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Solving for an unknown addend in problems like 5 + x = 17 is challenging for children. Yet, previous work
(Kibbe & Feigenson, 2015) found that even before formal math education, young children, aged 4- to 6-
years, succeeded when problems were presented using non-symbolic collections of objects rather than
symbolic digits. This reveals that the Approximate Number System (ANS) can support pre-algebraic intu-
itions. Here, we asked whether children also could intuitively ‘‘solve for x” when problems contained
arrays of four or fewer objects that encouraged representations of individual objects instead of ANS rep-
resentations. In Experiment 1, we first confirmed that children could solve for an unknown addend with
larger quantities, using the ANS. Next, in Experiment 2a, we presented addend-unknown problems con-
taining arrays of four or fewer objects (e.g., 1 + x = 3). This time, despite the identical task conditions, chil-
dren were unable to solve for the unknown addend. In Experiment 2b, we replicated this failure with a
new sample of children. Finally, in Experiment 3, we confirmed that children’s failures in Experiments 2a
and b were not due to lack of motivation to compute with small arrays, or to the discriminability of the
quantities used: children succeeded at solving for an unknown sum with arrays containing four or fewer
objects. Together, these results suggest that children’s ability to intuitively solve for an unknown addend
may be limited to problems that can be represented using the ANS.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Children are introduced to formal mathematics starting in early
elementary school, but the process of acquiring formal mathemat-
ical skills is protracted. One reason formal math is thought to be
particularly challenging for children is that it requires young learn-
ers to mentally manipulate symbols according to a set of learned
rules (Kieran, 1992; Nathan, 2012; Susac, Bubic, Vrbanc, &
Planinic, 2014; Van Amerom, 2003). For example, a child encoun-
tering the problem 2 + 3 = x must understand the meanings of
the symbols (digits and operators) and the algorithm for combin-
ing the two digits as specified by the operator symbol. Misunder-
standing of or difficulty processing the meanings of
mathematical symbols predicts poorer mathematical performance
in children (Byrd, McNeil, Chesney, & Matthews, 2015; Desoete,
Ceulemans, De Weerdt, & Pieters, 2012). And as mathematics
becomes more complex over successive years of instruction,
requiring the manipulation of variables as well as digits and oper-
ators, learners continue to struggle even into the college years
(Koedinger, Alibali, & Nathan, 2008).

Although learning to manipulate the symbols used in formal
mathematics is challenging, infants, children, adults, and non-
human animals have fundamental mathematical intuitions that
do not depend on external symbols. These populations all share
an Approximate Number System (ANS) that allows them to esti-
mate the number of items in visual and auditory arrays without
language, education, or symbolic notation (e.g., Dehaene, 1997;
Feigenson, Dehaene, & Spelke, 2004; Libertus & Brannon, 2009).
Unlike the exact number representations involved in most sym-
bolic math, the number representations generated by the ANS
are noisy and imprecise—this remains true throughout the lifespan,
even after children have learned to represent exact number sym-
bolically (Carey, 2009; Halberda & Feigenson, 2008a; Halberda,
Ly, Wilmer, Naiman, & Germine, 2012; Xu & Spelke, 2000).

The nature of the relationship between the ANS and acquired
school mathematical abilities remains the topic of much debate.
However, evidence suggests that the ANS plays a role in school
math achievement, despite most of school mathematics requiring
the kinds of precise representations that the ANS lacks. First, indi-
vidual differences in the precision of the ANS correlate with and
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predict symbolic math performance (e.g., Chen & Li, 2014; DeWind
& Brannon, 2012; Feigenson, Libertus, & Halberda, 2013; Gilmore,
McCarthy, & Spelke, 2010; Halberda, Mazzocco, & Feigenson,
2008; Halberda et al., 2012; Libertus, Feigenson, & Halberda,
2011; Starr, Libertus, & Brannon, 2013, but see also, e.g.,
Holloway & Ansari, 2009; Iuculano, Tang, Hall, & Butterworth,
2008; Soltesz, Szucs, & Szucs, 2010). Second, training of numerical
approximation abilities has been found to improve symbolic math
performance in adults and children (Hyde, Khanum, & Spelke,
2014; Park, Bermudez, Roberts, & Brannon, 2016; Park &
Brannon, 2013, 2014; Wang, Odic, Halberda, & Feigenson, 2016).

One way in which the ANS might be useful during the process of
initially learning formal mathematics is by providing basic intu-
itions about numerical computations. Indeed, despite their noisi-
ness, ANS representations can support many of the computations
that are later encountered in formal mathematics, including order-
ing (Lipton & Spelke, 2005), addition and subtraction (Barth et al.,
2006; Booth & Siegler, 2008; Gilmore, McCarthy, & Spelke, 2007;
McCrink & Wynn, 2004), multiplication (McCrink & Spelke,
2010), and division (McCrink & Spelke, 2016). Critically, recent
research suggests that presenting problems non-symbolically,
using arrays that encourage the use of ANS representations, can
help children solve at least some of the more complex computa-
tions that are used in formal schooling – even problems that many
children struggle with into adolescence. In this previous work
(Kibbe & Feigenson, 2015), we found that, not surprisingly, 4- to
6-year-old children failed to solve symbolically presented pre-
algebraic problems (i.e., problems that required solving for an
unknown addend, like ‘‘6 + x = 18,” presented using digits). Yet
these children spontaneously ‘‘solved for x” when the very same
problems were presented non-symbolically using collections of
objects. In these studies, children were introduced to a ‘‘magic cup”
that always transformed object collections by a constant quantity.
Then they saw a starting quantity (e.g., six objects), watched as the
magic cup was applied to that quantity, and finally saw a new
quantity (e.g., 18 objects) revealed. After seeing events like this,
children were able to correctly infer the approximate quantity in
the magic cup—in this sense, they solved for the value of the
unknown addend x.

These results suggest that presenting problems non-
symbolically, with collections of objects instead of written or spo-
ken number symbols, can sometimes help children perform speci-
fic mathematical computations earlier than they otherwise could.
Harnessing ANS representations appears to allow children to form
‘‘gut-sense” estimates of the quantities involved, even when the
quantities’ values had to be inferred. However, ANS representa-
tions are limited in some important ways. Whereas symbolically
mediated exact number representations allow children to form
very precise representations of x in a ‘‘solve for x” task, ANS repre-
sentations inherently provide only noisy estimates. These esti-
mates were sufficiently precise to allow children to succeed in
our ‘‘magic cup” task – for example, after seeing six buttons trans-
formed by the magic cup to yield 18 buttons, children correctly
identified the cup as containing 12 buttons rather than 4 or 24.
Distinguishing between 4 and 12, or 12 and 24, can be accom-
plished even from noisy estimates. But ANS representations,
because of their inherent imprecision, should not support discrim-
ination of the target from numerically nearer distractors (e.g., 12
versus 13 buttons).

ANS representations may pose yet a further limitation on chil-
dren’s ability to solve for unknown variables. Much evidence sug-
gests that whereas ANS representations are readily deployed in
response to large quantities (usually quantities greater than three),
they often fail to be deployed in response to smaller quantities.
Instead, young children presented with one, two, or three items
often appear to represent these arrays in terms of individual
objects (Object A, Object B, Object C) rather than as a single entity
with an approximate (or exact) cardinality (Coubart, Izard, Spelke,
Marie, & Streri, 2014; Feigenson & Carey, 2003, 2005; Feigenson,
Carey, & Hauser, 2002; Feigenson, Carey, & Spelke, 2002; Hyde &
Spelke, 2011; vanMarle, 2013; Xu, 2003). Although under some cir-
cumstances infants can be induced to represent arrays of one, two,
or three objects using approximate number representations (e.g.,
Cordes & Brannon, 2009), small and large arrays often appear to
trigger the deployment of two separate representational systems.
An open question, then, is whether children can solve for the value
of an unknown variable using individual object representations
rather than approximate number (ANS) representations. If children
can ‘‘solve for x” with small quantities as well as large ones, this
would suggest that pre-algebraic computations can be performed
over multiple types of quantity-relevant representations, as long
as external symbols (digits or words) are not required.

Here we tested this possibility by contrasting children’s ability
to non-symbolically ‘‘solve for x” with large versus small numbers
of objects. We tested children of the same age as in our previous
study, using the same non-symbolic ‘‘magic cup” task (Kibbe &
Feigenson, 2015). First, in Experiment 1, we sought to replicate
children’s success at solving for the value of an unknown addend
when the quantities involved large numerosities only. Next, in
Experiment 2a, we asked whether children also could solve for x
with small quantities of four or fewer – quantities that have been
found by previous work to activate the system for representing
individual objects rather than approximate cardinalities. To pre-
view, we found that children succeeded in Experiment 1, but failed
in Experiment 2a. In Experiment 2b, we replicated children’s fail-
ure to solve for x with small quantities with a separate sample of
children. Finally, in Experiment 3, we asked whether children’s
failures in Experiments 2a and 2b were due to representing trans-
formations over small quantities, versus performing pre-algebraic
computations. We found that when children were asked to solve
for the value of an unknown sum, rather an unknown addend, they
succeeded. We close by discussing the implications of these results
for our understanding of children’s early numerical abilities.
2. Experiment 1: Unknown addend, large quantities

The purpose of Experiment 1 was to replicate the finding that 4-
to 6-year old children can solve for x when presented with non-
symbolic arrays containing large numbers of objects. Children
were introduced to a magic cup and were told that this cup always
added the same number of objects to an existing collection. Chil-
dren then saw the magic cup demonstrated on three different
starting quantities (i.e., the cup added x to three different starting
arrays). Finally, children were asked to choose which of two non-
symbolic quantities the magic cup contained – i.e., they were asked
to solve for x.

2.1. Participants

Twenty-four children (mean age: 5 years, 6 months; range:
4 years 1 month – 6 years 11 months; 10 girls) participated in
the children’s wing of a local science museum. Children received
a sticker for their participation.

2.2. Methods

2.2.1. Materials
Materials consisted of a small stuffed alligator toy and a 10-oz

white paper cup. The cup could transform the quantity of three dif-
ferent types of arrays: buttons, pennies, and small toy shoes. A sec-
ond 10-oz white paper cup and a set of pink and purple pom-poms
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were used during the Test Trial. All objects measured between 0.75
and 2 cm.
2.2.2. Procedure
2.2.2.1. Demonstration trials. Children sat across from the experi-
menter at a child-sized table in a quiet corner of the museum.
The experimenter first showed children the stuffed animal, Gator,
and the white paper cup, which was placed upside down on the
table. The experimenter told children that Gator had a ‘‘magic cup”
and that, ‘‘No matter what, if I put a pile of things in front of Gator,
his magic cup will come and add more things to the pile. And it’s
always going to add the same number of things every time no mat-
ter what. Want to see how it works?” In Demonstration Trial 1, the
experimenter placed five buttons on the table, tightly clustered
together in order to discourage children from attempting to count
the objects individually. She then pointed to the pile and said, ‘‘See
these buttons?” After about 5 s, she said, ‘‘Now watch carefully,
here comes the magic cup!” She then completely covered the but-
tons with the inverted cup, shook the cup while keeping it pressed
against the table surface, and then lifted it to reveal 17 buttons. She
then said, ‘‘Did it work? Yeah, it worked! See Gator’s buttons
now?” Children viewed the new, larger array of buttons for 5 s,
after which the experimenter cleared all of the objects and the
cup off the table. Fig. 1 shows a schematic of this Demonstration
Trial.

The experimenter then asked children if they thought the magic
cup would work on other types of objects, and conducted twomore
Demonstration Trials using the same procedure with different
objects (see Table 1). In the second Demonstration Trial, the magic
cup transformed a pile of nine pennies into 21 pennies; in the
third, the magic cup transformed a pile of six toy shoes into 18
Fig. 1. Left panels present schematics of the first of three Demonstration Trials in Experim
saw the magic cup add an unknown quantity to this starting quantity, and then saw th
separately to Gator’s cup, such that the sum was unknown. Right panels show the singl
shoes. Across the three Demonstration Trials, different initial quan-
tities were used but the magic cup always added the same quantity
(12). Crucially, children never got to see what was in the cup; they
only saw the initial quantity and the final quantity. Thus, the con-
tents of the cup acted as an unknown addend.

2.2.2.2. Test trial. In the single Test Trial, the experimenter asked
children whether they thought the magic cup would work on
pom-poms. The experimenter pretended to look for Gator’s magic
cup under the table. She then placed two identical cups upside
down on the empty table, 60 cm apart, and said, ‘‘Uh-oh, I found
two magic cups under the table, but I don’t know which one is
Gator’s! I am going to show you what’s inside, and you can tell
me which one is Gator’s magic cup.” She then lifted both cups
simultaneously to reveal two different quantities of pom-poms
(chosen because these were new objects that children had not
yet encountered in the Demonstration Trials): the target quantity
(12) and a distractor quantity (either 4 or 24, counterbalanced
across participants) (Fig. 1). She then asked children, ‘‘Which cup
is Gator’s?” Children were given the opportunity to point to one
of the two cups. Regardless of children’s choice, the experimenter
said ‘‘Great job!” Whether the target quantity was presented on
the left or the right was counterbalanced across participants.

2.2.2.3. Quantities. The quantities used in Experiment 1 were iden-
tical to those in our previous study (Kibbe & Feigenson, 2015;
Table 1). Across the three Demonstration Trials, Gator’s cup added
12 to piles of five, nine, and six objects. These starting quantities
were chosen to be outside the subitizing range in which items
can be represented individually (Gelman, 1977; Trick & Pylyshyn,
1994) and to be sufficiently discriminable from the quantity being
ents 1, 2a, 2b, and 3. In Experiments 1, 2a, and 2b, children saw a starting quantity,
e new, transformed quantity. In Experiment 3, children saw two quantities added
e Test Trial, in which children chose which of two quantities was in Gator’s cup.



Table 1
Quantities used and children’s performance in Experiments 1, 2a, 2b, and 3.

Demonstration trials Value of x Test trial choice % Correct

Experiment 1
Unknown addend

5 + x = 17 (buttons)
9 + x = 21 (pennies)
6 + x = 18 (shoes)

12 4 vs. 12
or
12 vs. 24

83.3%
p = 0.002

Experiment 2a
Unknown addend

1 + x = 3 (buttons)
2 + x = 4 (pennies)
1 + x = 3 (shoes)

2 1 vs. 2
or
2 vs. 3

54.2%
p = 0.84

Experiment 2b
Unknown addend

1 + x = 3 (buttons)
2 + x = 4 (pennies)
1 + x = 3 (shoes)

2 1 vs. 2
or
2 vs. 3

56.3%
p = 0.59

Experiment 3
Unknown sum

1 + 2 = x (buttons)
2 + 1 = x (pennies)
1 + 2 = x (shoes)
or

3 2 vs. 3
or
3 vs. 4

83.3%
p = 0.002

1 + 1 = x (buttons)
1 + 1 = x (pennies)
1 + 1 = x (shoes)

2 1 vs. 2
or
2 vs. 3
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added by the magic cup (Halberda & Feigenson, 2008a, 2008b). In
the Test Trial, the distractor quantities also were chosen to be suf-
ficiently discriminable from the target quantity, but also to be
somewhat close to the starting and ending quantities in the
Demonstration trials, so as to minimize perceptual novelty.

2.3. Results

When asked which of two visible quantities was the quantity
inferred to be in Gator’s cup, 20/24 children correctly chose the tar-
get quantity (83.3%; chance = 50%, binomial test p = 0.002, two-
tailed). We found no significant difference in children’s perfor-
mance as a function of the distractor quantity, although more chil-
dren succeeded when the distractor cup contained four objects
than when it contained 24 (12/12 children succeeded when the
distractor cup contained four; 8/12 succeeded when the distractor
cup contained 24; Fisher’s exact test p = 0.09). There also was no
significant difference in the performance of girls versus boys
(10/10 girls and 10/14 boys succeeded; Fisher’s exact test
p = 0.11). Finally, to assess whether age was a factor in children’s
performance, we ran a one-way ANOVA on participants’ ages (in
days) with their response (correct versus incorrect) as a
between-subjects factor. We found no effect of age (F1,22 = 2.24,
p = 0.15). This result was confirmed non-parametrically using the
Freeman-Halton extension of Fisher’s exact test for a 3 (age:
4 year-olds, 5 year-olds, 6 year-olds) � 2 (correct or incorrect) con-
tingency table (p = 0.22).

2.4. Discussion

Experiment 1 replicated our previous findings (Kibbe &
Feigenson, 2015), confirming that 4 to 6 year-old children can infer
the approximate quantity of an unknown addend. After seeing
addend-unknown problems that were instantiated non-
symbolically using large collections of objects, children success-
fully inferred the value of the unknown addend. Given that in
our previous work children failed to solve the same problems
when presented symbolically (Kibbe & Feigenson, 2015), and given
that children use ANS representations to intuitively solve other
arithmetic problems involving unknown sums, differences, prod-
ucts, and quotients (Barth, Baron, Spelke, & Carey, 2009; Barth,
LaMont, Lipton, & Spelke, 2005; Barth et al., 2006; McCrink &
Spelke, 2010, 2016), it seems likely that children relied on repre-
sentations from the ANS in this task.

However, this result leaves open the question of whether
children can flexibly use multiple types of quantity-relevant
representations to solve pre-algebraic problems. In Experiment
2a, we asked whether children could infer the value of an
unknown addend with arrays containing four and fewer
objects—arrays that have been shown to trigger the system for
representing individual objects, rather than approximate cardinal-
ities (see Feigenson et al., 2004 for review). Children saw a series
of Demonstration Trials identical to those in Experiment 1, except
that Gator’s magic cup added two objects to starting arrays of one,
two, and one objects (x = 2). In the single Test Trial, children again
were presented with two cups, one containing the target quantity
of two and the other containing a distractor quantity of one or
three, and were asked to choose which magic cup belonged
to Gator.

3. Experiment 2a: Unknown addend, small quantities

3.1. Participants

Twenty-four children (mean age: 5 years, 7 months; range:
4 years 4 months to 6 years 10 months; 12 girls) participated at
the science museum.

3.2. Methods

3.2.1. Materials and procedure
Materials were identical to Experiment 1. The procedure was

identical to that of Experiment 1, except that different quantities
were used (Table 1). In the three Demonstration Trials, children
saw Gator’s magic cup transform arrays of one button, two pen-
nies, and one shoe into arrays of three buttons, four pennies, and
three shoes, respectively. During the single Test Trial, the experi-
menter again pretended to be confused about which of two identi-
cal magic cups was Gator’s. One cup was shown to contain the
target quantity (two pom-poms) and the other contained a distrac-
tor quantity (either one or three pom-poms), and children were
asked to choose which of these was Gator’s magic cup.

3.2.2. Quantities
The small quantities used in Experiment 2a were chosen to be

within the range shown by previous research to frequently trigger
individual object file representations (see e.g., Feigenson et al.,
2004; Hyde, 2011). In the Test Trial, the distractor quantities were
chosen to be familiar (i.e., they had been seen as starting or ending
quantities during one of the other two Demonstration trials) so
that children would not simply avoid choosing distractor
quantities on the basis of novelty. We only presented target and
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distractor quantities that differed by a ratio shown to be discrim-
inable even by much younger infants (e.g., Feigenson, Carey, &
Hauser, 2002; Starkey & Cooper, 1980).
3.3. Results

When asked to choose which of two visible quantities they
inferred to be in Gator’s cup, only 13/24 children correctly chose
the target quantity (54.2%; chance = 50%, binomial test p = 0.84,
two-tailed). There was no difference in girls’ and boys’ perfor-
mance (6/12 girls and 7/12 boys succeeded; Fisher’s exact test
p = 1.0) and no effect of age (one-way ANOVA F1,22 = 2.09,
p = 0.16; Fisher-Freeman-Halton exact test p = 0.68). However, we
found a significant difference in children’s performance as a func-
tion of the quantity in the distractor cup, with 10/13 children suc-
cessfully avoiding the distractor cup when it contained one object
and only 3/11 successfully avoiding the distractor cup when it con-
tained three (Fisher’s exact test p = 0.04). Hence children tended to
choose the larger of the two test quantities, regardless of which
was the correct target.

The design of Experiment 2 meant that in the Test Trial, chil-
dren were asked to discriminate ratios of 1:2 (when the distractor
quantity was one) or 2:3 (when the distractor quantity was three),
whereas children in Experiment 1 were asked to discriminate
ratios of 1:2 (when the distractor quantity was 24) or 1:3 (when
the distractor quantity was 4). This leaves open the possibility that
children’s failure in Experiment 2a was due to the children who
were tested with the harder 2:3 ratio. To investigate this possibil-
ity, we analyzed data from 12 additional children (mean age:
5 years 5 months, range: 4 years 1 month – 8 years 0 months; 4
girls) who saw three Demonstration Trials in which Gator’s magic
cup added 12 objects to arrays of 5, 9, and 6 objects, just as in
Experiment 1. In the Test Trial, these children were asked to choose
between the target (12) and a distractor quantity of 18, a 2:3 ratio.
We found that 9/12 children (75%) succeeded. Performance was
not significantly different from that in Experiment 1, in which chil-
dren were tested with larger numerosities with a 1:2 test ratio
(Fisher’s exact test p = 1.0), but it was significantly different from
performance in Experiment 2a, in which children were tested with
small numerosities with a 2:3 ratio (Fisher’s exact test p = 0.04).
3.4. Discussion

Children in Experiment 2a failed to ‘‘solve for x,” whereas chil-
dren in Experiment 1 succeeded. The experiments only differed in
the quantities used: in Experiment 1, the quantities were relatively
large (range: 4–21 objects) and therefore likely to be represented
by the ANS, whereas in Experiment 2a the quantities were small
(range: 1–4 objects) and therefore likely to be represented using
individual object representations. This divergence in performance
was not caused by differences in the ratio between the target
and distractor quantity, as children succeeded with large
numerosities and failed with small ones even with identical ratios.
Instead, our results suggest that children have difficulty inferring
the quantity of an unknown addend when presented with arrays
in the small number range.

The failure of children in Experiment 2a is especially surprising
given that children of this age can count reliably in the small num-
ber range (e.g., LeCorre & Carey, 2007), and therefore could plausi-
bly have used verbally mediated representations of exact number
(counting) to solve the task. Children’s failure despite the seem-
ingly less demanding nature of the numerical problems presented
in Experiment 2a (as compared with Experiment 1) led us to
attempt to directly replicate our findings in a separate experiment
with a larger sample of children.
4. Experiment 2b: Unknown addend, small quantities
(replication of Experiment 2a)

4.1. Participants

Thirty-two children (mean age: 5 years, 1 month; range: 4 years
1 months to 6 years 9 months; 19 girls) participated at the science
museum.

4.2. Materials and procedure

The materials and procedure were identical to those in Experi-
ment 2a (see also Table 1).

4.3. Results

When asked to choose which of two visible quantities was
inferred to be in Gator’s cup, 18/32 children correctly chose the tar-
get quantity (56.3%; chance = 50%, binomial test p = 0.59, two-
tailed). There was no difference in girls’ and boys’ performance
(11/19 girls and 7/13 boys succeeded; Fisher’s exact test p = 1.0)
and no effect of age (one-way ANOVA F1,30 = 1.59, p = 0.22;
Fisher-Freeman-Halton exact test p = 0.78). We also found no dif-
ference in children’s performance as a function of the quantity in
the distractor cup; slightly more children successfully avoided
the distractor cup when it contained one object (10/16 children)
than when the distractor cup contained three (8/16 children), but
this difference was not significant (Fisher’s exact test p = 0.72).

We found no difference in children’s performance in Experi-
ments 2a and 2b (Fisher’s exact test p = 1.0, two-tailed). In contrast,
there was a significant difference in children’s performance in
Experiment 1 versus children’s combined performance in Experi-
ments 2a and 2b (Fisher’s exact test p = 0.02, two-tailed).

Finally, we conducted a Bayes Factor analysis on children’s per-
formance in Experiments 2a and 2b. While traditional null hypoth-
esis significance testing only allows us to either reject or fail to
reject the null hypothesis, Bayes Factor analysis allows us to obtain
statistical support for the null hypothesis (Rouder, Speckman, Sun,
Morey, & Iverson, 2009) by providing the odds that the data were
generated by a binomial process with probability 0.5. Because the
null hypothesis – that children cannot solve for an unknown
addend when problems are presented with arrays of four or fewer
objects – is of theoretical importance, obtaining statistical odds for
the null hypothesis would allow us to accept the null hypothesis
with confidence. A Bayes Factor of 3 or greater is roughly equiva-
lent to the p = 0.05 significance level in traditional statistics
(Gallistel, 2009). Bayes Factor analysis conducted on children’s
overall performance yielded odds of 3.72:1 in favor of the null
hypothesis in Experiment 2a, and odds of 3.62:1 in favor of the null
hypothesis in Experiment 2b. Conversely, Bayes Factor analysis
conducted on children’s performance in Experiment 1 yielded odds
of 63.16:1 against the null hypothesis.

4.4. Discussion

In Experiment 2b, we replicated children’s surprising failure to
‘‘solve for x” with quantities of four or fewer. The results of Exper-
iments 1, 2a, and 2b suggest that the computations that enable
children to infer the quantity of an unknown addend from non-
symbolic arrays readily operate over ANS representations, but do
not readily operate over representations of individual objects.

However, an alternative possibility is that ancillary task
demands might have led children to fail to solve for x with small
quantities. For example, children might not have been motivated
to track the small quantities presented in Experiments 2a and 2b,
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perhaps because they did not find the smaller arrays to be visually
salient. If so, then children might have failed to perform anymental
transformations over arrays of small objects, rather than specifi-
cally failing to infer the value of an unknown variable. An addi-
tional concern is that children might have failed in Experiments
2a and 2b because, for half of the children, the choice between
the target quantity and the distractor quantity instantiated a smal-
ler, less discriminable ratio difference (2:3). Indeed, children in
Experiments 2a and 2b were more successful at choosing the target
quantity when the distractor quantity was one than when it was
three. Although we found that children who were presented with
large numerosities successfully chose a target over a distractor
quantity that differed by this 2:3 ratio (see Experiment 2a results),
it remains possible that for some reason, children in our task strug-
gled to discriminate a 2:3 ratio when presented with small number
arrays.

To explore these issues, we conducted a third experiment in
which children were asked to mentally transform small arrays,
but this time their goal was to infer the value of an unknown
sum rather than an unknown addend (e.g., 1 + 2 = x; x = 2 or 3).
Operations involving unknown sums or differences are often
thought of as involving arithmetic operations, whereas operations
involving unknown addends are often thought of as pre-algebraic
(Nathan & Koedinger, 2000). Given that children much younger
than those tested here can track successive additions of individual
objects in quantity choice tasks (e.g., Feigenson, Carey, & Hauser,
2002; Feigenson, Carey, & Spelke, 2002), we expected children in
Experiment 3 to succeed. If children in Experiment 3 succeed, then
this would suggest that children’s difficulty lies with inferring val-
ues of unknown addends from small number arrays, rather than in
tracking small arrays at all. In addition, children in Experiment 3
saw target and distractor quantities that instantiated ratios that
were equal to or harder to discriminate than those in Experiments
2a and 2b. If, as predicted, children succeeded in Experiment 3, this
would rule out ratio effects as the source of children’s failure with
small arrays.
5. Experiment 3: Unknown sum, small quantities

5.1. Participants

Twenty-four children (mean age: 5 years, 3 months; range:
4 years 1 month – 6 years 11 months; 14 girls) participated at
the science museum.

5.2. Methods

5.2.1. Materials
The materials were identical to those in Experiments 1 and 2a &

b.

5.2.2. Procedure
Children first were introduced to Gator, as in our previous

experiments. However, this time they were told that Gator had a
‘‘special cup” in which he always wanted to have a particular num-
ber of things, and that he could add things until he got that special
number. Children were not told what this special number was, but
were invited to infer it through a series of Demonstration trials (as
in Experiments 1, 2a, and 2b). Children were randomly assigned to
one of two conditions: the 2 + 1 Condition, in which Gator’s special
number was three, or the 1 + 1 Condition, in which Gator’s special
number was two. Including a condition in which the target number
was three allowed us to test children with the more difficult ratio
comparison of 3:4 at test, so that we could assess whether the fail-
ures in Experiments 2a and 2b were ratio-driven.
Children saw three Demonstration Trials. In the 2 + 1 condition,
the experimenter held the cup up so that children could not see
into it, and then placed one button on the table and said, ‘‘See this
button? I’m going to put it in the cup!” She then placed the button
inside the cup. The experimenter then placed two more buttons on
the table, said, ‘‘See these buttons? I’m going to put them in cup!”
and then placed the buttons in the cup. The experimenter then
made Gator jump up and down and say ‘‘Yay! That’s my special
number!” The second and third Demonstration Trials proceeded
similarly to the first; in the second Demonstration Trial, children
saw two pennies + one penny, and in the third Demonstration
Trial, children saw one shoe + two shoes. The 1 + 1 Condition pro-
ceeded identically to the 2 + 1 Condition, except that children
saw one object followed by one more object added to the cup on
each Demonstration Trial. Hence, just as in Experiments 1 and 2a
& b, children saw two visible quantities and had to infer the value
of a third quantity. In Experiment 3 the visible quantities were the
two addends and the inferred quantity was their sum, whereas in
Experiments 1 and 2a & b the visible quantities were the first
addend and the sum, and the inferred quantity was the second
addend.

In the single Test Trial, the experimenter placed two identical
cups upside down on the empty table. The experimenter then said,
‘‘Look! I have two cups here, but only one of them is Gator’s special
cup. I’m going to show you what’s inside, and you can tell me
which one is Gator’s special cup.” She lifted both cups simultane-
ously to reveal two quantities of pom-poms, the target quantity
and a distractor quantity. She then asked children ‘‘Which cup is
Gator’s?” In the 2 + 1 Condition, the target quantity was three
and the distractor quantity was either two or four. In the 1 + 1 Con-
dition, the target quantity was two and the distractor quantity was
either one or three (see Table 1).
5.2.3. Quantities
As in Experiments 2a and 2b, the quantities used in the Demon-

stration trials were chosen to be within the range that is typically
quantified using individual object representations. Test quantities
were chosen to be within this same range, and also to be discrim-
inable from the addend quantities using ratios that were as diffi-
cult or harder to discriminate than in Experiments 2a and b—this
allowed us to ask whether ratio difficulty contributed to children’s
performance.
5.3. Results

When asked to choose which of two visible quantities was
inferred to be in Gator’s cup, 20/24 children correctly chose the tar-
get quantity (83.3% binomial test p = 0.002, two-tailed; Bayes fac-
tor = 63.16:1 against the null). There was no effect of Condition;
9/12 children correctly chose the target cup in the 2 + 1 condition,
and 11/12 children correctly chose the target cup in the 1 + 1 con-
dition; Fisher’s exact test p = 0.59. There also was no effect of the
quantity in the distractor cup: 11/14 children succeeded when
the distractor quantity was larger than the target quantity, and
9/10 succeeded when the distractor quantity was smaller than
the target quantity (Fisher’s exact test p = 0.61). We also found
no effect of gender (12/14 girls and 8/10 boys succeeded, Fisher’s
exact test p = 1.0) or age (one-way ANOVA F1,22 = 2.01, p = 0.17;
Fisher-Freeman-Halton exact test p = 0.79). Finally, we compared
children’s performance in Experiment 3, in which they had to infer
the value of an unknown sum, with their combined performance in
Experiments 2a & b, in which they had to infer the value of an
unknown addend. Children performed significantly better in
Experiment 3 than in Experiments 2a & b (Fisher’s exact test
p = 0.02).
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5.4. Discussion

In Experiment 3, children successfully inferred the value of an
unknown sum when problems were presented non-symbolically
with small numbers of objects. This success contrasts with chil-
dren’s performance in Experiments 2a & b, despite both experi-
ments requiring children to compute over representations of
individual objects. This divergence in results suggests that chil-
dren’s difficulty in Experiments 2a & b was due specifically to
the challenges involved in solving for an unknown addend with
small arrays, and not to drawing inferences over small object
arrays more generally.
6. General discussion

Previous work (Kibbe & Feigenson, 2015) found that young chil-
dren can ‘‘solve for x” in addend-unknown problems when the
problems are presented non-symbolically in a way that encourages
the use of the Approximate Number System (ANS). Here, we asked
whether children also could solve for an unknown addend when
problems were instead presented with smaller quantities that
encouraged the use of individual object representations.

First, in Experiment 1, we replicated our earlier findings. We
presented 4- to 6-year old children with non-symbolic addend-
unknown problems, using large quantities of objects that could
not be counted one by one, but that could be estimated using the
ANS (e.g., 5 + x = 17). As in our previous work, we found that chil-
dren correctly chose which of two possible quantities was the
value of the unknown addend (i.e., was the contents of ‘‘Gator’s
magic cup”). Next, in Experiment 2a, we tested another group of
4- to 6-year old children using the same study design, except this
time with arrays of four or fewer objects, chosen to encourage the
use of individual object representations rather than approximate
number representations. We found that, unlike children in Experi-
ment 1, children in Experiment 2a failed to identify which of two
possible quantities was the unknown addend. We then replicated
this surprising result with a new group of children in Experiment
2b. Children’s failure was especially surprising since children of
this age, who on average were over five years old, can count reli-
ably in the small number range (e.g., LeCorre & Carey, 2007), and
could potentially have solved the task by counting.

Finally, in Experiment 3, we showed that children’s failures in
Experiments 2a & b were not due to a lack of motivation to track
small numbers of objects, or to difficulty discriminating between
the two quantities presented at test. When children were shown
transformations of the same small quantities as in Experiments
2a & b, but were asked to solve for an unknown sum rather than
an unknown addend, they succeeded. This success suggests that
children’s failures in Experiments 2a & b were specific to solving
for an unknown addend using individual object representations.

Children’s success at performing pre-algebraic computations
using ANS representations, and their failure to do so using individ-
ual object representations, is surprising given that even very young
(pre-verbal) children can perform quantity-relevant computations
that using either representational system (e.g., 1 + 1 = 2, Wynn,
1992; 5 + 5 = 10, McCrink & Wynn, 2004). However, our results
suggest that there may be important differences in the kinds of
computations that children spontaneously perform with these dif-
ferent types of representations. Whereas some computations, such
as addition, may be easily supported by both types of representa-
tion, other computations, such as solving for an unknown addend,
may be supported by ANS representations but not representations
of individual objects. One intriguing possibility is that solving for
an unknown x, as when determining the value of an unknown
addend, requires mentally representing a variable. The variable is
represented as having some cardinal value (even if that value is
currently unknown). Representations of approximate number
seem well suited to play such a role—approximate number is a
type of summary property bound to a representation of a single
ensemble entity (Halberda, Sires, & Feigenson, 2006). As such,
approximate number representations are inherently cardinal in
nature—they carry information about the array or the collection
as a whole, rather than about any one of its constituents. One could
know that any given collection must have some cardinality—some
approximate numerosity—even without knowing anything about
the size of that value. In contrast, representations of individual
objects may not be not well suited to serve as the values of vari-
ables, because they have no inherent cardinality. If one asks
‘‘How many?”, representations of individual objects (Object A,
Object B, Object C) are not a good answer to the question, just as
representations of individual people (Bob, Mary, Jim) are not a
good answer. Rather, one needs a higher order representation that
unifies across the individuals—a representation of cardinality. It is
possible to represent individual objects as forming a single entity, a
set, that has a cardinal value (Feigenson, 2011), but this requires
two extra computations in addition to representing the individual
objects—one has to bind the individual object representations into
a set, and then compute the set’s approximate or exact cardinality
(Halberda & Feigenson, 2008b). These computations seem not to
have been performed by the children in our task.

Why else might representations of small number fail to support
solving for x? Another potential source of difficulty is that, when
presented with small quantities, children often preferentially
encode the individual identities of the objects (e.g. Cantrell &
Smith, 2013; Feigenson, Carey, & Hauser, 2002). In our task, chil-
dren were shown a variety of objects whose identities could differ
both within and between trials. Children presented with small
quantities may have found the shape or color of each individual
object to be more salient than the array as a whole, and may thus
have failed to attend to the cardinalities across Demonstration Tri-
als. For children who were presented with large quantities, in con-
trast, the variety of object identities across trials may have helped
children generate consistent, abstract ANS representations. Chil-
dren’s success in Experiment 3 suggests that, under some circum-
stances, children can attend to quantity when presented with small
quantities of varieties of objects. However, the salience of the iden-
tities of individual objects may be one factor contributing to chil-
dren’s difficulty in the more challenging Experiments 2a & b. The
salience or relevance of identity when representing large collec-
tions of items using the ANS, versus when representing small
arrays using individual object representations, remains an impor-
tant topic for future work.

We also note that children’s ability to ‘‘solve for x” with small
quantities may not be all or none. Instead, children’s ability to
solve for unknowns may be graded—with small quantities posing
more difficulty than large quantities, but still supporting partial
success. A hint of evidence for this comes from Experiments 2a
and 2b, in which children showed more success when the distrac-
tor quantity contained only a single object (1 vs. 2 trials) than
when it contained more objects (2 vs. 3 trials). It seems possible
that when children are shown very small quantities, or quantities
that differ by a large enough ratio (1 vs. 2, as opposed to 2 vs. 3),
they could succeed at solving for x. However, it is also possible that
this partial success was due to a simple bias to choose the larger of
the two quantities when they children were uncertain, a possibility
that is supported by children’s tendency to choose the distractor
when it is larger than the target (2 vs. 3). Future work could adju-
dicate between these possibilities.

In summary, here we report a surprising dissociation in chil-
dren’s numerical performance. Four- to 6-year old children, who
have received little or no formal mathematics education, success-
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fully solved pre-algebraic problems when those problems were
presented non-symbolically with arrays of objects rather than with
digits or number words. However, children did not solve these
addend unknown problems with equal ease across quantities.
Rather, they succeeded with large approximate quantities, and
failed with small exact quantities. This might seem counter to
the intuition that mathematical computations are easier for chil-
dren when they involve small, countable arrays. Although further
work will be required to more closely examine this finding, our
results suggest that encouraging children to draw upon their rep-
resentations of approximate numerosities may nudge them
towards intuitively performing the relevant mathematical compu-
tation (here, ‘‘back-solving” for an unknown addend), which could
later help them as they encounter problems that require an exact
solution.
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