This form should be submitted to Senior Academic Administrator Peter Law (617-353-7243) as a PDF file to pgl@bu.edu. For further information or assistance, contact Associate Dean Joseph Bizup (617-353-2409; jbizup@bu.edu) about CAS courses or Associate Dean Jeffrey Hughes (617-353-2690; hughes@bu.edu) about GRS courses.

DEPARTMENT OR PROGRAM: Chemistry

COURSE NUMBER: CH121

DATE SUBMITTED: 10/31/2016

COURSE TITLE: Chemistry in Culture and Society

INSTRUCTOR(S): Associate Professor Scott E. Schaus

TO BE FIRST OFFERED: Sem./Year: Spring /2018

SHORT TITLE: The “short title” appears in the course inventory, on the Link University Class Schedule, and on student transcripts and must be 15 characters maximum including spaces. It should be as clear as possible.

COURSE DESCRIPTION: This is the description that appears in the CAS and/or GRS Bulletin and The Link. It is the first guide that students have as to what the course is about. The description can contain no more than 40 words.

The course is intended to provide scientific fluency in the basic concepts of chemistry, to understand basic, scientific principles and make informed decisions as an essential feature of an advanced society and culture. Contemporary topics including sustainable energy, nutrition, 3D printing, scientific ethics and many others will be explored.

PREREQUISITES: Indicate “None” or list all elements of the prerequisites, clearly indicating “AND” or “OR” where appropriate. Here are three examples: “Junior standing or CAS ZN300 or consent of instructor”; “CAS ZN108 and CAS ZN203 and CAS PQ206; or consent of instructor”; “For SED students only.”

1. State the prerequisites: This is an entry level course that is intended for any non-STEM major with high school level understanding of science and math.

2. Explain the need for these prerequisites:

CREDITS: (check one)
Half course: 2 credits □ Variable: Please describe.
☑ Full course: 4 credits □ Other: Please describe.

Provide a rationale for this number of credits, bearing in mind that for a CAS or GRS course to carry 4 credits, 1) it must normally be scheduled to meet at least 150 minutes/week, AND 2) combined instruction and assignments, as detailed in the attached course syllabus, must anticipate at least 12 total hours/week of student effort to achieve course objectives.

The course is intended to be a divisional science course for non-STEM majors to increase science literacy in culture and society. Four weekly contact hours (3 hours of lecture, one hour of discussion) are planned.

DIVISIONAL STUDIES CREDIT: Is this course intended to fulfill Divisional Studies requirements?

□ No.
☑ Yes. If yes, please indicate which division ______Natural Science________ and explain why the course should qualify for Divisional Studies credit. Refer to criteria listed here and specify whether this course is intended for “short” or “expanded” divisional list.

This course is intended for the short divisional list, and is the first chemistry course offered specifically for non-STEM majors. As such, the course will impart basic molecular background on societal and cultural issues rooted in chemistry, explained at a level for non-science majors.

HOW FREQUENTLY WILL THE COURSE BE OFFERED?

□ Every semester □ Once a year, fall □ Once a year, spring ☑ Every other year □ Other: Explain:

NEED FOR THE COURSE: Explain the need for the course and its intended impact. How will it strengthen your overall curriculum? Will it be required or fulfill a requirement for degrees/majors/minors offered by your department/program or for degrees in other departments/school/colleges? Which students are most likely to be served by this course? How will it contribute to program learning outcomes for those students? If you see the course as being of “possible” or “likely” interest to students in another departments/program, please consult directly with colleagues in that unit. (You must attach appropriate cognate comments using cognate comment form if this course is intended to serve students in specific other programs. See FURTHER INFORMATION below about cognate comment.)

The course is intended to provide scientific fluency in the basic concepts of chemistry to enable a citizenry to understand issues rooted in scientific principles and make informed decisions based on facts as essential features of an advanced society. College educated populations should understand the science behind global issues on which they will have input in a democratic society, whether they are specialists or not. Topics such as petroleum industry, nuclear and solar energy, drug industry, and synthetic materials will be covered. The goal is to provide general scientific perspective on modern issues of chemistry and technology in
contemporary society. Within the STEM fields, there is increased effort to have researchers consider the broader impact of their work on society, and societal outreach components are a required now in every proposal sent to the NSF. Scientific literacy should be an objective for all in a contemporary society. As scientists, we also have an obligation to educate those not in the STEM fields so they can be critically informed. To address the need for a general science course in chemistry for non-STEM majors that gives them an appreciation of the critical role chemistry plays in all our lives, Chemistry in Culture and Society will be offered to accomplish this goal.

ENROLLMENT: How many undergraduate and/or graduate students do you expect to enroll in the initial offering of this course?

30 – 50 Undergraduates

CROSS-LISTING: Is this course to be cross-listed or taught with another course? If so, specify. Chairs/directors of all cross-listing units must co-sign this proposal on the signature line below.

OVERLAP:

1. Are there courses in the UIS Course Inventory (CC00) with the same number and/or title as this course?
 - [] No.
 - [X] Yes. If yes, any active course(s) with the same number or title as the proposed course will be phased out upon approval of this proposal.

 NOTE: A course number cannot be reused if a different course by that number has been offered in the past five years.

2. Relationship to other courses in your program or others: Is there any significant overlap between this course and others offered by your department/program or by others? (You must attach appropriate cognate comments using cognate comment form if this course might be perceived as overlapping with courses in another department/program. See FURTHER INFORMATION below.)

Currently, there are no chemistry courses offered at Boston University for non-STEM, non-Pre-Medical students. We believe there is a significant unmet need in our Chemistry program for offering a chemistry course that will engage non-STEM students in understanding how foundational molecular concepts are of central importance to current pressing societal issues.

FACILITIES AND EQUIPMENT: What, if any, are the new or special facilities or equipment needs of the course (e.g., laboratory, library, instructional technology, consumables)? Are currently available facilities, equipment, and other resources adequate for the proposed course? (NOTE: Approval of proposed course does not imply commitment to new resources to support the course on the part of CAS.)

No additional facilities or equipment will be required. Eventually this course could evolve a laboratory component, but will initially be offered without one.
STAFFING: How will the staffing of this course, in terms of faculty and, where relevant, teaching fellows, affect staffing support for other courses? For example, are there other courses that will not be taught as often as now? Is the staffing of this course the result of recent or expected expansion of faculty? (NOTE: Approval of proposed course does not imply commitment to new resources to support the course on the part of CAS.)

1 Faculty Member Instructor

0.5 Teaching Fellow (for discussion section and grading)

BUDGET AND COST: What, if any, are the other new budgetary needs or implications related to the start-up or continued offering of this course? If start-up or continuation of the course will entail costs not already discussed, identify them and how you expect to cover them. (NOTE: Approval of proposed course does not imply commitment to new resources to support the course on the part of CAS.)

0.5 Teaching Fellow (for discussion section and grading)

EXTERNAL PROGRAMS: If this course is being offered at an external program/campus, please provide a brief description of that program and attach a CV for the proposed instructor.

FURTHER INFORMATION THAT MUST BE ATTACHED IN ORDER FOR THIS PROPOSAL TO BE CONSIDERED:

- A complete week-by-week SYLLABUS with student learning objectives, readings, and assignments that reflects the specifications of the course described in this proposal; that is, appropriate level, credits, etc. (See guidelines on “Writing a Syllabus” on the Center for Teaching & Learning website.) Be sure that syllabus includes your expectations for academic honesty, with URL for pertinent undergraduate or GRS academic conduct code(s).

- Cognate comment from chairs or directors of relevant departments and/or programs. Use the form here under “Curriculum Review & Modification.” You can consult with Joseph Bizup (CAS) or Jeffrey Hughes (GRS) to determine which departments or programs inside and outside of CAS would be appropriate.

DEPARTMENT CONTACT NAME AND POSITION: Lawrence Ziegler, Chair Chemistry

DEPARTMENT CONTACT EMAIL AND PHONE: LZIEGLER@BU.EDU

DEPARTMENT APPROVAL: ________________________________ 11/1/16

Department Chair Date

______________________________ ________________________________
Other Department Chair(s) (for cross-listed courses) Date
CAS/GRS CURRICULUM COMMITTEE APPROVAL:

☐ Approved Date: ____________________
☐ Tabled Date: ____________________
☐ Not Approved Date: ____________________

Divisional Studies Credit:

☐ Endorsed
☐ HU
☐ MCS
☐ NS
☐ SS

☐ Not endorsed

__
Curriculum Committee Chair Signature and Date

Comments:

PROVISIONAL APPROVAL REQUESTED for Semester/Year _________________

__
Dean of Arts & Sciences Signature and Date

Comments:

CAS FACULTY: Faculty Meeting Date: ____________________ ☐ Approved ☐ Not Approved

__
Curriculum Administrator Signature and Date

Comments:
Cognate Comment Request

TO: Name: David Marchant, Chair
Department: Earth & Environment

FROM: Name: Larry Ziegler
Department: Chemistry
Telephone: 358-4178 E-mail lziegler@bu.edu

Course Number: CH 121
Course or Program Title: Chemistry in Culture and Society

Our Department would like to request cognate comments on this course (or program). A complete proposal is attached for your review. If you need further information, please do not hesitate to contact me.

Kindly return the signed original to me by __11/17/16________ so that I may include your comments when submitting our proposal for review and approval. Please do not send any cognate letters directly to the dean’s office. Thank you.

COMMENTS: ___

As noted in the accompanying documents, there are no chemistry courses offered at Boston University for non-STEM, non-Pre-Medical students. This course will engage non-STEM students in understanding how foundational molecular concepts are of central importance to current pressing societal issues. The Department of Earth & Environment is fully supportive of this course.

__
Please explain fully any objections.

Signature: Date: 11/4/16
Title: Professor and Chair, Earth & Environment
Chemistry in Culture and Society

Prof Scott E Schaus
Life Science and Engineering Building, LSE 1007
seschaus@bu.edu
office hour Wednesday 2 – 3 PM and by appointment
twitter: @prfsrschs

Literature
Chemistry in the World by Dr. Kristin Hendrickson

Chemistry in Culture and Society
The course is intended to provide scientific fluency in the basic concepts of chemistry to enable a
citizenry to understand issues rooted in scientific principles and make informed decisions based on facts
as essential features of an advanced society. College educated populations should understand the
science behind global issues on which they will have input in a democratic society, whether they are
specialists or not. Topics such as petroleum industry, nuclear and solar energy, drug industry, and
synthetic materials will be covered. The goal is to provide general scientific perspective on modern issues
of chemistry and technology in contemporary society.

Course Requirements
Attendance is required. In-class participation is expected.
All exams, written assignments, and quizzes. Problems sets will be assigned every week and a quiz will be
given on the last day of class each week.
Respect and an open mind.

Grading
Problems sets and quizzes 15%
Exams 1, 2, & 3 20% each
Final 25%
The average grade for the course will be scaled to a B- (80% percentile) when final grades are calculated.
Dates of exams: February 15, March 20, April 17.

Website
BU Blackboard Site : http://learn.bu.edu

Academic Conduct
All students at Boston University are expected to maintain high standards of academic honesty and
integrity. It is the responsibility of every student in the College of Arts and Sciences to be aware of the
Academic Conduct Code’s contents and to abide by its provisions. Academic misconduct is conduct by
which a student misrepresents his or her academic accomplishments, or impedes other student’s chances
of being judged fairly for their academic work. Knowingly allowing others to represent your work as their
own is as serious an offense as submitting another’s work as your own. Cases of academic misconduct will
be reported to the Academic Conduct Committee. Consult the College of Arts and Sciences Academic
Conduct Code. All guidelines will be followed therein.
Course Outline

The majority of the material presented in this course is drawn from articles and assigned readings. This literature will be posted on the website ahead of class and you will be expected to read this literature.

Historical perspective of Chemistry
Our understanding of the atom, atomic table, the electron, and the boson – Chapter 1
The chemical bond, what it means to break up – Chapter 2
Alchemy, the bronze age, and modern metal ore production
Metal ions and the scourge of oxygen – Chapter 4
Chemistry building blocks – Chapter 3
The necessity of the oil industry, it’s not just about the gas – Chapter 13.1 – 13.4
Polymers and Plastics

Term Exam 1 – February 15

Sustainable Green Chemistry
Energy – Chapter 6.9 – 6.10
 It is Rocket Science, the chemistry of combustion
 Batteries and Electrochemistry – Chapter 11
 Nuclear Energy, the Cold War Nuclear Arms Race, and Thorium – Chapter 12
 Solar Energy and the importance of Quantum Yield
Atmospheric chemistry and pollution – Chapter 6 & Chapter 10

Term Exam 2 – March 20

Materials
 The many forms of carbon
 Construction Materials and 3D printing
Food – Chapter 8
 Preservatives and the things we put in our food
 Molecular Gastronomy
 From Bacchus to the cocktail culture
Cosmetics and Chemistry of keeping us clean – Chapter 9
Building Blocks of Life – Chapter 3

Term Exam 3 – April 17
Healthcare – Chapter 7
Disease and the drug industry
New materials are revolutionizing the way we heal
Molecular devices and DNA origami
Forensics
Policy and the Ethics of Science, Chemistry, and Culture – Chapter 13

Final exam period

Copyright Restrictions
The syllabus, course descriptions, website, website materials and handouts created by Professor Scott E Schaus, and all class lectures, are copyrighted by Boston University and/or Professor Scott E Schaus. Except with respect to enrolled students as set forth below, the materials and lectures may not be reproduced in any form or otherwise copied, displayed or distributed, nor should works derived from them be reproduced, copied, displayed or distributed without the written permission of Professor Scott E. Schaus. Infringement of the copyright in these materials, including any sale or commercial use of notes, summaries, outlines or other reproductions of lectures, constitutes a violation of the copyright laws and is prohibited. Students enrolled in the course are allowed to share with other enrolled students course materials, notes, and other writings based on the course materials and lectures, but may not do so on a commercial basis or otherwise for payment of any kind. Please note in particular that selling or buying class notes, lecture notes or summaries, or similar materials both violates copyright and interferes with the academic mission of the College, and is therefore prohibited in this class and will be considered a violation of the student code of responsibility that is subject to academic sanctions.
Chemistry in the World

Edited by Kirstin Hendrickson

Included in this preview:
• Copyright Page
• Table of Contents
• Excerpt of Chapter 1

For additional information on adopting this book for your class, please contact us at 800.200.3908 x501 or via e-mail at info@cognella.com
For my students, from whom I have learned more than I could ever teach.
The pictures on the cover of this text are some examples of the chemistry that surrounds us in the real world. At top left, poppies bloom in the Sonoran desert of Arizona in the spring as plants increase their growth rate. Not only does this depend on the chemical process of photosynthesis, it also increases the rate at which the greenhouse gas carbon dioxide is removed from the atmosphere. At top right and bottom left, we see two examples of water in nature—in liquid form as it cascades over Upper Mesa Falls in Idaho, and in solid form as snow in Bryce Canyon in Utah. There’s also water vapor in the atmosphere, where it serves the important role of helping to keep the Earth warm and habitable. Water has many interesting and unique chemical properties, and fresh surface water, as in this waterfall, is rare and valuable. At bottom right, aspen leaves in the San Francisco Peaks near Flagstaff, Arizona, turn vibrant shades of yellow in the fall. As seasons change, changing intensity of light prompts trees to adjust concentrations of light-harvesting chemicals in the leaves. This leads to the yellows, oranges, and reds that decorate the trees as the air turns crisp.

Acknowledgments xiii

To the Student and the Instructor: How to Use this Book 1

Unit 1: All Around Us and Inside Us 3

Chapter 1: Chemistry Is Everywhere 5
 1.1 Classifications of Matter 7
 1.2 The Periodic Table 14
 1.3 Thinking About Chemicals, Chemical Reactions, and Chemical Equations 16
 1.4 Balancing Chemical Equations 18
 1.5 Nomenclature 20
 1.6 The Last Word—Chemical Free? 23

Chapter 2: Chemistry Around Us—The Atmosphere 29
 2.1 Composition of the Atmosphere 30
 2.2 Chemistry of High Altitude 31
 2.3 Atomic and Molecular Mass 32
 2.4 Counting Atoms and Molecules—The Mole 33
 2.5 Molar Mass 35
 2.6 Interconversions: Grams to Moles to Molecules and Atoms 37
 2.7 Stoichiometric Equivalents 38
 2.8 Subatomic Particles 40
 2.9 The Last Word—Land Animals Breathe Air, Aquatic Animals Breathe Water? 45

Chapter 3: Chemistry Inside Us—The Elements of Life 53
 3.1 Carbon-Based Life Forms 53
 3.2 Electron Shells 55
 3.3 Lewis Dot Structures 59
9.7 Stimulant Diet Pills
9.8 Low-Carbohydrate Diet
9.9 Sugar Substitutes
9.10 Sustainability
9.11 The Other Half of the Equation—Caloric Expenditure
9.12 Exercise
9.13 Muscle Types
9.14 The Last Word—Vitamin and Mineral Supplements

Unit 4: Global Chemistry

Chapter 10: Changing the World with Chemistry
10.1 Refrigeration
10.2 UV Light and EMR
10.3 The Ozone Layer
10.4 CFCs and UV Light
10.5 The Montreal Protocol
10.6 Refrigerants—Moving Forward
10.7 The Nitrogen Cycle
10.8 The Haber-Bosch Process
10.9 Risks and Benefits of the Haber-Bosch Process
10.10 The Precautionary Principle Revisited
10.11 The Last Word—Sunlight in the Troposphere

Chapter 11: “Current” Events—Electrochemistry
11.1 Redox
11.2 Galvanic Cells
11.3 Electrolytic Cells
11.4 Photovoltaic Cells
11.5 Plants—Natural Solar Power Generators
11.6 Human Batteries—Respiration
11.7 Anaerobic Metabolism—Fermentation
11.8 The Last Word—Lightning

Chapter 12: From Alchemists to Oppenheimer and Beyond—Nuclear Chemistry
12.1 Rise of Nuclear Chemistry
12.2 Radioactive Decay
12.3 Radioactive Decay Series
12.4 Nuclear Fission
12.5 The Atom Bomb
12.6 Nuclear Fusion
12.7 Nuclear Energy
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.8</td>
<td>Half-Life</td>
<td>353</td>
</tr>
<tr>
<td>12.9</td>
<td>Storing Nuclear Waste</td>
<td>356</td>
</tr>
<tr>
<td>12.10</td>
<td>Nuclear Disasters</td>
<td>358</td>
</tr>
<tr>
<td>12.11</td>
<td>The Future of Nuclear Power</td>
<td>359</td>
</tr>
<tr>
<td>12.12</td>
<td>Health Effects of Irradiation</td>
<td>360</td>
</tr>
<tr>
<td>12.13</td>
<td>Nuclear Medicine</td>
<td>362</td>
</tr>
<tr>
<td>12.14</td>
<td>Carbon Dating</td>
<td>364</td>
</tr>
<tr>
<td>12.15</td>
<td>Irradiation of Food</td>
<td>364</td>
</tr>
<tr>
<td>12.16</td>
<td>The Last Word—Microwaves</td>
<td>365</td>
</tr>
</tbody>
</table>

Chapter 13—Energy, Chemistry, and Society

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>An Important Introductory Note from the Author</td>
<td>373</td>
</tr>
<tr>
<td>13.2</td>
<td>Our Global Energy Dependence and Fossil Fuels</td>
<td>374</td>
</tr>
<tr>
<td>13.3</td>
<td>The Greenhouse Effect</td>
<td>377</td>
</tr>
<tr>
<td>13.4</td>
<td>The Carbon Cycle</td>
<td>381</td>
</tr>
<tr>
<td>13.5</td>
<td>Measuring Atmospheric Carbon</td>
<td>383</td>
</tr>
<tr>
<td>13.6</td>
<td>Evidence of Climate Change</td>
<td>387</td>
</tr>
<tr>
<td>13.7</td>
<td>Climate Modeling</td>
<td>391</td>
</tr>
<tr>
<td>13.8</td>
<td>Causality</td>
<td>393</td>
</tr>
<tr>
<td>13.9</td>
<td>Why Focus on CO₂</td>
<td>395</td>
</tr>
<tr>
<td>13.10</td>
<td>Making Sense of Rhetoric</td>
<td>395</td>
</tr>
<tr>
<td>13.11</td>
<td>The Kyoto Protocol</td>
<td>397</td>
</tr>
<tr>
<td>13.12</td>
<td>Global and National Strategies</td>
<td>398</td>
</tr>
<tr>
<td>13.13</td>
<td>Community and Individual Strategies</td>
<td>401</td>
</tr>
<tr>
<td>13.14</td>
<td>The Last Word—Stomping or Tiptoeing?</td>
<td>402</td>
</tr>
</tbody>
</table>

Glossary

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>409</td>
</tr>
</tbody>
</table>

Credits

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>427</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>435</td>
</tr>
</tbody>
</table>
Authoring this book has been a work in progress for the last ten or more years, though the actual writing took (thankfully!) somewhat less than that. There are many without whom this text would never have transitioned from dream to reality—you know who you are, and I thank you. Mostly, to my husband, Scott, for being the catalyst, and for providing the gorgeous photographs that bring the ideas to life.
This text was written to provide a perspective on socially important topics in the field of chemistry, which as the student will soon ascertain, is a broad field indeed! Of course, even an applications-based approach (as this book is) must by necessity introduce sufficient principle and theory to allow for meaningful discussion. It was a primary goal in writing this text to include only those principles absolutely necessary to understanding observable chemical phenomena and relevant chemical issues. At every step of the way, I strove to make readily apparent the answer to the question, *When am I ever going to use this again?* For this reason, I recommend reading this book more like a literature than a science text—it tells a story. Granted, the story is occasionally punctuated by equations and symbols, but it's a story nevertheless. Rather than trying to internalize the applications in terms of the chemical principles, use the applications to make sense of the principles—the big picture will help you understand the details.

Each chapter introduces a topic or group of related topics in which we see chemistry on a day-to-day basis, in our lives or on the news. Principles are addressed where needed in the course of discussing the topic. Where relevant, practice problems are provided in boxes labeled *Try This.* It’s worth taking a moment to try a problem on your own before moving on—there are many additional practice problems at the end of the chapter. Conceptual questions are occasionally presented in boxes labeled *Concept Check.* It should be fairly easy to answer the question posed in the box after reading a particular section—if not, that’s an indication that you may have missed a main point from the previous paragraphs. Occasionally, *Concept Check* boxes will refer to older concepts that are being brought in to the current discussion, and in such cases, the answers will refer you to the relevant chapter.

Problems at the end of the chapter are divided into two sections. *Questions and Topics for Discussion* are intended to stimulate thought—in many cases, there are no right or wrong answers. These questions are meant to be suitable for essay or paragraph assignments, stimulation of thinking, or in-class discussions. *Problems* are mathematical or factual in nature—in particular, math problems occur in sets of two (grouped together) for ease of studying and assigning work.

The last section in each chapter is called *The Last Word,* and is an offshoot of something I’ve done in my classes that has been very popular with my students. In class, I call it “Five Minutes of Really Cool Chemistry,” and I’ll talk about something nearly relevant and always neat that is based upon the principles we’ve been discussing. *The Last Word* is my adaptation of that into written form—these sections are meant to be interesting vignettes that relate to the concepts addressed in the chapter. They’re not chapter summaries (which do, incidentally, appear separately at the end of each chapter), but are hopefully a few moments’ worth of relaxation and wonder—a few minutes of really cool chemistry.

Enjoy the journey!
Unit 1: All Around Us and Inside Us
The word *chemistry*, especially in the title of a class or book, conjures up images of goggled scientists at their lab benches, surrounded by odd bubbling solutions in beakers and flasks. Depending upon the power of your imagination, this scene might even be punctuated in your mind by the occasional explosion. In any case, as you imagine the white-coated chemist going about his business, mixing and stirring and writing down equations rife with symbols and letters of the Greek alphabet, I practically guarantee the two things you are thinking to yourself are *What in the world does this have to do with real life?* and *When am I ever going to use this information?* The answers to those (very real, very important) questions are EVERYTHING, and EVERY DAY!

In order to really see the applicability of chemistry to real life, we have to stop imagining it as something that takes place in a laboratory and start looking for it in the real world. Chemists work in laboratories because they are attempting to study what goes on everywhere ELSE, not because the lab is the only place chemistry happens! In this book, we'll look for chemistry everywhere EXCEPT the lab. We'll learn that there's chemistry all around us—in leaves changing colors in the fall, in the atmosphere (which keeps our planet warm and habitable the way a greenhouse protects roses from winter frost), in nuclear power plants, and in the food we eat every day.

Image 1.1. (From top to bottom) 1) Leaves change color in the fall as the light-absorbing chemical chlorophyll (which gives them their green color) is no longer produced, leaving behind other light-absorbing chemicals such as carotenoids (yellow) and anthocyanins (red). 2) Just as a greenhouse made of glass traps heat to keep plants warm during cooler months, so the gases of the atmosphere trap heat from the Sun, keeping the planet warm and habitable. 3) Nuclear reactions have the potential to release massive amounts of energy that can be used to generate power. 4) The food we eat is made up of chemicals that provide us with energy and raw material for building muscle and other tissue.
This isn’t just a chemistry textbook. It also addresses ways in which chemistry, chemicals, and chemists affect society. However, this is more complex than it sounds. It’s very important to think about the relationship between chemistry—any science, really—and society as a reciprocal one. To be sure, chemistry affects society: pollution, for instance, has a clear and unequivocal negative impact upon those who have to breathe it. However, society also affects chemistry, in that our actions produce and release chemicals into the environment, and we formulate legislation that affects what can and can’t be done chemically. In this text we will be exploring the nature of this relationship and some of the ways in which chemistry and society affect each other.
It’s important to note that society is a multifaceted concept. Individuals, local communities, and the entire global population are different levels of society. Any level can affect any other (and be affected by any other) through chemistry. For instance, making appropriate choices regarding nutrition and exercise positively impacts personal health, but also reduces the need for medical care, which decreases insurance rates for all policy holders. A community that installs a light-rail system benefits from a reduction in local pollution, but there are also global benefits through reduced carbon emissions.

In order to address the reciprocal relationship between chemistry and each level of society, this text is divided into four units. In the first, we’ll be discussing some introductory chemical principles in the context of the chemistry we encounter every day. The second unit will address chemical concerns within local communities—things like air pollution and water safety. In Unit 3, we’ll shift our focus to the chemistry that takes place within our own bodies. Finally, in Unit 4, we’ll expand our thinking outward to encompass issues of global concern. At every step along the way, however, we will be focusing not simply on chemical concepts, but on how we affect the chemistry and how the chemistry affects us.

1.1 CLASSIFICATIONS OF MATTER

Stated very simply, chemistry is the study of matter. Matter is defined as anything that occupies space and has mass, so it is what makes up the physical universe. Everything we can touch is made of matter, but because there are several different types of matter, we need to define some general categories.

Let’s start with mixtures, because they’re actually the simplest kind of matter to understand. Mixtures are physical combinations of two or more pure substances in variable proportions. There are two key components to this definition. First, that a mixture is a physical combination means that each substance within the mixture retains its own chemical identity and properties, but is interspersed with one or more other substances in space. For instance, making a cake involves mixing sugar, baking soda, flour, spices, eggs, and so forth. Sugar is a chemical with distinct properties (it tastes sweet, it dissolves in water, and so on). Baking soda is another chemical with a separate set of distinct properties. As an ingredient like sugar is added to the batter, it mixes in and spreads out through the batter until all parts of the mixture are equally sweet. The sugar, though dispersed through the batter, is still sugar—as a chemical, it remains unchanged. That’s the nature of a mixture.

Saltwater is another example of a mixture. Salt (a common name for the chemical sodium chloride, or NaCl) has distinct properties. Water (a common name for the chemical H₂O) has a different set of properties. They can be stirred together to make saltwater, but the salt is still NaCl, and the water is still H₂O. In other words, physically mixing salt and water means that bits of NaCl are surrounded by bits of H₂O and vice versa, but the individual
Chemicals retain their identities and properties. If we wanted to, we could “un-mix” salt water by boiling it in a pan on the stove, in which case the water would depart as steam (which is still H₂O), and the NaCl would be left behind as a crust on the bottom of the pan. At no point in the mixing or separating process does either chemical change identities or properties.

The second key part of the definition of a mixture is that the substances are combined in variable proportions. This means that it doesn’t matter how much salt we mix with a given amount of water—whether we use lots of salt or only a bit, we’ll still have a mixture of saltwater.

Chemicals that can be physically combined to produce mixtures are called pure substances, and can be divided into two sub-categories: elements and compounds. Elements are the simplest types of matter and are found listed on the periodic table (Image 1.6). They cannot be broken into simpler substances by any chemical means. When you look at the periodic table, you’ll notice that it’s made up of many elements, each with a characteristic atomic symbol, which is a letter or combination of letters that represents the element. C, for instance, is the atomic symbol for the element carbon. Elements have different physical and chemical properties. Some, like neon (Ne), are gases at room temperature, while others are liquids or solids. Many, like gold (Au), uranium (U), and mercury (Hg) are metals, while others, like sulfur (S), are not. We’ll look more closely at properties of specific elements and at the organization of the periodic table later in this chapter.

Image 1.5. A beaker full of a saltwater mixture, if put on a burner until all the water evaporates, is left full of salt crust. The evaporating water vapor could be collected and cooled, in which case it would condense back into ordinary liquid water. The salt crust, if crushed, would be indistinguishable from table salt straight from the shaker.

Image 1.6. The periodic table of the elements.
Compounds are chemical combinations of two or more elements in fixed, characteristic proportions. Notice the differences between the definition of a compound and the definition of a mixture. First, where mixtures are physical combinations in which each pure substance retains its identity and properties, compounds are chemical combinations, meaning that a chemical bond forms between particles of two or more different elements. A chemical bond is a little like glue—it sticks two particles together. The compound has its own identity and properties that are different from the identities and properties of the elements that make it up. For instance, carbon dioxide (CO\(_2\)) is a compound made from a chemical combination of the elements carbon and oxygen, but CO\(_2\) is nothing like either carbon OR oxygen—it is its own separate, distinct substance. Another major difference between compounds and mixtures is that compounds must consist of fixed proportions of the constituent elements. While we can use any quantity of salt and any quantity of water to make salt water, CO\(_2\) is only CO\(_2\) if it’s made up of one particle of carbon and two particles of oxygen. The subscripts in the compound’s formula tell us how many particles of each element are chemically combined to form the compound, where the lack of a subscript is always taken to mean one. If one particle of carbon and one particle of oxygen combined chemically, the resulting compound would NOT be CO\(_2\). Instead, it would be CO—carbon monoxide—which has very different properties than CO\(_2\).
CO₂ can be classified further—in addition to being a pure substance, it’s also a **molecule**. A molecule is a pure substance made from the chemical combination of two or more **atoms**. An atom is defined as the smallest particle of an element that maintains the identity of that element. In other words, if I had a chunk of the element gold (Au on the periodic table), and I cut it in half, I’d have a smaller chunk of gold. If I cut that smaller chunk in half, and then cut the half in half, and so forth, eventually I’d get to a very, very tiny particle of gold that couldn’t be cut in half (or at least, if it were, it wouldn’t be gold anymore*). This tiny, indivisible particle of gold is an atom (the word *atom* comes from the Greek word *atomos*, meaning indivisible). All matter is made up of atoms, some of them uncombined and some of them in chemical combination with other atoms. A molecule of CO₂ is made up of one atom of carbon and two atoms of oxygen.

It’s important to note that the words *compound* and *molecule* are not synonymous—it’s absolutely possible to have a molecule that is not a compound, as long as it’s made of two or more atoms **OF THE SAME ELEMENT**. For example, most respiring organisms require oxygen, which is found in our atmosphere as the molecule O₂. Of course, atoms of the element oxygen can also be found incorporated into compounds (like CO₂). Uncombined atoms of oxygen aren’t found in nature, for reasons that will be discussed in later chapters. O₂ is made of two atoms of oxygen, so even though it’s a molecule, O₂ is an element rather than a compound. In nature, some elements are

CONCEPT CHECK:

What’s the difference between a mixture and a compound?

variable proportions,**
mixture, physically combined in variable proportions, a compound consists of two or more elements, chemically combined in variable proportions. A mixture: a mixture consists of two or more pure substances, physically combined.

NOTE

This statement seems paradoxical at first—how can we say that elements are the simplest type of matter, and then say that if we were to divide an atom of an element (gold, for instance), we’d get something that was NOT gold? We’ll discuss this more in Chapter 2, but as it turns out, we can’t really “cut” an atom and get pieces that hang around at all. If an atom were (theoretically) divided, the resulting pieces would be what are called sub-atomic particles, and would not be stable on their own. So, stated simply, atoms are the smallest particles of matter that are independently persistent.

Image 1.9. Some commonly encountered compounds include (clockwise from top left): Water (H₂O), sucrose (table sugar, C₁₂H₂₂O₁₁); calcite (the major ingredient in marble, CaCO₃); and ethanol (the alcohol in beer, wine, and liquor, C₂H₅O). (Crater Lake picture © Scott Lefler, 2006)
found as uncombined atoms: examples include helium (He) and neon (Ne). Other elements occur most frequently as diatomic molecules (molecules consisting of only two atoms) such as O₂ and N₂. Still others occur naturally as polyatomic molecules, or molecules composed of many atoms. Sulfur, for instance, is most commonly found in nature as S₈. Atoms, molecules, elements, compounds, and mixtures are visually summarized in Image 1.11.

CONCEPT CHECK:

What’s the difference between a molecule and a compound?

- **Compound** consists of two or more elements, chemically combined.
- **Molecule** consists of two or more atoms, chemically combined.

Answer: A molecule consists of two or more atoms, chemically combined. A compound consists of two or more elements, chemically combined.

TRY THIS:

Which of the following are pure substances, and which are mixtures? Of the pure substances, which are elements and which are compounds? Which are atoms and which are molecules?

Fe, FeCl₂, sugar water, silver (Ag on the periodic table), maple syrup, Cl₂.

Answers: Fe is a pure substance, an element, and an atom. FeCl₂ is a pure substance, a compound, and a molecule. Sugar water is a mixture. Ag is a pure substance, an element, and an atom. Maple syrup is a mixture. Cl₂ is a pure substance, an element, and a molecule.

Image 1.10. The polyatomic molecule S₈ is a crystalline, yellow solid that smells faintly of rotten eggs.

Image 1.11. An atom of oxygen (top left) is a pure substance, an element, and, of course, an atom. As a diatom, oxygen (O₂, top right) is a pure substance, an element, and a molecule. A molecule of carbon dioxide (CO₂, bottom right) is a pure substance, a compound, and a molecule. A mixture of ethanol (C₂H₅O) and water contains molecules of both compounds, physically stirred together, but chemically unchanged.
One question students often have regarding elements is how to know whether they are found in nature as single atoms, diatomic molecules, or polyatomic molecules. The answer is that frankly, it’s a bit complicated! There are a few rules of thumb, though, that are helpful to know. The elements that naturally form diatomic molecules are H, N, O, F, Cl, Br, and I, and it’s quite useful to know this about them, because several of these are elements we’ll be talking about frequently in this text.

The elements in the far-right column of the periodic table tend to be found as free atoms, and we’ll learn why in Chapter 3. One other element whose form in nature is worth mentioning is carbon. Most of the carbon atoms we’ll have to talk about frequently in this text.

If graphite and diamond are both made of carbon, why is diamond so much more valuable than graphite? The quick answer is that it’s much harder and more durable because of the arrangement of atoms. It’s also considered aesthetically pleasing. These two factors combine to make it a good candidate for jewelry (among other things), and because it’s rare, it comes at a high price. From a chemical perspective, diamond is actually LESS STABLE than graphite, meaning that very slowly, diamond turns into graphite! Don’t worry—it doesn’t happen in a human lifetime (or even multiple human lifetimes), so your diamonds will still be around for your descendants. Still, it’s interesting to think about!
arranged in a crystal lattice in which all atoms are bonded to all nearby atoms. This structure is incredibly rigid, giving diamond its unique hardness.

One of the themes that we will see repeatedly in this class is the pervasiveness of chemistry. Even when we don’t think we’re talking about chemistry, much of the time we are. For instance, let’s ponder jewelry for a moment. This is a topic that seems very far removed from anything we might traditionally associate with chemistry. However, because it occupies space and has mass, jewelry must be made of matter, and chemistry is the study of matter. It becomes a little more complicated when we try to ask ourselves of what KIND of matter jewelry is made. Take, for example, a gold ring. If you look inside a gold ring, you’ll see a stamp that says 14K, 18K, or some other number followed by a “K” to indicate the material of the ring.*

Pure gold is an element (Au on the periodic table), and while aesthetically pleasing and rare (which combine to make it valuable), it’s far too soft to be used in jewelry designed for daily wear. As such, elemental gold is mixed with other elements like nickel (Ni) and palladium (Pd). A “gold” ring, therefore, is actually made of a mixture rather than a pure substance.

*NOTE
If you’re curious, the “K” is for karat, which is just a way of indicating what fraction of the metal mixture is elemental gold. By definition, 24K is elemental gold, or 24/24 parts of the metal are gold. 18K gold has 18/24 parts elemental gold, and 6/24 parts other metals. Metallurgists blend in various metals to affect the color and properties of the resulting alloy (mixture) in addition to strengthening the gold.
1.2 THE PERIODIC TABLE

The periodic table of the elements contains a lot of information—we won’t go over it all just yet. However, one interesting organizational feature of the table is that it divides elements into three distinct categories based upon their position on the table.

Metals, which are shiny, ductile (can be drawn into wires), conductive (can conduct electricity), and malleable (can be hammered into sheets), are located in the two columns on the left-hand side of the table and in the central, recessed portion (these recessed elements are called transition metals). Also, the two rows of elements that appear below the table (as though they were kicked out) are metals. The rows classically displayed under the periodic table actually fit into the center of the table as shown in Image 1.16. There are a few reasons commonly given for the fact that these elements, sometimes called the rare earth metals, are conventionally placed under the periodic table. One is that they were not yet discovered when the classical periodic table was developed, so room was not made for them. Another reason is that they make the table absurdly long and difficult to display on wall posters and in text figures!

Nonmetals, which are either gases or solids* at room temperature, have physical properties opposite those of metals. They are dull rather than shiny, brittle rather than ductile or malleable, and non-conductive. Nonmetals are located on the right-hand side of the table. Along a diagonal line between the metals and nonmetals are the metalloids, whose physical properties are
halfway between those of metals and nonmetals, and which are often referred to as semiconductors. They are useful in making photovoltaic cells for solar power panels (as we'll see in Chapter 11), as well as in computer applications. The element hydrogen (H) shows up in two places in many periodic tables. This is because hydrogen has some properties in common with metals, and some properties in common with nonmetals. Its technical classification, however, is as a nonmetal.

TRY THIS:

Classify each element as a metal, metalloid, or nonmetal.

Fe, B, I, Kr, Ca, U, Si.

Answers: The metals are Fe (iron), Ca (calcium), and U (uranium). The metalloids are B (boron) and Si (silicon). The nonmetals are I (iodine) and Kr (krypton).

Image 1.17. Copper (top left) has all the properties of metal: it's shiny, ductile, conductive, and malleable. Sodium (top right) is a metal (shown here in liquid paraffin to keep it from reacting with air), but we normally don't think of it as such, because we find it combined with other elements in compounds like table salt. Silicon (bottom right) is a metalloid (semiconductor) commonly used in computer chips. The nonmetals include gases such as chlorine (a toxic yellowish gas, bottom center), and dull, brittle, non-conductive solids such as iodine (bottom left).
As you look at the different elements of the periodic table, you’ll notice a number of names among the metals that belong to substances you may never have thought of as metallic, like sodium (Na) and calcium (Ca). Both sodium and calcium are, in their elemental form, shiny metals. They have all the properties of common metals like aluminum and silver, but interestingly, they are soft. Sodium can actually be cut with a butter knife! The reason we don’t find these elements in their metallic form in nature is that they are very reactive and readily combine with other elements to form compounds. For instance, you probably encounter the element sodium most commonly as part of the compound sodium chloride (NaCl), which is table salt.

1.3 THINKING ABOUT CHEMICALS, CHEMICAL REACTIONS, AND CHEMICAL EQUATIONS

It’s fundamentally a bit difficult to be a student of chemistry, because unlike some of the other sciences, chemistry doesn’t really afford us the opportunity to see and manipulate the object of our examination. In biology, we can touch the fetal pig we’re dissecting, or turn over the leaf we’re sketching. Even bacteria, which are invisible to the naked eye, can be viewed with the help of a microscope. Chemistry is a little different. Even though we can go to the lab, mix a few chemicals and note a color change or bubbling or some other visible evidence of a reaction, we have to take our instructor or lab manual at face value when they tell us what the chemicals are and what reaction is occurring. We can’t see the molecules, and we can’t watch bonds break and reform. As a result, the study of chemistry involves employing a variety of visualization aids. Let’s take the example of water. We can think about water on a macroscopic scale, in terms of what we actually see—it’s a clear liquid. We can also think about water on a microscopic scale, in terms of how the atoms are arranged—an atom of oxygen is bonded to two separate atoms of hydrogen.

Finally, we can symbolically represent water in a concise way that provides information about its chemical composition—water has the formula H₂O. Depending upon what it is we’re trying to communicate or what we’re trying to imagine, we might pick any one or a combination of these strategies to visualize the compound water. For instance, if I wanted to communicate to you that the chemical methane (CH₄) burns in oxygen (O₂), making carbon dioxide (CO₂) and water (H₂O), it would be sufficient to symbolically represent chemicals with their formulas—no further information is needed. In Chapter 13, however, we’ll need to think about the shape of a water molecule in order to understand the greenhouse effect. Because of that, we’ll spend a lot of time thinking about its microscopic representation, which helps us to imagine the physical arrangement of the atoms in the molecule and its shape in space.
Let's take a closer look at the chemical reaction mentioned in the previous paragraph. Methane (CH\(_4\)) is a member of the class of chemicals collectively called **hydrocarbons**, because they're composed of carbon and hydrogen. We'll be talking about hydrocarbons frequently in this textbook, in part because they all burn in oxygen (in chemistry, burning is called **combustion**) to produce carbon dioxide and water. Have you ever barbecued on a gas grill? If so, you've combusted the hydrocarbon propane (C\(_3\)H\(_8\)). If you're a camper, you've probably used a camp stove that runs on the hydrocarbon butane (C\(_4\)H\(_{10}\)). Have you fueled your car recently? That was octane (C\(_8\)H\(_{18}\)) you put in the tank, unless you drive an alternative fuel vehicle that runs on ethanol (C\(_2\)H\(_5\)OH).* When we describe the behavior of methane in oxygen, we are describing a **chemical reaction**, which is a rearrangement of atoms and molecules to form new molecules. The original chemical species are called the **reactants**, and the resulting chemical species are called the **products**. In the example above, methane and oxygen are reactants, while carbon dioxide and water are products.

In addition to describing a reaction in words, we can represent it symbolically. Let's take the example of a very simple chemical reaction with only two reactants and one product. Sulfur (S) combines with oxygen (O\(_2\)) to produce sulfur dioxide (SO\(_2\)). Represented microscopically, the reaction looks like this:

\[\text{S} + \text{O}_2 \rightarrow \text{SO}_2 \]

While this is a convenient way to visualize the rearrangement of atoms and molecules taking place in the reaction, it quickly becomes prohibitive to draw microscopic representations of reactants and products, especially in more complicated reactions. **Chemical equations** are symbolic representations of chemical reactions. The chemical equation for the reaction shown above would look like this:

\[\text{S} + \text{O}_2 \rightarrow \text{SO}_2 \]

The arrow indicates that the reactants sulfur and oxygen* (S and O\(_2\)) are rearranging to form the product sulfur dioxide (SO\(_2\)). Aloud, this would read: *sulfur and oxygen react to form sulfur dioxide.*

You may be asking yourself right about now: *Why would I want to know how to write out a chemical equation, since I'm not a chemist?* That's a valid question!

Try This:

In the reaction of carbon and oxygen to form carbon dioxide, what are the reactants and the products?

Answer: The reactants are carbon and oxygen, and the product is carbon dioxide.

*NOTE

Compounds like ethanol are called **hydrocarbon derivatives**—these compounds are mostly carbon and hydrogen, but contain small amounts of other elements, such as N, O, or S. Many of them, like ethanol, also combust in oxygen.

*NOTE

Why do we call O\(_2\) oxygen when an atom of O is also called oxygen? This is a slightly confusing issue, but it's worth addressing. Even though an atom of O is called oxygen, atomic oxygen is rarely found on its own in nature—it's almost always combined into molecules. Elemental oxygen in nature is found as the molecule O\(_2\). It's so common, in fact, that rather than saying **molecular oxygen** or **diatomic oxygen**, we simply call it oxygen. Generally, we can figure out what is meant by the word oxygen from context. If I say CO\(_2\) consists of one carbon and two oxygens, you pretty well know I mean atoms of oxygen. If I say the atmosphere contains 21 percent oxygen, you should know that elemental oxygen found in nature is always O\(_2\). If the context leaves doubt as to what is meant, we generally reserve oxygen for O\(_2\) and say **atomic oxygen or an atom of oxygen** for O.
The answer is that in order to talk meaningfully about chemistry in everyday life, we’ll need to speak a little bit of the language of chemistry, which is written in terms of reactants, products, and reactions.

1.4 BALANCING CHEMICAL EQUATIONS

Some chemical reactions end up causing us a bit of trouble when we try to write them out as chemical equations. Take, for instance, the true statement that elemental hydrogen (found in nature as a diatomic molecule, remember?) burns in oxygen to form water. When we write out an equation, we get something that looks like this:

\[H_2 + O_2 \rightarrow H_2O \]

Looking closely, it seems that we have a problem. There are two atoms of hydrogen (the subscript tells us that one molecule of hydrogen consists of two atoms of hydrogen chemically bonded together) and two atoms of oxygen on the reactant side of the equation. However, there are two atoms of hydrogen and only ONE atom of oxygen on the products side. A microscopic representation of the equation makes this very clear:

Where did the second atom of oxygen go? The answer is nowhere—atoms can’t disappear (nor can they appear!)—that’s a fundamental law of nature. The above is therefore not an accurate representation of the chemistry, because it’s not a balanced equation. Balanced equations obey the Law of Conservation of Matter, which means that atoms cannot appear, disappear, or change into atoms of other elements through any chemical reaction. In order for our equation to be chemically correct, we must ensure that there is the same number of each type of atom on each side of the equation. In order to do this, we can specify that different AMOUNTS of each reactant or product are involved in the reaction, but under no circumstances can we change the SUBSCRIPTS associated with any element in any molecule.* To specify that there is more than one of any given chemical involved in a reaction, we use a coefficient in front of the species (the lack of a coefficient in front of a species is always taken to mean one). In this case, we need two water molecules to balance the oxygen atoms, and two hydrogen molecules to account for the hydrogen needed to form the second water molecule. Our equation, correctly balanced, becomes:

\[2H_2 + O_2 \rightarrow 2H_2O \]

Doing a quick atomic head count, this gives us four hydrogen atoms on each side of the equation, and two oxygen atoms on each side:

*NOTE

Tempting though it might be to balance the oxygen atoms by changing the product to \(H_2O_2 \), the chemical truth is that hydrogen and oxygen combine to form water, which is \(H_2O \). \(H_2O_2 \) (while appearing to balance the equation nicely) is NOT water. It’s hydrogen peroxide, which is a very different chemical indeed!
Even though we started with three molecules and ended up with two, we’ve conserved the numbers and identities of the atoms. In chemical reactions, reactants and products can contain different numbers of molecules, but they must contain exactly the same number and type of atoms, which is why we count atoms rather than molecules when balancing equations.

Concept Check:

Why did we have to change the number of hydrogen molecules and water molecules in the equation, but not the number of oxygen molecules?

Answer: By changing the number of water molecules (to get equal numbers of hydrogen atoms on each side of the equation), we ended up with equal numbers of oxygen atoms on each side.

Some equations are a bit more difficult to balance, because they involve more species. Let’s return, for instance, to the reaction between methane and oxygen that produces carbon dioxide and water:

\[\text{CH}_4 + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \]

A cursory glance at this equation reveals that it’s not balanced. Unlike the hydrogen and oxygen reaction, however, this one is difficult to balance simply by looking at it. A good technique for balancing reactions like this follows a series of steps:

1) Identify an element that appears in ONE compound (do not pick elements that appear alone—save these for last!) on either side of the equation. Balance that element by adjusting the coefficients for molecules containing the element.

Oxygen appears in our reaction as a free element (O\text{2}), so we’ll save it for last. Carbon and hydrogen are both good Step 1 candidates, as they appear in only ONE compound on either side. We can therefore start with either carbon or hydrogen.

\[\text{CH}_4 + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \]
20 Chemistry in the World

Carbon is already in balance; there is one atom of carbon on each side of the equation.

2) Repeat Step 1 for remaining elements OTHER than free elements.

Hydrogen needs to be balanced; we can accomplish this by adding the coefficient 2 in front of the product H_2O.

$$CH_4 + O_2 \rightarrow CO_2 + 2 H_2O$$

There are now four atoms of hydrogen on each side of the equation.

3) Balance any remaining elements.

Oxygen can now be balanced. There are four total oxygen atoms on the right—two from CO_2, and one from each of the two waters—so we need four total oxygen atoms on the left. We therefore add the coefficient 2 in front of the reactant O_2.

$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$$

This is a balanced equation.

Try This:

Balance each of the following equations:

- $__S_8 + __O_2 \rightarrow __SO_3$
- $__N_2 + __O_2 \rightarrow __N_2O$
- $__C_{10}H_{16} + __Cl_2 \rightarrow __C + __HCl$

Answers:

- $S_8 + 12 O_2 \rightarrow 8 SO_3$
- $2 N_2 + O_2 \rightarrow 2 N_2O$
- $C_{10}H_{16} + 8 Cl_2 \rightarrow 10 C + 16 HCl$

1.5 Nomenclature

Shakespeare said in *Romeo and Juliet* that a rose by any other name would smell as sweet, but as it turns out, naming is critically important in chemistry! You’ve seen a few chemical formulas coupled with names so far in this chapter, so you may be getting familiar with the way the names tend to sound. For instance, it was mentioned earlier that a compound consisting of sodium (Na) and chlorine (Cl) is called *sodium chloride*, and I’ll tell you right now that a compound of rubidium (Rb) and fluorine (F) is
called rubidium fluoride—there’s a pattern there. Just to throw a wrench in the works, however, a compound of carbon and oxygen is NEVER called carbon oxide. WHY? The short answer is that there are several ways in which carbon and oxygen can combine,* and using the (incorrect) name carbon oxide doesn’t help us to distinguish them from one another. Clearly, we need to outline some rules for how to name compounds. Knowing a little bit of nomenclature (which means a system for naming) helps us to understand one another when we are discussing chemistry. The easiest compounds to name are binary compounds, which are made up of two (and only two) different elements. There are lots of compounds made of more than two elements, but their nomenclature is much more complex. Of course, anything made up of only one element is not a compound at all. Binary compounds may consist of a metal and a nonmetal, or a nonmetal and a nonmetal; there are no compounds of metals with metals.

Binary Compounds—Metal and Nonmetal

To name a binary compound made of a metal and a nonmetal, we use the name of the metal followed by the name of the nonmetal, adding the suffix -ide to the nonmetal. You may need to drop some letters to do this phonetically—sulfur becomes sulfide, and oxygen becomes oxide.

Example: A compound of the metal barium (Ba) and the nonmetal oxygen (O) is called barium oxide.

Example: The compound LiF is called lithium fluoride.

Note that chemical formulas for binary compounds of metals and nonmetals are written in the same order in which the name is given—metal first.

When there are subscripts in the chemical formula of a compound, we ignore them in naming the compound.

Example: The compound AlCl₃ is called aluminum chloride.

The reason we don’t reference the relative number of atoms of each element when we name the compound is that metals can only combine with a given nonmetal in ONE possible way. In other words, when lithium and fluorine combine, the ONLY possible combination is LiF. When aluminum and chlorine combine, the ONLY possible combination is AlCl₃. How

Try This:

Name each of the following: K₂O, MgS, AlF₃.

Answers: Potassium oxide, magnesium sulfide, aluminum fluoride.