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Abstract

The Approximate Number System (ANS) supports basic arithmetic computation in early childhood, but it is unclear whether
the ANS also supports the more complex computations introduced later in formal education. ‘Solving for x’ in addend-unknown
problems is notoriously difficult for children, who often struggle with these types of problems well into high school. Here we
asked whether 4–6-year-old children could solve for an unknown addend using the ANS. We presented problems either
symbolically, using Arabic numerals or verbal number words, or non-symbolically, using collections of objects while preventing
verbal counting. Across five experiments, children failed to identify the value of the unknown addend when problems were
presented symbolically, but succeeded when problems were presented non-symbolically. Our results suggest that, well before
formal exposure to unknown-addend problems, children appear to ‘solve for x’ in an intuitive way, using the ANS.

Research highlights

• Children have difficulty solving problems with an
unknown operand

• We showed children unknown-addend problems pre-
sented with Arabic digits, number words, or with
collections of objects

• Children could only solve the problems that were
presented non-symbolically

• Children can solve unknown-addend problems intu-
itively using the Approximate Number System prior
to formal math experience

Introduction

The ability to represent and mentally manipulate exact
quantities is unique to humans and depends on learning
a verbally mediated system of number (Carey, 2009;
Feigenson, Dehaene & Spelke, 2004). However, pre-
verbal infants, non-verbal animals, children, and adults
also have an Approximate Number System (ANS) that
allows them to estimate quantities without language or
instruction (Libertus & Brannon, 2009; Feigenson et al.,
2004; Dehaene, 1997). The ANS produces imprecise

estimates of number, with the amount of noise in the
numerical representations increasing with numerosity. As
a result, numerical discrimination performance depends
on the ratio between quantities rather than the quanti-
ties’ absolute value. For example, 6-month-old infants
can discriminate 8 dots from 16 (a 2:1 ratio), but not 8
dots from 12 (a 3:2 ratio; Xu & Spelke, 2000; Xu, 2003).
Although ANS representations are inherently imprecise,
this imprecision decreases over development (Halberda
& Feigenson, 2008; Lipton & Spelke, 2004), and does not
level off until well into adulthood (Halberda, Ly, Wilmer,
Naiman & Germine, 2012).
The ANS supports a variety of number-relevant

computations. For example, 11-month-old infants recog-
nize ordered relations among dot arrays, dishabituating
when sequences of arrays change from numerically
ascending to descending or vice versa (Brannon, 2002).
Preschoolers can indicate which of two approximate
quantities is larger, even when the quantities are pre-
sented in different sensory modalities (Barth, LaMont,
Lipton & Spelke, 2005). Children also can use the ANS to
perform basic arithmetic operations without training.
Nine-month-old infants who saw an array of dots become
occluded, then saw a second array of dots added, looked
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longer when the occluder lifted to reveal an incorrect sum
than a correct one (McCrink &Wynn, 2004). Six-month-
old infants can detect a common ratio of blue to yellow
shapes across arrays containing different absolute quan-
tities, suggesting a rudimentary division computation
(McCrink &Wynn, 2007). The ANS has even been shown
to support approximate multiplication in 5- to 7-year-old
children, prior to formal multiplication instruction
(McCrink & Spelke, 2010).

As children get older and begin to master the symbolic
system of exact number representation, the ANS con-
tinues to play an important role in their numerical
thinking. Children can use the ANS to reason about
arithmetic problems using number words and digits prior
to receiving mathematical instruction (Gilmore, McCar-
thy & Spelke, 2007; Booth & Siegler, 2008; Barth, La
Mont, Lipton, Dehaene, Kanwisher & Spelke, 2006).
Further, individual differences in the precision of the
ANS have been shown to correlate with differences in
formal math ability as assessed by standardized math
tests (Feigenson, Libertus & Halberda, 2013; Libertus,
Feigenson & Halberda, 2013a, 2013b; Halberda, Maz-
zocco & Feigenson, 2008; Starr, Libertus & Brannon, in
press). And math learning disability (dyscalculia)
appears to be due at least in part to markedly poor
ANS acuity (Mazzocco, Feigenson & Halberda, 2011;
Piazza, Facoetti, Trussardi, Berteletti, Conte, Lucangeli,
Dehaene & Zorzi, 2010).

These results suggest that the Approximate Number
System plays an important role in numerical reasoning
throughout the lifespan, both before and after formal
instruction in mathematics. However, it appears that not
all math abilities draw equally upon the ANS. Recent
evidence suggests that whereas ANS precision predicts
informal math abilities in young children (e.g. counting,
informal calculation), no such relationship exists with
formal math abilities (e.g. solving written math problems,
understanding place values; Libertus et al., 2013b).
Therefore, it remains unclear the extent to which the
ANS can be used for the more sophisticatedmathematical
reasoning that children increasingly encounter through
formal schooling.

Algebraic reasoning is one type of mathematics that
typically is not introduced until the late elementary or
early middle school years (National Council of Teach-
ers of Mathematics, 2000). Although there is much
debate about how to differentiate algebra from arith-
metic, one important link between the two is the ability
to solve for an unknown value. Whereas solving for an
unknown value that is the result of an operation (e.g.
5 + 7 = x) is introduced early in elementary school and
is more straightforwardly arithmetic, solving for an
unknown addend, subtrahend, or minuend (e.g.

x + 5 = 12) is introduced later and is significantly
harder for children (e.g. Booth, 1988; Kieran, 1992;
Filloy & Rojano, 1989; Koedinger, Alibali & Nathan,
2008; Riley & Greeno, 1988) and even for college-aged
students (Tabachneck, Koedinger & Nathan, 1995).
Herscovics and Linchevski (1994) have identified this as
a ‘cognitive gap’ between arithmetic and algebra.
According to Nathan and Koedinger (2000a), problems
with an unknown addend or subtrahend ‘tend to
subvert simple modeling and direct calculation and
often require algebraic methods’.

The finding that children struggle to solve problems
with unknowns raises the question of whether intuitive
approximate number representations can play a role in
such computations. The difficulty that children evince
with addend-unknown problems might reflect trouble
making numerical inferences – for example, working
backwards from a result to infer the identity of an
unknown value. Alternatively, children may struggle to
‘solve for x’ because of the formal notation that is often
used to present these problems (Nathan, 2012; Van
Amerom, 2003; Herscovics & Linchevski, 1994). Previ-
ous findings suggest that children sometimes are more
successful at solving math problems that are presented
non-symbolically than when the same problems are
presented using formal notation (Bisanz, Sherman,
Rasmussen & Ho, 2005; Levine, Jordan & Huttenlocher,
1992). For example, 3-year-old children who are not yet
proficient verbal counters demonstrate some under-
standing of mathematical inversion (e.g. a + b � b
= a) when problems are presented with blocks (Sherman
& Bisanz, 2007). And middle- and high-school students
consistently perform better on word problems than on
equivalent problems presented using equations and
number symbols (Koendinger & Nathan, 2004). This
suggests that children’s mathematical intuitions some-
times precede their formal math abilities.

If representing exact quantities using formal notation
impedes children’s ability to solve for x in addend-
unknown problems, then presenting the problems in a
more intuitive way may reveal successful performance.
The goal of the present studies was to determine whether
4- to 6-year-old children could spontaneously solve
problems in which one of the addends was unknown,
when the problems were presented non-symbolically.
First, in Experiments 1 and 2, we confirmed that
children were unable to solve for an unknown addend
when the problems were presented using number sym-
bols (Arabic numerals in Experiment 1; number words in
Experiment 2). Then, in Experiments 3–5, we presented
addend-unknown problems non-symbolically, using col-
lections of objects, and asked whether children could
identify the value of the unknown addend.
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Experiment 1

Previous studies show that young children often have
difficulty producing exact numerical values (LeCorre &
Carey, 2007). Yet even 5-year-old children can succeed in
symbolic arithmetic tasks when they are asked whether
the solution to a problem is larger or smaller than a
comparison number (rather than being asked to produce
a precise numerical answer; Gilmore et al., 2007). This
shows that children’s approximate number representa-
tions can allow them to compute over numerical symbols
(even before children are proficient users of these
symbols), but it remains unknown whether children also
show this ability when faced with an unknown addend.
Therefore, in Experiment 1 we asked whether 4- to 6-
year-old children could solve addend-unknown problems
involving Arabic numerals, when the task did not require
them to generate an exact answer. We presented children
with written symbolic problems in which there was an
unknown addend, then asked them to choose which of
two symbolically presented numbers should be in the
unknown addend’s place. We hypothesized that if
children in Experiment 1 have an approximate sense of
the value of the unknown addend, they should be
successful in choosing between the correct value and an
incorrect distractor.

Participants

Twenty-eight children (mean age: 63 months 9 days;
range 50 months 1 day–83 months 20 days; 12 girls)

participated in the children’s wing of a local science
museum. Children received a sticker after participating.

Stimuli

Stimuli consisted of three orange cards measuring 31 cm
9 9 cm. On the left side of each card was printed a
mathematical equation containing Arabic numerals, with
an unknown addend depicted by an empty box. Equa-
tions were printed in 72-point font in black ink. Table 1
shows the three equations used, here labeled A, B, and C
(children did not see the equations labeled). Each card
had a flap on the right side which, when opened, revealed
a pair of printed number choices presented as Arabic
numerals. Whether the correct answer was on the left or
right side of the pair and whether the larger numerical
choice appeared on the left or right side of the pair were
counterbalanced across children.

Procedure

Children sat at a child-sized table across from the
experimenter, and were shown the three cards, one at a
time. The experimenter first said, ‘We’re going to play a
numbers game.’ She showed children the card containing
Equation A and said, ‘See this math problem?’ She left
the card visible for about 3 seconds, then flipped open
the flap to reveal the pair of number choices. She pointed
to the two choices, then to the empty box, and asked
children which of the choices belonged in the empty box.
Children were asked to point to one of the two numbers.

Table 1 Quantities presented in Experiments 1–5

Presentation format

Demonstration Trials
Test Trial

X Y Verbal Prompt & Quantity Choice

Exp. 1 Arabic numerals A. 5 + h = 17
B. 6 + h = 42
C. 9 + h = 13

“Which goes in the box?”
Child chooses between
A. 12 & 4
B. 17 & 36
C. 4 & 12

Exp. 2 Verbal 5 + x = 17
9 + x = 21
6 + x = 18
(x = 12)

“Which cup is Gator’s?”
Child chooses between
12 & 4 or 12 & 24

Exp. 3 Non-symbolic 5 + x = 17
9 + x = 21
6 + x = 18
(x = 12)

“Which cup is Gator’s?”
Child chooses between
12 & 4 or 12 & 24

Exp. 4 Non-symbolic 5 + x = 41
9 + x = 45
6 + x = 42
(x = 36)

“Which cup is Gator’s?”
Child chooses between
36 & 17

Exp. 5 Non-symbolic 5 + x = 17
9 + x = 21
6 + x = 18
(x = 12)

5 + y = 9
9 + y = 13
6 + y = 10
(y = 4)

“Whose cup is this?”
Child shown either 12 or 4
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Regardless of children’s choice, the experimenter said
‘Great job!’ This procedure was repeated for Equations
B and C. Equations A, B, and C were presented in
counterbalanced order across children.

Results

Children averaged 46% correct across the three equations
(Table 2). For equation A, 14/28 children correctly chose
the target number 12 (50%, binomial test p = 1.0), for
equation B, 14/28 children correctly chose the target
number 36 (50%, binomial test p = 1.0), and for equation
C, 11/28 children correctly chose the target number 4
(36%, binomial test p = .35). There was no difference in
children’s performance on the three equations (chi2 test
p = .73), and girls’ and boys’ performance did not
significantly differ (girls: 52% correct, boys: 41% correct,
t26 = 0.91, p = .37, two-tailed). We also asked whether
there was a relationship between children’s age and their
performance. We conducted a one-way ANOVA on
children’s ages with the number of problems children
answered correctly (out of three possible) as a between-
subjects variable. This analysis revealed no significant
difference in age across performance levels (F1,27 = 0.39,
p = .26).

Discussion

In Experiment 1, we found that 4- to 6-year-old children
performed at chance when asked to choose the value of
an unknown addend when problems were presented
using Arabic numerals. This finding was not surprising,
given the well-known difficulty that even older children
have in solving written equations (e.g. Booth, 1988;
Kieran, 1992; Herscovics & Linchevski, 1994; Filloy &
Rojano, 1989; Koedinger et al., 2008; Riley & Greeno,
1988). However, some evidence suggests that middle- and
high-school students find verbal story problems, in which
the addends and solution are embedded in a verbal
narrative, easier to solve than equations presented
using Arabic numerals (Koendinger & Nathan, 2004;

Koendinger et al., 2008). Therefore, before investigating
children’s use of the Approximate Number System in
addend-unknown problems (Experiments 3–5), we first
asked whether they could solve such problems using
verbal number symbols rather than written ones. In
Experiment 2 children were tested with addend-unknown
problems that were embedded within in a verbally
presented story scenario.

Experiment 2

The verbal story scenario used in Experiment 2 was
designed to match that in Experiments 3–5, in which
collections of objects were shown but in which no
number words were used. In this story scenario, we
introduced children to a stuffed animal character, Gator,
who had a ‘magic cup’ that always added a constant
number of objects to an existing collection of objects. We
showed children a box and verbally told children how
many objects were in the box, without showing them the
objects inside. Children then saw Gator’s magic cup
cover the box and were told that the cup ‘added more’
objects to the box. We then told children the ending
number of objects, but did not tell children how many
objects Gator’s magic cup had added. Thus, the contents
of Gator’s magic cup acted as the unknown addend.
Children saw three demonstrations of Gator’s cup, and
were reminded that the cup always added the same
number of objects every time. We then asked whether
children had inferred the approximate number of objects
that had been in Gator’s magic cup by asking them to
choose between two options.

Participants

Thirty-two children (mean age: 64 months 3 days; range
49 months 25 days–83 months 12 days; 16 girls) partic-
ipated at the science museum. Sixteen of these children
had participated in Experiment 1 immediately before
Experiment 2. All children received a sticker after
participating.

Stimuli

The stimuli consisted of a small stuffed alligator toy and
two 10 oz. white paper cups. On each of the three
Demonstration Trials, a different 5 cm 9 5 cm 9 2 cm
opaque paper box (one white, one yellow, and one blue)
was used, each containing a different collection of small
objects (buttons, pennies, or toy shoes). Children never
saw the objects inside the boxes, but were told what the
objects were.

Table 2 Percent of children choosing the correct value in
Experiments 1–5

Presentation format % correct Binomial test p

Exp. 1 Arabic numerals 46% n.s.
Exp. 2 Verbal 59% n.s.
Exp. 3 Non-symbolic 71% 0.03*
Exp. 4 Non-symbolic 79% 0.007*
Exp. 5 Non-symbolic 75% 0.02*
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Procedure

Demonstration Trials

On the first of three Demonstration Trials (Figure 1, top
left panel), the experimenter showed children the stuffed
animal, Gator, next to an inverted white paper cup. The
experimenter pointed to the cup and said, ‘This is
Gator’s magic cup. If I put a box of things in front of
Gator, his magic cup will come and add more things to
the box, and it’s always going to add the same number of
things to the box every time, no matter what.’ The
experimenter then said, ‘Let’s try it!’ She placed a white
box on the table, shook it so that children could hear that
there were objects inside, and said, ‘Do you hear Gator’s

buttons in there? He has five. Five buttons!’ She then
said, ‘Now watch carefully, here comes Gator’s magic
cup!’ She covered the box completely with Gator’s cup,
shook the cup, and then lifted it. She then shook the box
again and said, ‘It worked! Gator has 17 now! Seventeen
buttons!’ Children never saw the contents of the box.
Children then saw two more Demonstration Trials

involving different types of objects and different starting
and ending quantities, in which Gator’s magic cup
always added the same number of objects to the existing
collection (see Table 1). Before each Demonstration
Trial, the experimenter said, ‘Do you think Gator’s
magic cup will work on anything else? Let’s try (pennies/
shoes)!’ In the second Demonstration Trial, Gator’s
magic cup transformed a blue box of 9 pennies into 21
pennies. In the third Demonstration Trial, it transformed
a green box of 6 toy shoes into 18 shoes. Across all three
Demonstration Trials, children were verbally told the
starting and ending numbers, but did not see the object
collections themselves.

Test Trial

On the single Test Trial, the experimenter told children
she was going to try Gator’s magic cup one more time.
The experimenter then handed Gator to the child and
pretended to look for Gator’s magic cup under the table.
She then placed two identical white paper cups upside-
down on the table and said ‘Oh no! I found two magic
cups under the table, but I can’t remember which one is
Gator’s! Can you help me?’ She then pointed to each cup
and told the child the quantity inside, saying, ‘This cup
has 12, and this cup has 4 [or 24]. Which cup is Gator’s?’
(Figure 1, bottom left panel). Whether the distractor cup
contained 4 or 24, whether it appeared on the right or the
left, and whether it was described first or second, were
counterbalanced across children.

Quantities

In the three Demonstration Trials, Gator’s cup always
added 12 objects to starting quantities of 5 buttons, 9
pennies, and 6 shoes. The starting quantities varied
across trials in order to highlight the fact that the
number of objects added by the magic cup did not
depend on the starting quantity. In the Test Trial,
children were given a choice between the correct target
quantity (12) and one of two distractor quantities: either
one that was smaller than the target (4) or one that was
larger (24). This allowed us to test whether children were
responding based on an approximate representation of
the unknown addend or whether they were using other
strategies. For example, if children expected only that the

Figure 1 Left panel: first of three Demonstration Trials in
Experiment 2, in which children were told that the ‘magic cup’
added more buttons to an existing box of buttons, and the
single Test Trial from Experiment 2, in which children were
told the number of items in each of two cups and then chose
which cup belonged to Gator. Right panel: first of three
Demonstration Trials in Experiment 3, in which children saw
the ‘magic cup’ add more buttons to an existing pile of buttons,
and the single Test Trial in Experiment 3, in which children
saw two quantities and then chose which cup belonged to
Gator.
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unknown addend should be larger than the starting
quantities, then they should succeed when choosing
between 12 and 4, but fail when choosing between 12 and
24, because both 12 and 24 are larger than the starting
quantities and therefore are ordinally consistent with an
addition event. Further, the target and distractor quan-
tities were chosen to be numerically close to numbers
that children had heard during the Demonstration Trials
so that the quantities would not be entirely novel (see
Table 1), but were also chosen because they would be
easily distinguishable by the ANS (Halberda &
Feigenson, 2008).

Results

We found that 19/32 children chose the correct value of
Gator’s cup; this was not significantly different from
chance (59%, binomial test p = .38, Table 2). We found
no effect of the quantity in the distractor cup (11/17
children (65%) succeeded with 12 vs. 4; 7/15 (47%)
succeededwith 12 vs. 24; Fisher’s Exact Test p = .48, two-
tailed), and no effect of gender (10/16 girls and 9/16 boys
succeeded; Fisher’s Exact Test p = 1.0, two-tailed). To
assess whether there was a relationship between chil-
dren’s age and their performance, we analyzed whether
there was a significant difference in the ages of children
who succeeded versus those who did not using a one-way
ANOVA with success as a factor. While children who
succeeded were slightly older on average than children
who failed, we found no significant difference in the ages
of children who succeeded (mean age: 66 months
27 days; range: 52 months 9 days–83 months 12 days)
versus those who failed (mean age: 60 months 0 days;
range: 49 months 25 days–77 months 13 days) (F1,30 =
3.38, p = .08). We also asked whether children who had
completed Experiment 1 prior to participating in Exper-
iment 2 performed differently from children who had not.
We found no difference in children’s performance: 10/16
children who had participated in Experiment 1 succeeded
(63%); of the remaining 16 children, 9 succeeded (56%;
Fisher’s exact test p = 1.0).

Discussion

Children in Experiment 2 failed to choose the value of an
unknown addend, even when the problems were pre-
sented verbally in a story scenario with visual scaffolding
(in the form of the boxes and the magic cup) instead of
using Arabic numerals. Hence across Experiments 1 and
2, preschool- and early school-aged children failed to
solve addend-unknown math problems when presented
with number symbols that were either written (Experi-
ment 1) or spoken (Experiment 2).

Children’s failure with symbolically presented
unknown addend problems raises the question of
whether children of this age could succeed if they used
the more intuitive, non-symbolic representations gener-
ated by the Approximate Number System. Therefore, in
Experiment 3 we asked whether children could solve the
same problems that had been presented in Experiment 2,
but this time when the problems were presented entirely
non-symbolically. Children were again introduced to
Gator and his magic cup, but this time they watched the
cup transform collections of visible objects, and did not
encounter any digits or number words.

Experiment 3

Participants

Twenty-eight children (mean age: 64 months 5 days;
range 48 months 21 days–81 months 26 days; 12 girls)
participated, either in a university laboratory or at the
science museum. Children tested in the laboratory were
given a book or small toy for participating; children
tested at the museum received a sticker.

Stimuli

The stimuli were identical to those in Experiment 2,
except that no boxes were used. Instead, children saw
piles of multi-colored buttons, pennies, or blue toy shoes.
These three object collections were chosen to vary in size
and shape in order to minimize children’s attention to
continuous dimensions (e.g. cumulative area) that are
often confounded with number. In the single Test Trial,
collections of small multi-colored pom-poms were used.

Procedure

Demonstration Trials

Children were introduced to Gator and his magic cup in
the same manner as in Experiment 2. In the first
Demonstration Trial, the experimenter placed a pile of 5
multi-colored buttons in front of Gator. She pointed to
the buttons and said, ‘See Gator’s buttons?’ The pile
remained visible for approximately 5 seconds, then the
experimenter said, ‘Now watch carefully, here comes
Gator’s magic cup!’ She covered the pile completely with
Gator’s cup (without showing children the cup’s con-
tents), shook the cup, and then lifted it to reveal 17
buttons (Figure 1, top right panel). The experimenter
pointed to the pile and said, ‘It worked! See Gator’s
buttons now?’ Children had approximately 5 seconds to
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view the change in the numerosity of the collection of
buttons. All of the buttons and Gator’s cup were then
cleared from the table. Children then saw two more
Demonstration Trials (see Table 1) with different object
types and different starting and ending quantities, but
with the same number of objects added each time, just as
in Experiment 2. Before each trial, the experimenter said,
‘Shall we try another one? Let’s see if Gator’s magic cup
works on [pennies/shoes]!’ In the second Demonstration
Trial, children saw Gator’s cup transform a pile of 9
pennies into 21 pennies, and in the third, children saw
Gator’s cup transform a pile of 6 toy shoes into 18 shoes.
Children never heard any number words during the
Demonstration Trials. The object collections were pre-
sented in tight clusters and were shown quickly so as to
discourage children from serial counting. No child
showed evidence of trying to count.

Test Trial

As in Experiment 2, on the single Test Trial, the
experimenter told children she was going to try Gator’s
magic cup one more time. She gave Gator to the child,
then placed two identical white paper cups upside-down
on the table and said, ‘Oh no! I found two magic cups
under the table, but I can’t remember which one is
Gator’s! Can you help me?’ She then lifted the cups to
reveal two different quantities of multi-colored pom-
poms, placing the now-empty cups next to these piles.
The experimenter then asked the child to put Gator with
his magic cup (Figure 1, bottom right panel). As in the
Demonstration Trials, no number words were used.

Quantities

The quantities used were identical to those in Experi-
ment 2 (see Table 1). The quantity in the magic cup, 12,
was visually discriminable from the average of the
starting quantities (6.66) by a ratio of 2:1.

Results

We found that 20 out of 28 children (71%) successfully
matched Gator to the target numerosity, significantly
greater than chance (chance = 50%, binomial test
p = .03, two tailed; Table 2). We found no effect of the
quantity in the distractor cup: 10/14 children (71%)
succeeded with 12 vs. 4; 10/14 (71%) succeeded with 12
vs. 24 (Fisher’s Exact Test p = 1.0, two-tailed) and no
effect of gender (10/12 girls and 10/16 boys succeeded;
Fisher’s Exact Test p = .40, two-tailed). There was also
no difference in performance as a function of age;
children who succeeded (mean age: 63 months 10 days,

range: 48 months 21 days–81 months 26 days) did not
significantly differ in age from children who did not
(mean age: 66 months 4 days; range: 49 months 6 days–
82 months 20 days) (one-way ANOVA F1,27 = 0.39,
p = .54).

Discussion

In Experiment 3, 4-to 6-year-old children watched non-
symbolic events of the form a + x = b. We found that
children successfully chose between the correct value of x
and a distractor quantity, despite not being asked
explicitly to track numbers of objects. Importantly, the
quantities used in Experiment 3, in which children
succeeded, were identical to those in Experiment 2, in
which children failed; the only difference between the
experiments was whether the quantities were presented
visually or verbally.
Children in Experiment 3 were unlikely to have

succeeded by counting. The objects were shown rapidly
and were closely spaced so that it would have been
difficult for children to serially count them, and all of the
quantities presented were outside of the subitizing range
(Gelman, 1977; Starkey & Cooper, 2011). Furthermore,
since children in Experiment 2 apparently were unable to
use number words to successfully infer the numerosity in
the magic cup, it is unlikely that counting would have
helped children in Experiment 3 infer the correct value of
the unknown addend. Children also could not have
succeeded by using the strategy of choosing the greater
of the two quantities presented on the Test Trial. When
given the choice between the target quantity 12 and the
distractor quantity 24, children correctly chose 12, even
though both 12 and 24 were ordinally consistent with an
adding event (because both were greater than the
numerosity of the object collection before it had been
transformed by the magic cup).
Still, we wanted to rule out other possible explanations

for children’s success in Experiment 3. In particular,
although the distractor quantities in Experiment 3 were
chosen to minimize the impact of numerical novelty on
children’s choices, this design may have led children to
rely on a simpler strategy of avoiding any quantity that
was similar to the observed starting and ending quan-
tities, rather than actually inferring the quantity in the
magic cup. For example, if faced with a choice between
12 and 4, children could have chosen 12 because they
recognized that 4 was similar to the starting quantities
they had seen, and therefore was unlikely to be the
target. If faced with a choice between 12 and 24, children
could have chosen 12 because they recognized that 24
was similar to the ending quantities they had seen. To
rule out this possibility, in Experiment 3 we presented
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children with target and distractor quantities that were
numerically in between the values of the starting and
ending quantities, and asked whether children still could
correctly choose the unknown addend.

Experiment 4

Participants

Twenty-four children (mean age: 63 months 5 days;
range 48 months 14 days–81 months 26 days; 11 girls)
participated at the science museum. Children received a
sticker after their participation.

Stimuli

The stimuli were identical to those in Experiment 3.

Procedure

Demonstration Trials

Demonstration Trials were similar to Experiment 3,
except that this time the magic cup always added 36
objects to the starting piles of 5 buttons, 9 pennies, and 6
shoes (Table 1).

Test Trial

The single Test Trial was structured as in Experiment 3.
The experimenter gave Gator to the child, then placed
two identical white paper cups upside-down on the table
and said, ‘Oh no! I found two magic cups under the
table, but I can’t remember which one is Gator’s! Can
you help me?’ She lifted the cups to reveal two different
quantities of multi-colored pom-poms, the target quan-
tity 36 and a distractor quantity 17, placing the now-
empty cups next to these piles. The experimenter then
asked the child to put Gator with his magic cup. As in
the Demonstration Trials, no number words were used.

Quantities

Throughout the three Demonstration Trials, children
always saw Gator’s magic cup add 36 objects to piles of 5
buttons, 9 pennies, and 6 shoes (Table 1). In the single
Test Trial, children were presented with two identical
cups, one containing the target quantity (36) and one
containing the distractor quantity (17). These were
chosen to fall between the average of the starting
quantities (6.66) and the average of the ending quantities
(42.66) seen across the three Demonstration Trials.

Results

We found that 19/24 children (79%) successfully chose the
target numerosity (chance = 50%, binomial test p = .007,
two-tailed, Table 2). There was no effect of gender: 8/11
girls and 11/13 boys succeeded (Fisher’s Exact Test
p = .63, two-tailed). Again, we found no significant
difference in the ages of children who succeeded (mean
age: 64 months 2 days, range: 48 months 14 days–
81 months 26 days) versus those who failed (mean age:
59 months 26 days; range: 48 months 14 days–
71 months 0 days) (one-way ANOVA F1,22 = 0.87,
p = .36).

Discussion

Experiment 4 replicated the results of Experiment 3: 4- to
6-year-old children were able to infer the approximate
value of an unknown addend. Importantly, Experiment 4
showed that children succeeded evenwhen prevented from
using a simpler strategyof choosing a target value thatwas
outside the range of the starting and ending quantities.

The results of Experiments 1–4 suggest that children
have some proficiency in reasoning about addend-
unknown problems before they have amassed much, if
any, education in mathematics, and before they can solve
these types of problems using symbolic representations.
However, our results thus far leave open the question of
whether children mentally bound a particular quantity to
a specific variable. It is possible children in Experiments
3 and 4 simply had an unbound, diffuse sense of the
‘missing quantity’ gleaned from a general representation
of the difference between the starting and ending
numbers. We tested this in Experiment 5 by presenting
children with two hidden values instead of just one.
Children were introduced to two characters, Gator and
Cheetah, who each had magic cups that added different
amounts. If children in Experiments 3 and 4 were
responding on the basis of a global perceptual change in
number across trials, then children in Experiment 5
should be unable to identify which cup belonged to
which character. However, if children succeed in Exper-
iment 5, it would suggest that they were indeed reasoning
about the hidden quantities and binding those quantities
to specific unknown addends.

Experiment 5

Participants

Twenty-four children (mean age: 64 months 2 days,
range 49 months 22 days–83 months 2 days; 16 girls)

© 2014 John Wiley & Sons Ltd

Young child ‘solve for x’ 45



participated at the science museum. Children received a
sticker after participating.

Stimuli

Stimuli were identical to Experiments 3 and 4, except
that a second stuffed animal, Cheetah, and an additional
10 oz. white paper cup were also used.

Procedure

Demonstration Trials

Children were introduced to Gator and his magic cup in
the same manner as in Experiments 3 and 4. On the first
Demonstration Trial they watched as Gator’s magic cup
transformed a pile of 5 buttons into 17 buttons. Next,
children were introduced to Cheetah and were told that
Cheetah also had a magic cup (which looked identical to
Gator’s), but that his magic cup always added a different
number of objects from Gator’s magic cup. The exper-
imenter placed Cheetah’s cup upside-down on the table.
She put a pile of 5 buttons in front of Cheetah, covered
them completely with Cheetah’s magic cup, shook it,
and then lifted the cup to reveal 9 buttons.
Children then saw two more Demonstration Trials

(Table 1), in which Gator’s magic cup and Cheetah’s
magic cup were seen to transform starting piles of
objects that were always of the same type and had the
same starting numerosity. In the second Demonstration
Trial, children saw Gator’s cup transform a pile of 9
pennies into 21 pennies, and then saw Cheetah’s cup
transform a pile of 9 pennies into 13 pennies. In the third
Demonstration Trial, children saw Gator’s cup trans-
form a pile of 6 toy shoes into 18 shoes, and then saw
Cheetah’s cup transform a pile of 6 shoes into 10 shoes.
Whether Gator or Cheetah was presented first within
each trial, and whether Gator’s cup or Cheetah’s cup
added 12 objects (versus 4 objects) were counterbalanced
across children.

Test Trial

On the single Test Trial, the experimenter told children
that she was going to try Gator’s and Cheetah’s magic
cups one more time. She gave children both Gator and
Cheetah while she pretended to look for their cups under
the table. She then showed children just one magic cup
and said, ‘Uh-oh! I found a magic cup under the table
but I don’t know if it is Gator’s cup or Cheetah’s cup.
Can you help me?’ The experimenter lifted the cup to
reveal either 4 or 12 pom-poms (counterbalanced across
children) and said, ‘Whose cup is this?’

Quantities

The starting quantities used were identical to Experiment
3 (see Table 1). The second unknown addend, 4, was
chosen to be discriminable from the starting quantities
by a ratio of at least 2:3 (on average, across the three
different starting quantities), a ratio that is known to be
discriminable even by 9-month-old infants (Xu & Spelke,
2000). This helped to ensure that children would be able
to detect that the cup had added a quantity to the
starting number.

Results

We found that 18 out of 24 children (75%) successfully
matched the correct character to the target numerosity
(chance = 50%, binomial test p = .02; Table 2). More
girls than boys succeeded (14/16 girls versus 4/8 boys),
although this difference was not significant (Fisher’s
exact test p = .13). There was no effect of the quantity in
the test cup (9/11 children succeeded when the cup
revealed 4 objects; 9 /13 children succeeded when the cup
contained 12 objects; Fisher’s exact test p = .65). There
was also no difference in the ages of children who
succeeded (mean age: 63 months 20 days; range:
50 months 24 days–77 months 15 days) versus those
who did not (mean age: 65 months 4 days; range:
49 months 22 days–83 months 2 days) (one-way
ANOVA F1,22 = 0.09, p = .76).

Discussion

Children’s success in Experiment 5 suggests that they
had inferred the values of both hidden quantities (since
they could not have known in advance which quantity
would be queried by the experimenter in the test trial),
and that they had bound each hidden quantity to a
specific unknown. Children could not have succeeded by
using a simple strategy of remembering which character
ended up with an ending quantity that was ‘more’ or
‘less’ than the other: since children were only shown one
quantity in the final test trial, they had to match that
quantity with a specific character. Thus, 4- to 6-year-old
children successfully inferred the values of two unknown
addends.

General discussion

Previous work has shown that the Approximate Number
System plays an important role in children’s informal
math abilities, supporting approximate arithmetic com-
putation from infancy onward (e.g. McCrink & Wynn,

© 2014 John Wiley & Sons Ltd

46 Melissa M. Kibbe and Lisa Feigenson



2004, 2007; Barth et al., 2005). Here, in a series of five
experiments, we asked whether the ANS also plays a role
in children’s reasoning in addend-unknown problems of
the form a + x = b, long before children are formally
introduced to these types of problems in school.

In Experiment 1, we gave 4- to 6-year-old children
addend-unknown problems presented in formal symbolic
notation using Arabic numerals, and asked whether they
could choose which of two numbers was the value of the
unknown addend. We found that children chose at
chance, confirming that symbolically presented addend-
unknown problems are difficult for children of this age. In
Experiment 2, we asked whether children could solve
addend-unknown problems involving verbal number
symbols rather than written ones. We found that when
the numbers were presented verbally in a story scenario,
children again performed at chance. Then, in Experiments
3–5, we gave children addend-unknown problems in
which all of the quantities were presented non-symboli-
cally using piles of objects that were tightly clustered and
were shown briefly – these features were selected to
discourage verbal counting and encourage the use of the
Approximate Number System. This time we found that
children successfully inferred the value of the unknown in
problems with a single unknown addend (Experiments 3
and 4) and with two unknown addends (Experiment 5).

Herscovitz and Linchevski (1994) noted the presence
of a ‘cognitive gap’ between solving problems with an
unknown solution and solving problems with an
unknown operand, characterized by children’s inability
to ‘operate spontaneously with or on the unknown’ in
unknown-operand problems. The present results suggest
that this ‘cognitive gap’may diminish when problems are
presented in a way that taps children’s intuitive number
sense. Our work thus extends previous findings that
children’s mathematical intuitions sometimes precede
their formal abilities, and suggest that children’s well-
known difficulty in mastering algebra may be influenced
by their difficulty manipulating symbols using formal
rules (Nathan, 2012; Van Amerom, 2003; Nathan &
Koendinger, 2000a, 2000b; Nathan, Long & Alibali,
2002).

Children’s success with problems that were presented
entirely non-symbolically using collections of three-
dimensional objects, and their failure with problems
presented symbolically, raises the question of how
numerical format affects algebraic reasoning. Previous
research with high-school students who are learning
algebra has shown that story problems involving
unknown addends are easier than problems presented
using formal notation (Koendinger & Nathan, 2004;
Koedinger et al., 2008). Indeed, even young children
have shown at least partial success when presented with

verbal number symbols (i.e. number words) rather than
written ones. For example, when verbally presented with
math problems in which an initial amount was unknown
(e.g. ‘There were some dogs at a party, then 3 more dogs
came, so there were 5 dogs at the party. How many were
at the party first?’), 5- and 6-year-old children, but not
4-year-old children, responded with answers that were
not exactly right, but were in the right ordinal direction.
That is, children gave answers that were smaller than the
final number when the problem involved addition, and
larger than the final number when the problem involved
subtraction (Sophian & McCorgray, 1994; see also
Carraher, Schliemann & Schwartz, 2008). Thus although
children were unable to infer the value of the unknown,
they did have a limited sense of its magnitude.

However, our results suggest that when children are
able to rely on the ANS, they can do more than simply
recognize the ordinal direction in such numerical trans-
formations. When we asked 4- to 6-year-old children to
choose between the target quantity and a distractor
quantity, they chose successfully even when both options
were in the right ordinal direction. Further, children as
young as 4 years old succeeded in all of our non-
symbolic tasks, whereas 4-year-olds were unable to
produce directional responses when given word problems
in the study by Sophian and McCorgray (1994). This
suggests that presenting information in a way that
promotes the use of ANS representations may scaffold
children’s ability to reason about unknown quantities.

Our results also shed further light on arithmetic
processing by the ANS. Previous research has shown that
even young infants can use the ANS to add and subtract
collections of items in an approximate way (e.g. McCrink
& Wynn, 2004). This kind of non-symbolic arithmetic
can be accomplished by simply incrementing or decre-
menting a single accumulator each time an array is
transformed. In other words, a single running total can
be represented, with the current magnitude correspond-
ing to the sum or the difference of two observed
quantities. Our task, in contrast, could not be accom-
plished by incrementing a single accumulator. In order to
infer the quantity of the unknown addend, children had
to maintain representations of two separate quantities,
the starting quantity and the ending quantity, and later
combine these (for example, by subtracting the approx-
imate starting quantity from the approximate ending
quantity) to determine the approximate value of the
unknown addend.

In this sense, solving for an unknown addend using the
ANS may impose greater demands on working memory
than solving an arithmetic problem using the ANS, since
two or more quantities must be maintained in memory
and combined. Previous research has shown that both
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adults (Feigenson, 2008; Halberda, Sires & Feigenson,
2006) and infants (Zosh, Halberda & Feigenson, 2011)
can maintain up to three numerical approximations in
working memory concurrently, but little is known about
how individual differences in working memory may
interact with non-symbolic numerical processing using
the ANS. Given the large amount of work demonstrating
a relationship between symbolic math and working
memory (e.g. Ashcraft & Kirk, 2001; Bull & Scerif,
2001; McLean & Hitch, 1999), this is an important
direction for future investigation.
Our results also highlight a number of other questions

for future research. First, how sophisticated is children’s
ability to intuitively infer the values of unknown oper-
ands? When presented with equations that require
multiple operations (e.g. 5 + x = 29 � y), can children
still draw on ANS representations to solve non-symbol-
ically presented problems? Second, how are the opera-
tions that are defined over ANS representations related
to the kinds of formal operations that are required to
solve symbolic addend-unknown problems, if they are
related at all? For example, can presenting children with
non-symbolic addend-unknown problems scaffold chil-
dren’s ability to solve these problems when presented
symbolically? Answers to these questions will help to
elucidate the link between the early abilities revealed by
the present experiments, and the formal algebraic skills
that children acquire in the years to come.
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