1985). In peninsular Malaysia, *C. horsfieldii* is considerably larger than *C. brachyotis* and averages larger than *C. sphinx* in all characters except length of rostrum. Relative to *C. sphinx*, *C. horsfieldii* has a broader cranium, blunter rostrum, and more-robust cheek teeth (Campbell et al., in press).

GENERAL CHARACTERS. *Cynopterus horsfieldii* is a medium-sized fruit bat with large eyes and simple ears that lack a tragus. Skull (Fig. 2) is robust with a short, broad rostrum, and nostrils are subtubular. *C. horsfieldii* has 4 cheek teeth in each upper toothrow, 1 pair of upper and lower canines, and 2 pairs of upper and lower incisors. Well-developed surface cusps are on the 3rd lower premolar and 1st lower molar (Anderson 1912a; Lekagul and McNeely 1977; Medway 1983; Payne et al. 1985).

Pelage is short and dense (Anderson 1912a). Color in adults ranges from light or yellowish gray to dark or bright brown; juveniles are dull buff or gray. Breeding adults have a reddish brown or orange mantle (Lekagul and McNeely 1977; Medway 1983; Payne et al. 1985). Pelage around throat and shoulders of adult males is stiffer, brighter, and richer in color than that of females. In males, mantle may extend ventrally across chest (Anderson 1912a; Medway 1963; Payne et al. 1965). Color and area of mantle are the only consistently sexually dimorphic characters; males and females are all considerably smaller than *C. horsfieldii*. *Rousettus* has 5 cheek teeth in upper toothrow and is generally larger than *C. horsfieldii* (Lekagul and McNeely 1977; Payne et al. 1985). Among medium-sized members of Pteropodidae, *C. horsfieldii* can be differentiated as follows: *Megaerops* and *Penthetor lucasi* lack white ear margins and have 1 pair of lower incisors whereas *C. horsfieldii* has 2; *Megaerops* lacks a tail. *Eonycteris* has a longer, narrower rostrum than *C. horsfieldii* and lacks claw on 2nd digit. *Dyacopterus spadiceus* is slightly larger than *C. horsfieldii*, with a broader rostrum, deeper jaw, massive squared cheek teeth, and 2 upper premolars as compared to 3 in *C. horsfieldii* (Lekagul and McNeely 1977; Medway 1983; Payne et al. 1985).

Fig. 1. Photograph of an adult male *Cynopterus horsfieldii* from Krau Wildlife Reserve in peninsular Malaysia. Used with permission of the photographer, T. Kingston.
of forearm, 73.2 (1.79, n = 27—Campbell et al., in press); 74.2 (1.7, n = 14 males), 74.7 (1.9, n = 24 females—Hodgkinson 2001); 74.3 (3.1, n = 19 males), 75.1 (2.3, n = 26 females—Funakoshi and Zuhaid 1997); and length of tibia, 27.0 (1.2, n = 27—Campbell et al., in press). Lengths of ear and tail (range, in mm) are: 19–22 and 12–16, respectively (n = 8—Lim et al. 1999). Length of forearm (range, in mm, sexes combined) for C. horsfieldii in Indonesia is: 64.5–71 (n = 15, Java), 71.5–77.5 (n = 3, Sumatra), and 87.0–89.5 (n = 2, Nias Island—Andersen 1912a).

Mean cranial measurements (± SD, in mm, sexes combined) for C. horsfieldii in peninsular Malaysia are: total length of skull, 32.4 (0.76); maximum zygomatic breadth, 22.6 (0.55); maximum posterior skull width at mastoid, 14.4 (0.30); length of rostrum, 7.0 (0.32); length of palate, 17.0 (0.53); length from canine to m1, 10.7 (0.31); width of palate at M1, 9.7 (0.32); width of palate at P2, 8.6 (0.33); width of palate at canines, 6.9 (0.27); length of dentary, 24.8 (0.58); condylocanine length, 24.2 (0.59); length from condyle to p3, 18.7 (0.53); length from condyle to m1, 16.2 (0.46); length from condyle to m2, 13.5 (0.45); and height of coronoid process, 13.2 (0.51), n = 27—Campbell et al., in press).

Cranial measurements (ranges or individual measurements, in mm, sexes combined) for C. horsfieldii in Indonesia are: total length of skull, 30.5–33.3 (n = 16, Java), 33.5–35.8 (n = 3, Sumatra), 38.3, 39.3 (n = 2, Nias Island); condylobasal length, 29.5–31.5 (n = 16, Java), 31.0–34.0 (n = 3, Sumatra), 36.2, 37.2 (n = 2, Nias Island); length of rostrum (orbit to nares), 6.2–7.3 (n = 16, Java), 7.0–7.8 (n = 3, Sumatra), 8.7, 9.2 (n = 2, Nias Island); length from canine to m1, 10.5–11.5 (n = 16, Java), 11.0–12.0 (n = 3, Sumatra), 13.2, 13.5 (n = 2, Nias Island); total length of dentary, 23.0–25.3 (n = 16, Java), 25.3–26.4 (n = 3, Sumatra), 29.0, 30.5 (n = 2, Nias Island); length from canine to m2, 11.7–12.4 (n = 16, Java), 12.4–13.3 (n = 3, Sumatra), 14.4, 14.8 (n = 2, Nias Island); and height of coronoid process, 12.1–13.2 (n = 16, Java), 13.7–14.5 (n = 3, Sumatra), 16.8 (n = 2, Nias Island—Andersen 1912a).

Dental measurements (ranges or individual measurements, in mm, sexes combined) at crowns are: length and width of P3, 2.2–2.7 and 1.7–2.0 (n = 15, Java), 2.5–2.6 and 1.6–2.0 (n = 3, Sumatra), 2.8, 3.0 and 2.2, 2.3 (n = 2, Nias Island); length and width of M1, 2.3–2.7 and 1.6–1.9 (n = 15, Java), 2.6–2.8 and 1.8–1.9 (n = 3, Sumatra), 3.0, 3.1 and 2.0, 2.2 (n = 2, Nias Island); length and width of p1, 0.7–1.1 and 1.1–1.7 (n = 15, Java), 1.0–1.2 and 1.2 (n = 3, Sumatra), 1.2 and 1.8 (n = 2, Nias Island); length and width of p3 (p = 2), 2.0–2.5 and 1.7–2.0 (n = 15, Java), 2.2–2.5 and 1.9–2.0 (n = 3, Sumatra), 2.5, 2.3 and 2.3 (n = 2, Nias Island); length and width of p4 (p = 3), 2.2–2.7 and 1.8–2.0 (n = 15, Java), 2.5–2.7 and 1.8–2.0 (n = 3, Sumatra), 2.8, 3.0 and 2.3 (n = 2, Nias Island); length and width of m1, 2.5–2.8 and 1.7–2.0 (n = 15, Java), 2.7–2.8 and 1.8 (n = 3, Sumatra), 2.9, 3.0 and 2.1, 2.2 (n = 2, Nias Island); and length and width of m2, 2.6–2.9 and 1.9–1.6 (n = 15, Java), 1.6–1.8 and 1.2–1.4 (n = 3, Sumatra), 1.8, 2.0 and 1.5, 1.7 (n = 2, Nias Island—Andersen 1912a).

DISTRIBUTION. Cynopterus horsfieldii (Fig. 3) occurs from ca. 9°N in southern Thailand, throughout peninsular Malaysia, on the Indonesian islands of Sumatra, Java, Bali, Lombok, and Sumbawa, and on the island of Borneo in Kalimantan (Indonesia), Sabah and Sarawak (Malaysia), and Brunei (Campbell et al. 2006a; Corbett and Hill 1992; Lekagul and McNeely 1977; Medway 1983; Mickleburgh et al. 1992; Schmitt et al. 1993; Simmons 2005). No recent records are available from Singapore (Teo and Rajathurai 1997).

Subspecies of C. horsfieldii have the following distributions: C. h. harpax, southern Thailand, peninsular Malaysia, and Sumatra; C. h. horsfieldii, Java to Sumbawa; C. h. persimilis, Borneo; C. h. princeps, Nias Island, Indonesia (Corbett and Hill 1992; Hill 1933; Koopman 1994; Lekagul and McNeely 1977; Medway 1983). No fossils are known.

FORM AND FUNCTION. Dental formula of C. horsfieldii is I 2/2, c 1/1, p 3/3, m 1/2, total 30 (Andersen 1912a). Premolars and molars are broad and subrectangular, with well-defined surface cusps on p3 and m1 (Andersen 1912a; Koopman 1994).

Cynopterus horsfieldii has relatively short, broad wings (low aspect ratio) and a relatively high ratio of body mass to wing area (high wing loading—Campbell et al., in press; Hodgkinson et al. 2004a; McKenzie et al. 1995). This un-specialized wing morphology

Fig. 2. Dorsal, ventral, and lateral views of cranium and lateral view of mandible of an adult male Cynopterus horsfieldii from Taman Negara, peninsular Malaysia (Department of Wildlife and National Parks, Kuala Lumpur, Malaysia, catalogue no. NP042). Greatest length of skull is 34.1 mm. Used with permission of the photographer, S. W. Murray.
Comparison of the relative abundance of Cynopterus species across adjacent habitat types in northern peninsular Malaysia indicates that estimated overlap in habitat use between C. horsfieldii and C. sphinx is relatively high (71.2%). However, C. horsfieldii is strongly associated with transitional habitat between forest and cultivated land, whereas C. sphinx is most abundant in highly disturbed habitats and suburban areas where C. horsfieldii is less common (Campbell et al., in press).

Within the forest, C. horsfieldii is captured in both understory and subcanopy (Francis 1994; Zubaid 1997, 2006a), with a significant negative association between capture rate and density of vegetation (Hodgkison 2001). In lowland rain forest in central peninsular Malaysia, C. horsfieldii is a transient member of the fruit bat assemblage. Aseasonal shifts in abundance of C. horsfieldii are associated with exploitation of “big bang” food resources such as fruit of strangler figs (Ficus), Elaeocarpus stipularis, and Payena lucida, and flowers of Parkia speciosa (Hodgkison et al. 2006b). Data from the same site indicate that C. horsfieldii relies year-round on food resources in gardens and secondary habitats near the forest edge (Hodgkison 2001).

On Lombok Island, 11 polluted types were identified from stomachs and alimentary tracts of C. horsfieldii ($\bar{X} \pm SD$, 2.5 ± 1.12 pollen types/individual, $n = 16$) from various habitats (Kitchener et al. 1990). The pollen dietary niche breadth of C. horsfieldii was low relative to predominantly nectarivorous species such as Epomophorus tegulatus, E. spinosus, and Macroglossus minimus and was intermediate to that of C. brachyotis ($\bar{X} \pm SD$, sensu Kitchener and Maharadatunkam 1991) and C. titthaecheilus. Pollen intake by C. horsfieldii was strongly influenced by the temporal and spatial availability of fruit: larger quantities of pollen were ingested during the dry season when fruit was less abundant and pollen dietary niche breadth was highest at sites where fruit was scarce. Across seasons and sites, C. horsfieldii exhibited high pollen dietary niche overlap with C. brachyotis and C. titthaecheilus (Kitchener et al. 1990).

When feeding in fruit trees, C. horsfieldii removes single fruits from parent tree to nearby day or feeding roosts (Funakoshi and Zubaid 1997; Hodgkison 2001). Germination rates for Ficus seeds ingested by C. horsfieldii are ca. twice that of controls (Fletcher 2001).

In secondary forest in peninsular Malaysia, mean home range sizes of adult C. horsfieldii were 5.8 ha ± 2.5 SD ($n = 4$ females) and 8.0 ha ($n = 2$ males—Funakoshi and Zubaid 1997). However, at another peninsular Malaysian site, individuals of C. horsfieldii that were captured while foraging in fruit orchards commuted up to 1.6 km to roosts in adjacent forest fragments (Fletcher 2001).

Cynopterus horsfieldii roosts in small groups in foliage, rock shelters, and limestone solution cavities on open cliff faces or near the mouths of caves (Campbell et al. 2006a; Funakoshi and Zubaid 1997; Lim 1966; Medway 1983; Payne et al. 1983; Tan et al. 1999). C. horsfieldii modifies foliage roosts in an opportunistic manner; individuals switch roosts frequently and do not exhibit detectable preferences for modified or unmodified roosts (Campbell et al. 2006a; Funakoshi and Zubaid 1997; Tan et al. 1999).

In a comparative study of the roosting ecology of Cynopterus species in northern peninsular Malaysia, estimated overlap in roost plant choice between C. horsfieldii and sympatric congeners ranged from 0.09% to 6.73% (Campbell et al. 2006a). All roosts of C. horsfieldii were located either in ecotonal habitat between cultivated land and secondary forest or <0.25 km inside the forest (Campbell et al. 2006a). Seventy-three percent ($n = 35$) of roosts of this species were in oblong leaves of wild and cultivated bananas (Musa). Ca. half of banana leaf roosts occupied by C. horsfieldii were modified into an inverted V-shaped structure by partial severing of midrib of leaf midway between base and tip. Height of roosts ($\bar{X} \pm SD$, in m) used by C. horsfieldii was significantly lower than that of roosts occupied by C. sphinx and C. brachyotis (2.94 ± 0.98, $n = 26$—Campbell et al. 2006a). Other plant species used as roosts by C. horsfieldii in peninsular Malaysia include palms in the genera Arenga, Cocos, Caryota, and Nypa, and the epiphytic bird’s nest fern Asplenium nidus (Campbell et al. 2006a; Funakoshi and Zubaid 1997; Lim 1966; Tan et al. 1999).

Mating system of C. horsfieldii is polygynous with a harem-based social structure that is maintained year-round (Campbell et al. 2006a; Tan et al. 1999). Harem groups contain 1 adult male and up to 5 adult females and their offspring (Campbell et al. 2006a; Tan et al. 1999). Individual composition of harem groups is

Fig. 3. Geographic distribution of Cynopterus horsfieldii, redrawn from Reilly and Hill (1992) with modifications occurring in Campbell et al. (in press); and Kitchener et al. (1990): 1, C. b. harpax, southern Thailand, peninsular Malaysia, and Sumatra; 2, C. h. horsfieldii, Java to Sumbawa; 3, C. h. persimilis, Borneo; 4, C. h. princeps, Nias Island. Inset map localizes the Malay peninsula and western Indonesia (black) in Asia.

ONTGENY AND REPRODUCTION. In peninsular Malaysia, C. horsfieldii is seasonally polyestrous and reproducitively asynchronous, with pregnant females recorded throughout the year (Medway 1983). Two loosely synchronized peaks in birth occur per annum; during a 30-month study, peaks of lactating females were observed in February–March and July–August (Funakoshi and Zubaid 1997).

Concentrations (mg/g dry mass) of minerals and nitrogen in milk of C. horsfieldii are: iron, 0.173; calcium, 6.11; magnesium, 0.17; potassium, 7.9; sodium, 5.37; and nitrogen, 28.03 (Studier et al. 1995). With the exception of sodium, concentrations of minerals in milk of C. horsfieldii are lower than those in milk of 2 other Old World fruit bats, D. spadiceus and Megasporus eucaevatus (Studier et al. 1995).

Based on mark–recapture data from peninsular Malaysia, average longevity for C. horsfieldii is at least 31 months (Hodgkison 2001).

ECOLOGY AND BEHAVIOR. Cynopterus horsfieldii is a habitat generalist, occurring in diverse lowland habitats, from primary rain forest to suburban parks (Hodgkison et al. 2004a; Lim 1966; Tan et al. 1999). Although relatively common, C. horsfieldii is typically less abundant than sympatric congeners, particularly C. sphinx and C. brachyotis (Campbell et al., in press; Francis 1994; Hodgkinson et al. 2004b; Lim 1966; Zubaid 1993, 1994).

In peninsular Malaysia, C. horsfieldii is captured in both primary and disturbed lowland dipterocarp forest (Campbell et al., in press; Fletcher 2001; Francis 1994, 1995; Funakoshi and Zubaid 1997; Hodgkinson et al. 2004a; Zubaid 1993), limestone hill forest (Campbell et al., in press), fruit orchards (Campbell et al., in press; Lim 1966; Lim et al. 1999), and suburban gardens and parks (Campbell et al., in press; Tan et al. 1999). On the Indonesian island of Lombok, C. horsfieldii occurs in agricultural areas and secondary and primary rain forest (Kitchener et al. 1990).
relatively labile and females may periodically roost singly without attendant males (Campbell et al. 2006a). Harem groups are found in both modified and unmodified roosts (Campbell et al. 2006a; Tan et al. 1999).

GENETICS. Cynopterus horsfieldii has 2n = 34 and FN = 58 (Yong et al. 1973). Autosomal chromosomes consist of 11 pairs of metacentrics or submetacentrics, 2 pairs of subacrocentrics, and 3 pairs of acrocentrics. X chromosome is a medium-sized subacrocentric and Y is a small acrocentric. Karyotype of C. horsfieldii is identical to those of C. s. titthaechelius (= C. titthaechelius), C. brachyotis, and C. sphinx (Ando et al. 1980; Ray-Chaudhuri et al. 1965; Yong et al. 1973).

Mean heterozygosity in C. horsfieldii from Java, Bali, Lombok, and Sumbawa was 0.032 compared with 0.028 for C. sphinx, and 0.032 for C. nusatenggara and C. titthaechelius. C. horsfieldii had no relationship between genetic and geographic distance (Schmitt et al. 1995). In a phylogenetic supertree for Chiroptera C. titthaechelius is sister to C. horsfieldii (Jones et al. 2002) in the Cynopterus clade. The mitochondrial lineage of C. horsfieldii is nested within the Malaysian C. brachyotis lineage (= C. brachyotis Forest). Sequence divergence between the 2 lineages is 4.2% (1,266 base pairs, partial cytochrome b and control region—Campbell et al. 2004) and 80% of all alleles for C. horsfieldii in 6 polymorphic nuclear microsatellite loci occur in C. brachyotis Forest (Campbell et al. 2006b). Populations of C. horsfieldii in peninsular Malaysia and southern Thailand are not geographically structured (Campbell et al. 2006b).

REMARKS. Cynopterus is from the Greek words kynos meaning dog and pteron meaning wing (Brown 1954). Cynopterus horsfieldii was named in honor of Dr. Thomas Horsfield (1773–1859), an American physician and naturalist who made extensive collections of plants and animals while working in Java for the Dutch East India Company (Bastin 1990). The type specimen of C. horsfieldii was among those presented to the British Museum by Horsfield on behalf of the Dutch East India Company (Gray 1843; Horsfield 1851). Alternate English vernacular names for C. horsfieldii include the larger dog-faced fruit bat (Medway 1983) and Dobsonia praedatrix (Brown 1954). Cynopterus horsfieldii is from the Greek words kynos meaning dog and pteron meaning wing (Brown 1954). Cynopterus horsfieldii was named in honor of Dr. Thomas Horsfield (1773–1859), an American physician and naturalist who made extensive collections of plants and animals while working in Java for the Dutch East India Company (Bastin 1990). The type specimen of C. horsfieldii was among those presented to the British Museum by Horsfield on behalf of the Dutch East India Company (Gray 1843; Horsfield 1851). Alternate English vernacular names for C. horsfieldii include the larger dog-faced fruit bat (Medway 1983) and Dobsonia praedatrix (Brown 1954). Cynopterus horsfieldii is from the Greek words kynos meaning dog and pteron meaning wing (Brown 1954). Cynopterus horsfieldii was named in honor of Dr. Thomas Horsfield (1773–1859), an American physician and naturalist who made extensive collections of plants and animals while working in Java for the Dutch East India Company (Bastin 1990). The type specimen of C. horsfieldii was among those presented to the British Museum by Horsfield on behalf of the Dutch East India Company (Gray 1843; Horsfield 1851). Alternate English vernacular names for C. horsfieldii include the larger dog-faced fruit bat (Medway 1983) and Dobsonia praedatrix (Brown 1954). Cynopterus horsfieldii is from the Greek words kynos meaning dog and pteron meaning wing (Brown 1954). Cynopterus horsfieldii was named in honor of Dr. Thomas Horsfield (1773–1859), an American physician and naturalist who made extensive collections of plants and animals while working in Java for the Dutch East India Company (Bastin 1990). The type specimen of C. horsfieldii was among those presented to the British Museum by Horsfield on behalf of the Dutch East India Company (Gray 1843; Horsfield 1851). Alternate English vernacular names for C. horsfieldii include the larger dog-faced fruit bat (Medway 1983) and Dobsonia praedatrix (Brown 1954). Cynopterus horsfieldii is from the Greek words kynos meaning dog and pteron meaning wing (Brown 1954). Cynopterus horsfieldii was named in honor of Dr. Thomas Horsfield (1773–1859), an American physician and naturalist who made extensive collections of plants and animals while working in Java for the Dutch East India Company (Bastin 1990). The type specimen of C. horsfieldii was among those presented to the British Museum by Horsfield on behalf of the Dutch East India Company (Gray 1843; Horsfield 1851). Alternate English vernacular names for C. horsfieldii include the larger dog-faced fruit bat (Medway 1983) and Dobsonia praedatrix (Brown 1954). Cynopterus horsfieldii is from the Greek words kynos meaning dog and pteron meaning wing (Brown 1954). Cynopterus horsfieldii was named in honor of Dr. Thomas Horsfield (1773–1859), an American physician and naturalist who made extensive collections of plants and animals while working in Java for the Dutch East India Company (Bastin 1990). The type specimen of C. horsfieldii was among those presented to the British Museum by Horsfield on behalf of the Dutch East India Company (Gray 1843; Horsfield 1851). Alternate English vernacular names for C. horsfieldii include the larger dog-faced fruit bat (Medway 1983) and Dobsonia praedatrix (Brown 1954).
in different ecological habitats. Federation Museums Journal 11:61–76.

