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ABSTRACT

Since their introduction, modern computer systems have been increasing in complex-

ity. System designers have been dealing with ever larger designs by moving to higher

abstraction level system descriptions. The existing register transfer level of abstrac-

tion has become unable to handle modern designs, requiring a move to high level

modeling. The most popular of the current approaches for high level design is using

SystemC, a set of libraries built in C++, to model hardware using software concepts.

However, software based approaches suffer from a major drawback - the lack of a

formal definition for both communication and computation. Basic hardware primi-

tives such as concurrency and multiparty communication cannot be easily expressed

in software and the translation of these models into hardware equivalents is difficult.

As a result, most designers choose to represent systems as a high level SystemC model

for simulation, and a set of register transfer level designs for implementation. This

gap presents challenges in the design and verification of the system.

This work proposes a novel high level modeling methodology, called Lyra, which

v



uses the well studied concepts of finite state machines for computation and of ren-

dezvous for communication. A rendezvous is a bidirectional, atomic, synchronous

communication construct that supports a wide variety of communication patterns

such as multiparty and variable party communication. The presence of a novel mech-

anism to handle nondeterminism from the use of rendezvous allows Lyra to model

designs that existing rendezvous based approaches cannot. Finite state machine based

modeling makes Lyra amenable to hardware implementation and easily understand-

able by hardware engineers. The formal foundation of Lyra and the ability to im-

plement models as hardware are advantages compared to other high level modeling

approaches.

This thesis presents Lyra and the novel rendezvous nondeterminism resolution

mechanism, called the communication scheduler. It develops a graph based method to

analyze and compare different rendezvous based approaches. This work demonstrates

the implementation of Lyra into a simulator and a synthesis tool, creating a practical

design flow. This work examines some system models that demonstrate the benefits

of using Lyra.
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Chapter 1

Introduction

Any digital hardware design can be partitioned into two components : computation

and communication. Computation refers to the portion of the hardware design dedi-

cated to the transformation of input data to output. The communication component

refers to the transfer and synchronization of data between the different computation

components. With the increase in complexity of modern hardware systems, there

has been a corresponding increase in the complexity of their descriptions. This rising

complexity has been contained by simultaneously increasing the level of abstraction of

the basic units. By dealing with more abstract representations, larger designs can be

modeled and created. While the level of abstraction of computation has been rising

over time, the same has not been the case for communication. As a result,in the de-

sign of modern digital hardware systems, communication abstraction is increasingly

important.

This chapter contains a brief overview of the general concepts in modern digital

hardware design, followed by a description of design automation tools and an overview

of hardware synthesis. We demonstrate the increasing importance of communication

abstraction in behavioral models of digital hardware and briefly describe the solution

proposed in this dissertation called Lyra.
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1.1 Introduction to Electronic Design Automation (EDA)

Digital electronic circuits, based on the switching activity of transistors are capa-

ble of performing complex calculations. When the first integrated circuit (IC),

demonstrated in 1958, it could accommodate only a few transistors on it, and

could be entirely designed manually. The complexity of modern digital electron-

ics has far exceeded the scale at which manual design of transistors is possible. In

2011, the 32nm Intel i7 processor, for example, contains over 1.17 billion transis-

tors [Kurd et al., 2010]. In order to handle the design and implementation of such

large digital hardware designs, automated tools were developed that comprise the

Electronic Design Automation (EDA) field.

The representations of a digital system can be divided into 3 main domains :

the physical, the structural and the behavioral [Gajski et al., 1992] . Within each

domain, we have corresponding levels of abstraction forming a hierarchy from simpler

to more complex, with each succeeding level using the previous one as its basic element

(Figure 1·1). The most basic digital hardware design element, at the lowest level

of abstraction, is the transistor [Gajski and Ramachandran, 1994]. In the physical

domain, the transistor is represented simply by a transistor layout. A layout is actual

physical shape of the transistor as created in silicon. In the structural domain, the

representation is as a symbol. In the behavioral domain, the representation of the

transistor is the “on-off” electrical characteristics of the transistor. A transistor can

be equivalently expressed in these 3 domains, with the choice of the domain being

the use of the design. For a fabrication facility, which creates physical chips, the

most relevant representation is the layout. When identifying connections in a digital

system, the most useful representation is the structural. When modeling a system,

engineers represent the transistor in its behavioral form.

Moving to the next level of abstraction, we have the gate level model, sometimes
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Figure 1·1: The three domains of design at different abstraction lev-
els. Electronic design automation tools for digital hardware accept a
description in the behavioral domain and finally transform them into
the physical domain. Synthesis is transformation from the behavioral
to the structural domain. Refinement is the transformation within a
domain from a higher level of abstraction to a lower one. Optimization
is the transformation within a domain at the same level of abstraction,
but producing a description that is improved for some target criterion.
This is based on the Gajski Kuhn Y chart [Gajski et al., 1992]
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called the Gate Transfer Level(GTL). This corresponds to layout cells in the physical

domain, to gate schematics in the structural domain and to the boolean expression

in the behavioral domain. In each domain, this level can be thought of as replacing a

collection of transistor level representations. Thus, a layout cell contains the layouts

for multiple transistors. The gate schematic is a representation of multiple transistor

schematics. The boolean expression represnts the behavior of multiple transistors.

For higher levels of abstraction, the tight correspondence between the various

domains weakens. Higher abstraction levels do not always require the introduction

of new elements in the physical and structural domains. The descriptions of gates

usually occurs as a netlist, a structural list of gates and their connection.

The next level of abstraction, the register transfer level (RTL) can best be de-

scribed as a collection of gates that feed registers. The correspondence in the physical

and structural domains is to collection of cells and a collection of combinational gates

and clocked state holding elements respectively. In the behavioral domain, the cor-

respondence is to a new style of design where data is processed sequentially in time.

This new design style raises the level of abstraction by breaking apart the design

into smaller elements that can be designed in parallel and perform computation in a

pipelined fashion. Each piece of the design is combinational, but performs actions on

data obtained from and sent to registers. In effect, the RTL system can be described

in the behavioral domain using a state chart or as a set of register transfer equations.

Hardware Description Languages (HDLs) such as Verilog [IEEE, 2001] or VHDL

[IEEE, 2000] are used to define the behavioral input. These languages differ from soft-

ware programming languages in their assumptions about concurrency, communication

and data type handling. Both HDLs and software programming languages support

basic concepts such as modularity. Modularity refers to the ability to wrap elements

representing computation and storage into block referred to as a module. This allows
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for reuse of a piece of a design and hierarchical design, by allowing one module to

contain instances of other modules, allowing for larger designs. On the other hand,

HDLs and software programming languages differ in some basic ways. In software

programming languages, which assume sequential execution, concurrency must be

defined explicitly. HDLs, on the other hand, have an implicit notion of concurrency

with each module independent of the other. The difference in handling concurrency

affects the basic communication constructs supported by these approaches. Soft-

ware programming languages generally use function calls as the basic mechanism of

communication. In contrast, HDLs generally use wires as the basic communication

primitive. The loose semantic definitions of function calls, and their use of features

like recursion, variable length arguments prevent them from being easily converted

into a hardware equivalent. Finally, the basic datatypes in HDLs are very different

from those in software programming. While some types are common, software pro-

gramming data types often depend on the architecture of the underlying processor

as bit widths are not often defined. HDLs, on the other hand, fix the size of data

types rigidly to ensure that they are always easily relateable to hardware. These

distinctions are further elaborated in Chapter 2.

At present, the level of abstraction that is being used is the system level

[Sangiovanni-Vincentelli, 2003] [Densmore et al., 2006]. Elements at this level corre-

spond to cores that frequently are actually presented as a collection of RTL elements

in the structural domain. These high level models are usually referred to as Intel-

lectual Property cores (IP cores) [Gajski et al., 2000a] or as soft cores. This reflects

the fact that that the tasks of modern system designers has become integrating dif-

ferent functional blocks from multiple sources. In the behavioral domain, this level

of abstraction corresponds to well defined algorithm implementations as extended

communicating state machines. In a sign of the growing complexity of modern com-



6

puter systems, there is a disconnect between the behavioral and structural domains

[Hemani, 2004]. The behavioral model at this level of abstraction is usually mod-

eled using software programming techniques, but as the structural model is RTL,

there is some extra effort that needs to be expended by the designer to create both

representations.

Increasing the abstraction level has been acknowledged as an essential

method used by modern EDA tools to handle increasingly complex systems

[Sangiovanni-Vincentelli, 2003] [Hemani, 2004]. The abstraction of computation is

the primary focus for the increases in the levels of abstraction [MacMillen et al., 2000].

Abstraction of communication, on the other hand, has become increasingly im-

portant as the primary driver for the future of EDA tool design [Hemani, 2004]

[Kumar et al., 2002] [Pestana et al., 2004]. We see that computation has moved in

abstraction from being modeled by transistors to gates to registers to IP Cores. Com-

munication, on the other hand, has existed as wires in the first three levels of abstrac-

tion, with no clear agreement on its abstraction in the high level era. This presents

major challenges for the modern era that may have several IP cores communicating

with each other, such as the Network-On-Chip style of design [Hemani et al., 2000]

[Pestana et al., 2004] [Kumar et al., 2002] [Gerstlauer et al., 2005].

A practical example of the use of abstraction for communication can be demon-

strated in Figure 1·2. In the definition of a system on chip, there is a need to model

different patterns of communication between IP blocks. In this scenario, there are

two clients, simulating processors capable of complex behaviors and two resources,

modeling hardware co-processors, such as a cryptographic decoder. The clients are

capable of requesting and acquiring resources. The resources are first requested, ex-

clusively assigned to a single client and then released. The first client attempts to

request and use both resources. The second client requests just the first resource.
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Client 1

Client 2

Client 3

Resource 1

Resource 2

Client 1

Client 2

Resource 1

Resource 2

Figure 1·2: A sample of a scenario that demonstrates the need for
communication flexibility. If we have a system-on-chip where there are
two clients that can request and exclusively use the resources (shown on
the left), the abstraction of communication can allow for easy modeling
of scenarios, such as the addition of a client (shown on the right)

At any time, one, or both clients could attempt to request to acquire the resources.

The communication mechanism should be abstracted in a fashion so that it can be

easily express patterns such as a client requesting multiple resources, or model the

conflicting access to a resource. At the same time, the abstraction should be general

enough to allow for the easy addition of new clients or resources, while avoiding the

specification of details about how the request mechanism is implemented. In a purely

software implementation of system, the addition of a new client can be as simple as

adding a function call. The operating system provides high level communication and

synchronization primitives that can be used to implement the communication. In a

hardware implementation, however, this new client will require the addition of extra

computation capability as well as wires to handle the new data transfer path and to

arbitrate between the clients. The addition of this new hardware in turn affects the

communication path. As a result, any such addition requires extensive redesign, even
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of parts of the design that are not directly affected. In this case, the addition of this

new client will affect the hardware implementation of the second resource, which in

turn will affect the design of other clients that may need to communicate with it.

Modern hardware designs, such as Network-on-chip and system-on-chip, take

full advantage of the high abstraction level of computation to express complex sys-

tems. However, the lack of a corresponding clear high level abstraction for commu-

nication in digital hardware design presents a major challenge [Hemani et al., 2000]

[Pestana et al., 2004] [Kumar et al., 2002] [Gerstlauer et al., 2005].

In this work, we address the problem of the lack of a useful communication abstrac-

tion for high level design of computer hardware. The proposed solution we present

is a novel approach to high level computer system design. This methodology uses a

communication and synchronization abstraction, that is as abstract as communica-

tion primitives used in software design. This abstraction is flexible enough to model

a wide variety of different communication patterns. The solution we propose differs

from previous approaches as it allows the designer to use a variety of features without

restriction, such as multiparty communication and variable party communication. In

addition, features like conjunction and disjunction of synchronization events and the

composition of these primitives are fully supported. A novel communication sched-

uler enables the generation of structures that can greatly speed up simulation and

allow for hardware synthesis of models described using this methodology. Further,

a strong underlying formal model enables the creation of model checking and design

verification tools.

1.2 Introduction to Synthesis

Circuits described using GTL, or at the gate level can be created manually for small

systems, and until the late 1970’s this was the norm. As the circuit complexity grows,
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there arises the need for the move to RTL descriptions of circuits. A survey done in

1975 about the then emerging field of Register Transfer Level design [Barbacci, 1975]

was one of the first to define the synthesis of a system as the conversion of a symbolic

representation to a physical one. Gajski et. al. created a graphical aid to visualize

the relationships between the domains of design [Gajski et al., 1992]. In terms of the

domains in Figure 1·1, the arrows from the behavioral to the structural represent

synthesis. The creation of a gate or transistor level structural description is called

physical synthesis. RTL synthesis involves the generation of clocked registers and

combinational circuits from a series of register transfers.

Finally, at the system level, high level synthesis involves the generation of complex

structures from algorithm or software behavioral descriptions[Gajski et al., 1992].

While synthesis alone moves from one domain to another at the same level of ab-

straction, another important ability is to move from a higher abstraction level to

a lower one in the same domain. This ability is referred to as refinement. In the

structural domain, each subsequent level of abstraction is defined as a collection of

elements from the lower one. For example, a gate is a collection of transistors, or a

register and its update logic is a collection of gates. As a result, design refinement in

the structural domain consists of replacing a higher abstraction level component with

the group of lower abstraction level components that make it up. A final transforma-

tion is optimization, which refers to the improvement of a design in the same domain,

within the same abstraction level utilizing some target characteristic. A common

example of this would be the area and timing optimizations that are performed on

designs.

Tools in the EDA field cover all three domains and primarily exist perform one

of the three transformations : synthesis, refinement or optimization. As all circuits

eventually need to be converted to a physical representation, we can conceive of
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the design process as starting by defining the behavioral domain representation of

a system at a high level of abstraction. Then, utilizing a set of tools, a structural

description at the same level is generated. Finally, these descriptions are moved down

the levels of abstraction until a physical domain transistor level circuit is obtained.

This represents the design flow. The traditional design flow, especially for RTL

circuits is seen here in Figure 1·3.

The idea of generating hardware from software-like descriptions was proposed in

[Mead and Conway, 1980]. The steady increases in the level of abstraction were help-

ful in the creation of new tools and methodologies. First, tools for synthesis from each

abstraction level were created and then used as the base components for the next ab-

straction level. As a result, valuable work done previously for tasks like area based

optimization or physical place and route for layout is reused by methodologies that

work at higher levels. Further, it meant that newly created tools only needed to es-

tablish a way to convert the input behavioral description into a structural description

that could be reduced to the next lower level of abstraction.

The currently used synthesis methodology can be seen in Figure 1·3. The de-

signer creates a behavioral description of a system in a RTL HDL such as Verilog or

VHDL. By simulating the design, its behavior can be verified, leading to its iterative

improvement. Once satisfied, the design is passed to the synthesis tool, which applies

information about the technology library to create a netlist. This netlist is a gate

level structural description of the circuit. It is passed through an optimization step

to create an optimized netlist. Finally, the netlist is passed through the physical syn-

thesis tools, which can create a complete layout from a basic gate layout, and then

place and route wiring. The basic cell layout can come from the technology library

or can be created by the user. Automated place and route tools use the user defined

cells to generate a complete layout for the system and create wiring to connect these
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cells. This will create a functional physical layout for the whole model. A sequence

of steps, where data is sequentially processed by a series of tools, is referred to as a

tool flow. This presents a RTL synthesis tool flow.

The size of modern systems has been continuously rising, along with the design

effort necessary. This makes the move of the behavioral description to a higher level

than RTL extremely likely. In [Gupta and Brewer, 2008], Gupta et. al. demonstrate

the financial benefit of high level design methodologies. They estimate that the de-

sign cost of an integrated circuit is US$15M with the use of tools at abstraction levels

higher than RTL, as opposed to almost US$342M for a pure RTL approach. This is a

20x benefit to using such methods to create circuits, as opposed to the RTL abstrac-

tion based design. Modern high level design approaches have been gaining increasing

acceptance [Martin and Smith, 2009] and are seen as the most important way to re-

duce design costs and design effort while simultaneously increasing the system size. In

order for any high level design approach to be successful, there are many factors that

must be considered, not the least of which is how they abstract communication and

the mechanism they provide for the creation of lower abstraction level descriptions.

In Section 2.1, we present the current state of synthesis from high level descriptions

and discuss the significant issues preventing their widespread use. In subsequent

chapters, we discuss how the novel methodology presented in this dissertation does

not suffer from the same drawbacks.

1.3 Motivation

Over the past few decades, successively more abstract models of digital hardware

systems have been developed, allowing designers to encapsulate and contain their

effective complexity. Beginning with the schematic transistor representations that

were used by designers to replace the physical layout, there has been a move towards
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expanding the gap between the physical and functional representations of a circuit,

with each new level built upon the old. An increasing portion of modern design work

is done at the system level, where designers are able to simply choose soft cores built

by other vendors, that can perform complex computations, and integrate them into

one system. The designer’s task is to create and model the increasingly complex

communication between vendor provided cores.

At the system level of abstraction, there is an open question of what design ab-

straction should be used and several high level models have been proposed for this

purpose. The main focus of abstraction into a higher level model has been in one

of two areas : computation and communication. Advances in compiler techniques

and high level synthesis (HLS) techniques have provided strong support for high

level description of computational tasks. High level modeling of communication and

concurrency, on the other hand, has only seen success in special domains such as

digital signal processing and synchronous programming. For broader applications,

the recent trend of transaction level modeling (TLM)[Cai and Gajski, 2003], char-

acterized by using software function calls for communication and synchronization,

has become a prevailing standard. TLM is especially useful for bottom-up assem-

bling of components of various natures into a common modeling framework such as

SystemC [Automation, Design and Committee, Standards, 2006]. In software design,

communication is performed dynamically, using support from the operating system.

Software communication architectures, like message passing, or dynamically created

sockets are not viable communication primitives in hardware. As software function

calls are fundamentally only a language construct for code reuse and modularity, their

use for modeling communication relies on the mechanisms of the underlying operating

system, such as scheduling-related system calls and the thread library. In the case

of SystemC, this involves the manipulation of the event calendar via the wait() and
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notify() calls or similar methods. This approach is effective for functional simulation,

but is not amenable to hardware synthesis or formal verification. The lack of a good

high level way to represent different communication patterns is an increasing prob-

lem as designs become larger and communication plays a larger role in system design

[Gerstlauer et al., 2005].

The flexibility of high level models in the abstract specification of systems is

offset by the difficulty of synthesizing the hardware equivalent of such a description.

In survey of the field, Sangiovanni-Vincentelli et. al. describe the “lack of clear

unambiguous synthesis semantics” as a hurdle towards the adoption of existing high

level methodologies such as SystemC [Sangiovanni-Vincentelli, 2003]. Traditional low

level register transfer level (RTL) descriptions are easy to synthesize, but are too

detailed to allow for reconfiguration to explore the design space and for functional

verification. Thus, modern systems are typically maintained as two separate models.

A high level model, in a language such as SystemC, that allows for functional and

transactional behavior description and verification. Simultaneously, a low level RTL

model must be maintained for behavioral synthesis. This duplication leads to a

doubling of design time and effort and presents a semantic gap that is a source for

errors and requires additional manual verification.

Recently in the EDA field, there is a renewed interest in using rendezvous

for synthesizable system descriptions. A rendezvous is a classical communication

mechanism for modeling communication. It appears in languages such as Handel-

C [Celoxica Ltd, 2003], Haste [de Wit and Peeters, 2006], and most recently, SHIM

[Edwards and Tardieu, 2005]. It provides a similar level of abstraction as software

functions, but is based on formal foundations such as the Communication Sequential

Processes (CSP) [Hoare, 1978] and the Calculus of Communication Systems (CCS)

[Evangelist et al., 1989]. More interestingly, rendezvous naturally support multiparty
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features such as disjunctive and conjunctive composition, which enable the modeling

of choice and synchronization among multiple processes. However, due to the dif-

ficulty of implementing multiparty schedulers, contemporary rendezvous-based con-

current languages tend to leave out conjunctive composition or even both types of

composition.

In this dissertation, we present a solution to the problem of a high level design

methodology that is synthesizable. This work utilizes the idea of rendezvous as a

powerful communication abstraction mechanism. This methodology, called Lyra, is

presented as a series of communicating processes, which can synchronize via ren-

dezvous. The abstract concept of rendezvous are presented concretely using two

basic language primitives. The use of abstract rendezvous features are allowed so

that designers can easily harness them. For example, rendezvous features such as

disjunction are presented as simply multiple ways for the process to make progress.

The use of the full range of rendezvous features presents the problem of nondeter-

minism. Nondeterminism refers to the case where there exist multiple methods for

the system to make progress. This is an unavoidable feature in high level languages

as it is a side effect of allowing partial specification of a design, an important tool

in raising abstraction levels. As raising the abstraction level of communication has

only now become a priority, existing approaches choose to resolve nondeterminism at

the specification level. Typically, they achieve this by limiting the sources of non-

determinism, i.e. the features of rendezvous being used. Other approaches shift the

burden for this resolution on the designer. In contrast, Lyra is capable of modeling

complex communication patterns in a succinct fashion. The introduction of a novel

communication scheduler allows this approach to be efficient for hardware synthe-

sis while retaining the flexibility of communication primitives. The communication

scheduler is able to resolve, at run time, the behavior of the system, and using some
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optimization criteria, is able to ensure that the system functions in a deadlock free

way. The generation of the communication scheduler is based on two major graph

based tools. The first, called a Transition Relation Graph, is a represention of the

relationships between different transition edges in the system and enables the effi-

cient identification of the relationships that can create valid progress. The second,

called the Occurrence Relation Graph, uses the relationship information to create a

graphical representation of the communication complexity of the system and identify

the communication problems that need to be resolved. The use of policies allow the

separation of the heuristic used from the general approach, and present a way for

the scheduling approach to resolve the same problem for different criteria. We also

propose a formal model for Lyra, based on an extension of the Extended Finite State

Machine formalism and on the definition of rendezvous. This formal basis is used to

create the definition of the communication scheduler and clarifies the advantage of

using a policy based approach.

The remainder of the dissertation is organized as follows. Section 2 discusses re-

lated work in high level synthesis as well existing rendezvous based design approaches.

The solution to the problem of a high level language with a powerful communication

abstraction is proposed in Chapter 3. An overview of the communication scheduling

mechanism is developed in Chapter 4. The graph based tools for the construction

of scheduler and policies for heuristic resolution are presented in Chapter 5. The

underlying formal model for Lyra is developed in Chapter 6. A description of the

tool flow that implements this methodology is covered in Chapter 7. A short exam-

ination of the communication complexity using the graph based tools developed for

this approach is examined in Chapter 8. The use of the proposed methodology is

demonstrated in Chapter 9 using the empirical example of a large system modeled

at multiple abstraction levels. Chapter 10 develops some additional examples, and
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demonstrates the benefits of using the communication scheduler. Finally, we present

some conclusions and future avenues of work in Chapter 11.
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Chapter 2

Related Work

In this chapter, we present an overview of existing digital hardware synthesis from

high level behavioral descriptions. We examine some of the fundamental limitations

with contemporary approaches for high level modeling of digital hardware systems.

We describe the issue of nondeterminism, a fundamental problem in the high level

abstraction of communication. We present the concept of rendezvous and describe

previous work done on their usage. We describe a system developed for the classifi-

cation of rendezvous based approaches.

2.1 High Level Synthesis

Synthesis is the conversion of a behavioral description into a structural one. This is

usually implemented as a program that forms part of a tool flow, a set of programs

that accept as input a higher abstraction level behavioral description and produce a

lower abstraction level physical representation. High level modeling, where the input

behavioral description is at a higher level of abstraction than RTL, is an increasingly

important area [Sangiovanni-Vincentelli, 2003]. This form of design description is

used mainly for the behavioral specification of entire systems. The increased flexibility

at this abstraction level lends itself to modeling behavior that can range from software

implementations of algorithms to collections of a large number of register transfer level

models.

The implementation of the synthesis tools varies depending on the input language,
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and the abstractions of computation and communication in use. While an exhaustive

compilation of all proposed and existing high level design methodologies is beyond

the scope of this work, most approaches, specially at abstraction levels higher than

register transfer level share some common features.

In the remainder of this chapter, we examine the 3 different approaches to the

design of a high level methodology. We discuss the fundamental differences between

software programming approaches and hardware description languages in terms of

their implicit assumptions. We also survey some existing techniques that allow for

the limited synthesis of a software description into a RTL level structural hardware

description. We examine the utility and drawbacks of nondeterminism in the con-

text of high level description of synthesizable systems. We examine contemporary

approaches to high level modeling based on C/C++ programming languages. Then

we introduce the concept of rendezvous, a mechanism that performs communica-

tion and synchronization as one atomic action. We also examine existing rendezvous

based hardware design approaches, in terms of the rendezvous features and modeling

flexibility they allow.

2.2 High Level Synthesis Methodologies

There have been three basic approaches to the creation of high level design method-

ologies that are popular in industry today. Most of these have evolved from prior

attempts to raise the level of abstraction past RTL for behavioral descriptions. While

a thorough treatment of this subject can be found in [Gupta and Brewer, 2008]

[Martin and Smith, 2009], they have been broadly classified into 3 categories seen

in Table ??

1. Software program based

2. Extension of RTL design
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3. New methodologies

The first approach is to reuse the software based approach to model hardware. In

other words, software programs are used to simulate the behavior of digital hardware.

In some cases, these simulations can be synthesized into digital hardware as long as

the underlying software model is restricted to a small subset of possible features.

As hardware systems and software programs exhibit very different properties, arising

from fundamental differences, the restriction of software features like threads, or

dynamically allocated memory, which have no hardware analogues, is an essential

part of modeling hardware using software. A good example would be a tool like

Catapult C by Mentor Graphics [McCloud, 2004]. Catapult C is capable of producing

a hardware implementable circuit from a C program, given some constraints on the

features of ANSI C [ANSI, 1989] used, such as an absence of pointers, the lack of

function recursion, and the use of only fixed width primitive data types.

A second popular approach has been to extend existing hardware design

methodologies to a higher level of abstraction. A good example of this is

Verilog[IEEE, 2001], a standard for RTL design, which was extended to SystemVer-

ilog [Accellera Ltd, 2004] that brought to it features of high level methodologies. The

primary advantage of this approach is that since the underlying model is meant to

describe hardware, a subset of the higher level methodology remains provably synthe-

sizeable. Additionally, if the syntax remains compatible, then the design work needed

for the integration of existing designs into a new high level system description is re-

duced. The main pitfall of this approach is that the underlying model has severe re-

strictions due to its roots in hardware design. In SystemVerilog, [Accellera Ltd, 2004]

this resulted in the partition of the methodology into a synthesizeable subset and a

non-synthesizeable one. This reintroduces the problem of having to maintain separate

behavioral and synthesizeable models.
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The third approach is the design of a new methodology while using familiar lan-

guage syntax. Typically, this means that the new methodology has an underlying set

of assumptions that can model hardware, but the language that the approach uses is

similar to, or shares elements in common with, software development languages. A

simple example is HandelC [Celoxica Ltd, 2003], an approach that presents a language

similar to C, but the underlying methodology communicates via hardware friendly

primitives. The primary advantage of such approaches is that the lack of legacy

restrictions on behavior allows such methodologies to describe behaviorally systems

that have valid hardware descriptions. However, such approaches typically lack a

formalism of the underlying communication model [Celoxica Ltd, 2003].

In the case of software approaches that are used to serve as high level hardware

models[McCloud, 2004] [Cadence Inc, 2008] [Wakabayashi, 1999], the differences in

the implict assumptions between software and hardware design methodologies be-

come roadblocks. Software approaches inherently assume sequential execution, where

one line is executed after the next. Concurrency in software programs, in the form

of threads or processes, must be explicitly managed by the programmer. However,

this concurrency is not completely controlled by the designer and depends on the

operating system’s scheduler and provided threading libraries. In contrast, hard-

ware modeling methodologies assume concurrency, or provide a clear mechanism for

it within the methodology. Software programs typically make heavy use of dynami-

cally allocated data, and language features such as pointers and recursion which lack

hardware analogues. Most importantly, software methodologies have communication

methodologies that lack a description in the language but depend on OS semantics.

To communicate between two software threads, the operating system plays a signifi-

cant role. As a result, high level design methodologies that try to synthesize digital

hardware systems from existing software programs, rely on the restriction of the input
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language. The resulting language subset can be used to satisfy an internal hardware

centric model and can be synthesized into hardware.

While there are many competing approaches that approach the problem in dif-

ferent ways, one of the main problems that any HLS approach must face is that

of lack of formalism[Gajski et al., 1992]. Most high level approaches lack a formal

underpinning, which in turn causes the lack of a clear direction for algorithms that

convert the description into hardware. As a result, ad hoc mechanisms are employed

to model important constructs that occur in hardware. Formal model developed

after the methodology only express a subset of the features available[Man, 2005b]

[Man, 2005a], making them less useful to designers.

In the next section, we identify the desireable features in a high level design

methodology, and categorize them into properties inherent in the methodology and

those that arise from the choice of the input description.

2.3 Properties for High Level Synthesis

While HLS methodologies are widely varied in their goals and implementations, there

are some basic factors that we can say are necessary for any high level hardware design

methodology. These are based upon criteria discussed in [Gajski et al., 1992] for the

general methodology criteria and from [Edwards, 2005b] and [De Micheli, 1999] for

the language criteria.

The properties can be divided into properties based on the methodology itself, and

those that are dependent upon the language that is used for the methodology. This

is an important distinction, but one that is sometimes useless in practice. In many

cases, the methodology and the language that supports it are so closely tied together

that the properties become interchangeable. This distinction, however, allows us to

compare some very differing approaches to see their properties.
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Methodology Language Specific

Formal Theory Concurrency

Flexible Modeling Semantics Communication

Abstraction Levels Data Type Support

Nondeterminism

Table 2.1: High level design criteria

A good high level synthesis methodology should firstly posses some formal under-

pinning for the system so that models can be converted into hardware. In the case of

many methodologies, especially those that try to use a software paradigm to model

hardware,such as ANSI C [ANSI, 1989], it is their ad hoc nature that prevents their

synthesis to hardware. The lack of a coherent formal model for high level method-

ologies means that there is no consistent methodology for the creation of hardware

circuits. Furthermore, the formal model is essential to perform design verification

and model checking. In modern systems, verifying the functionality of the system is

an increasingly important part of their design. The use of formal verification tools

allows for the design of larger systems. In many approaches for high level model-

ing, the final formal model incorporate a multitude of differing incompatible formal

models, it becomes impossible to reconcile all the formalisms to create a provably

correct design [Edwards et al., 2001]. This problem has been addressed previously in

[Gajski et al., 1992] and [Camposano and Wolf, 1991].

The primitives that are proposed by the methodology must lend themselves to

usage in a wide variety of modeling scenarios. As systems can be modeled in dif-

ferent ways, and different types of systems possess widely varying characteristics, it

is important that the basics of the methodology can be adapted for use in all these

cases. In the absence of such flexibility, the methodology designer is forced to create
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a new primitive for each new scenario. This results in the creation of niche modeling

methodologies that are capable of describing particular systems, but are not general.

As high level models lack of a unifying formal model, this means that large designs

that may require multiple different models will not be synthesizeable.

High level approaches generally possess the ability to model multiple ab-

straction levels, or at least use some design basis that supports design

refinement[Gajski et al., 1992]. Refinement is the term used to describe the con-

version of a more abstract model into a more concrete one, usually by the addition of

constraints such as timing information, area or power guidelines. This is an impor-

tant step for any design methodology, and any new high level methodology should be

able to perform some level of refinement. Since high level tools maintain support for

a wide variety of abstraction levels, their formal models are a mixture of behavioral,

finite state machine, and register transfer formalisms, with no model for the entire

approach. As a result, it becomes impossible to synthesize the full set of possible

designs and features that the approach supports. Another important factor is that

while high level approaches present abstractions for computation that can be easily

refined, their abstraction for communication cannot always be. Further, the lack of

a standard way to abstract communication means that different designers abstract

communications in incompatible ways even while using the same high level approach.

Nondeterminism is a property of high level models that allows the designer to

succintly express complex behaviors, by leaving unknown or undesired behavior un-

specified [Armoni and Ben-Ari, 2009]. This reduces the size of the behavior that the

designer must specify, reducing design time. However, nondeterminism is an unde-

sireable property in a synthesized description. As a result, a good high level design

methodology is capable of accepting nondeterminism in its input specification, but

has a formal way to convert this specification into a deterministic one. This allows
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the designer to flexibly express the system while seeing predictable results. The role

of nondeterminism is addressed in depth in Section 2.5.

Another set of considerations come about from the language used to implement the

methodology. The primary cause for these issues is the disconnect between software

programming languages and hardware design languages.

2.4 Differences between Hardware Description Languages

(HDLs) and software programming languages

As high level hardware descriptions can be sometimes expressed as algorithms and

due to the larger number of designers familiar with software programing, many

approaches try to make high level design as close to software design as possible

[Sangiovanni-Vincentelli, 2003]. The basic differences between hardware design and

software programming, many of which are implicit in the assumptions made prevent

the easy use of a single approach that is capable of being both a software programming

and a hardware description language.

The most important of the differences between software programming and hard-

ware description languages, is the matter of concurrency and its description. In

software programming languages, the code is assumed to be executed sequentially.

Concurrency is explicitly implemented, either using threads [Liao et al., 1997] or by

using keywords such as “par” in BachC [Kambe et al., 2001]. Hardware design lan-

guages, on the other hand, usually have concurrency defined as an implicit part of the

language, such as in Verilog [IEEE, 2001] and VHDL [IEEE, 2000]. In addition, they

support the notion of a “nonblocking” or parallel assignment. This fundamental dif-

ference in the definition of concurrency affects the design of the approach immensely.

Many high level approaches rely on the use of the hardware centric definition

of concurrency, where each module or structural unit is assumed to be perform-
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ing computations and communications in parallel[Gajski and Ramachandran, 1994].

Approaches that extend existing hardware design semantics, or that have created

their own language are able to work around this easily. However, approaches

that attempt to extend software programming to high level modeling and synthe-

sis are forced to define new semantics. In the case of languages like SystemC

[Automation, Design and Committee, Standards, 2006], each concurrent action is ex-

plicitly created and registered with the simulation engine. Thus, while the global no-

tion of implicit concurrency is not present, the language semantics allow the explicit

declaration of concurrent blocks of sequential code.

Communication as a language property that can be examined in all three con-

texts differently. In the case of hardware design languages, communication usually

happens over fixed channels, but can support reactive inputs, through constructs

like wires. In general, communication for RTL and lower HDLs is over wires that

can be bidirectional and are of fixed size. Wires model hardware systems well and

allow for bidirectional communication, synchronous communication and multiparty

communication. In software programming languages, the fundamental method of

communication is a function call, a unidirectional, asymmetric code reuse mecha-

nism. Function calls can be used to model more complex communications by making

the new modules for communication primitives. Function calls do have some advan-

tages over the use of wires - their support for different data types and the flexibility

of their composition. However, they have limited support for bidirectional commu-

nication, cannot handle multiparty communication well, and cannot model reactive

inputs. New methodologies usually introduce their own communication primitives.

Most methodologies allow for multiple communication primitives, to model different

kinds of communication patterns.

The basic representation of data is another intrinsic property of the language
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that affects the final approach. In the case of hardware design languages, data types

are usually of fixed size, and do not support pointers. In software programming

languages, data types can have variable sizes, or can be implemented as pointers.

Most new approaches usually assume data types to be fixed in most cases, but allow

for some flexibility to be able to model software patterns as well.

2.5 Nondeterminism

Nondeterminism in an important property in any high level synthesis approach. Non-

determinism refers to the case where given an input and a current state for a system,

there are multiple possible next states. To put it in terms of the approach, nondeter-

minism is the property that arises from the ability to incompletely specify behavior

of the model. This flexibility is crucial for high level approaches as it helps keep

the input size small, while maximizing the behavior of the system. The presence of

nondeterminism allows the modeling of complex practical designs in a simple fashion.

The concept of nondeterminism was first proposed in [Rabin and Scott, 1959]. In

it, nondeterminism was proposed in the context of finite automata. A few years

later, [Hopcroft et al., 1979] further formalized the concept of nondeterministic fi-

nite automata (NFAs). The equivalence of NFA and their deterministic counter-

parts was established, thus allowing the properties of deterministic finite automata

to be applied to NFAs. In [Carrol and Long, 1989], a way to implement circuits from

NFA descriptions is covered. As there was an equivalence between DFA and NFA,

there is a way to reduce nondeterminism in a system. A clear formal proof of the

power of nondeterminism to reduce the complexity of input descriptions is given in

[Drusinsky and Harel, 1994]. Effectively, the presence of concurrency and nondeter-

minism in an input description exponentially reduces its size.

Nondeterminism is a practical mechanism for avoiding the complete description
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of a system. In doing so, nondeterminism helps raise the level of abstraction. This

was first pointed out in [Dijkstra, 1975]. By delaying the specification of implementa-

tion details, the presence of nondeterminism allows the designer to create the overall

system behavior instead of the details of each stage.

A complete survey of nondeterminism is presented in [Armoni and Ben-Ari, 2009].

In it, the classification of nondeterminism based on 6 major properties is proposed

and studied. [Armoni and Ben-Ari, 2009] also presents a distinction between nonde-

terminism arising from concurrency and nondeterminism arising from the property

of an automata. A hardware implementation of a sequential process cannot contain

nondeterminism as, at any given instant, the hardware will be in a fixed state. In or-

der to ensure the creation of deterministic hardware that can be debugged, it becomes

important that there exist a construction that can convert the nondeterministic sys-

tem into a deterministic one in a fixed fashion. While the construction of NFA from

a DFA is discussed in [Carrol and Long, 1989], the resulting deterministic automaton

is exponentially larger.

The basic use of nondeterminism in high level approaches is clear. Nondeter-

minism is a powerful mechanism to reduce the complexity of designs, while allowing

the designer to refrain from expressing unnecessary amounts of detail. This mecha-

nism allows for the easy increase of the level of abstraction, an essential part of high

level design. Formally, we can show that nondeterminism provides for exponential

reductions in input design complexity, while still retaining a path to synthesis.

2.6 C/C++ Based approaches

In general, high level synthesis approaches can be divided into three major categories

- approaches based on using and extending existing software design methodologies,

those based on extending hardware design methods and those based on new method-
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ologies that use a familiar syntax. A popular starting language is C. The proponents

of this approach claim that familiarity with the language and that the benefit of being

able to co-design both the hardware and the software of a system give it a significant

advantage [Edwards, 2005a]. C, a language originally developed by Kernighan and

Ritchie [Kernighan and Ritchie, 1988] was intended as a low level language, with a

very tight correspondence to the assembly language. The resulting approach provided

syntactic structures that simplified design tasks, but retained a correspondence to the

microprocessor architecture. However, some of the choices made resulted in problems

when it came to synthesizing general hardware from a C description. The introduc-

tion of data types that were not inherently fixed to hardware representations, and

the introduction of pointers meant that a generic C program could not be guaranteed

to create hardware. As a simple example, if we consider an array, a basic hardware

type, is represented in C as a pointer, it becomes clear that unless the synthesis tool

performs analysis of the pointer and its usage, it cannot determine how to size the

resulting array. Thus, all C based approaches only accept a subset of C for synthe-

sis. Some popular C based approaches include Cones [Stroud et al., 1988], HardwareC

[Ku and De Micheli, 1990], SpecC [Gajski et al., 2000b] [Fujita and Nakamura, 2001]

and BachC [Kambe et al., 2001].

Cones, introduced in 1988, was a very early approach to high level synthesis from

C. By considering a very limited subset of C, and disallowing features like unbounded

loops or pointers, cones could create gate level hardware from a C description. Hard-

wareC was a new hardware modeling methodology that aimed to extend C like seman-

tics to hardware. Despite its similarity and the naming, HardwareC is fundamentally

different from C in that the basic language does not support pointers, assumes a

global clock, and expresses concurrency through the use of modules. Thus, there

is no advantage of designer familiarity with C. Additionally, general communication
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Hardware Based Software Based New Methodology

Verilog Cones SpecC

VHDL Cyber HardwareC

SystemVerilog C2Verilog BachC

Transmogrifier C

CatapultC

C-to-silicon

Table 2.2: Approaches to HLS

patterns are difficult to express in HardwareC. For example, modeling the arbitration

of resources cannot be done abstractly, as HardwareC has no support for it. SpecC

is fundamentally a specification language, subsets of which are synthesizable. Like

HardwareC, SpecC is a new methodology whose syntax looks very similar to ANSI C.

By introducing a few more keywords for parallel composition of statements, and by

introducing separate channels for communication SpecC attempts to simplify hard-

ware design. However, the lack of a clear definition for atomicity, and the absence of a

way to define mutual exclusion presents some shortcomings. BachC was an attempt

to bring the communication semantics of Occam [Barret, 1992] to C. As a result,

BachC faces a similar set of challenges as Occam, and is explained further in depth

in the next section.

Another direction that was considered was the use of more complex synthesis

tools with C. The modifications made to the C design itself were very minor, i.e.

either used a restricted subset of the input language or provided some bounds on

software constructions such as pointers. Cyber, an approach introduced by NEC

[Wakabayashi, 1999] [Wakabayashi, 2004], used a variant of C that prohibited recur-

sion and pointers. C2Verilog was a synthesis tool that accepted almost a complete
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set of ANSI C to create a Verilog circuit [Soderman and Panchul, 1998]. Transmo-

grifier C [Galloway et al., 1995] was a synthesis tool that used a small subset of C to

generate hardware descriptions that could be easily used on an FPGA. The scenic

design environment [Liao et al., 1997] was an approach that simplified the expression

of concurrency by modeling each module as a parallel lightweight thread. Cosyma

[Ernst et al., 1996], took a different stance and used the C based description to create

a partition of the hardware and software environments. It would synthesize the subset

of C it could, and allow the remainder to be executed as software. Additionally, at-

tempts such as SpC [Semeria and De Micheli, 1998] tried to show that in many cases,

pointers could be resolved fully at synthesis time, and therefore allow a commonly

used C language construct in the synthesizable subset.

The newest of the C/C++ based HLS methodologies are CatapultC by Mentor

[McCloud, 2004] and C-to-Silicon by Cadence [Cadence Inc, 2008]. Both of these are

capable of using a very large subset of C and can create gate level netlists from the

C model.

Finally, the most popular high level modeling methodology is based on SystemC

[Automation, Design and Committee, Standards, 2006]. SystemC has wide support

in the EDA industry for the specification of models at a high level. Communication

in SystemC is handled by abstract channels. These channels are C++ classes im-

plemented using wait() and notify() function calls. While the description is flexible

from a software programming point of view, it is not possible to synthesize an arbi-

trary channel as it lacks a hardware equivalent. Further, the channels follow delayed

update semantics, and behave more like registers in RTL HDLs like Verilog, rather

than as wires or combinational paths. The lack of wires makes the expression of re-

active systems in SystemC slightly cumbersome. Concurrency in SystemC is handled

explicitly, where each module is declared as an independent sc thread or sc method.
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SystemC sc threads closely resemble software threads, implementing a form of co-

operative multithreading and share many of the same properties. As a result, HLS

tools like C-to-silicon and CatapultC cannot synthesize modules containing threads.

SystemC methods are typically used to implement combinational elements. While

clocks can be declared manually, the notion of clocking is implicit in SystemC, the

execution of these models happens using a delta time update approach. Combined

with the delayed update semantics of the communication channels, every communi-

cating module in SystemC effectively behaves as a register transfer stage, containing

the combinational update logic and the buffered data output. While SystemC sup-

ports the intrinsic C++ data types, synthesis tools usually prefer the use of SystemC

specific types. These types support fixed width integers, fixed and floating point

numbers and strings. Again, not all of these are synthesizable and depend heavily on

the synthesis tool.

The style of modeling most used with SystemC to create the high level approach

is referred to as Transaction Level Modeling (TLM) [Cai and Gajski, 2003]. While

TLM is supposed to be a generic high level design approach, the reference implemen-

tation is in SystemC[Maillet-Contoz and Ghenassia, 2005]. As a result, features of

SystemC came about due to the TLM semantics, and vice versa. The primary goal

of TLM is to further subdivide the levels of abstraction and provide a path from an

abstract, untimed, specification to a timed, cycle accurate computation based model.

Some example TLM flows are presented in [Donlin, 2004], and show the heavy reliance

of TLM models on the communicating process abstraction level of TLM. However,

there are no formal models, or well defined synthesis flows for TLM. Additionally,

portions of the specification are implemented using event function calls that mod-

ify the scheduler’s event queue, making it difficult to synthesize directly. Finally,

the TLM approach relies very heavily on the user, who needs to guide each step in
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the refinement. As a result, the designer must be familiar, not only with software

programming, but also, low level hardware design.

While the SystemC methodology itself lacks formal semantics and is ad hoc, there

has been work on a subset of SystemC that can be described formally [Man, 2005b]

[Man, 2005a]. Further, the basic form of communication, channels, are not close

analogues of hardware wires. More importantly, SystemC is able to provide dataflow

semantics, but the control flow semantics and synchronization are not handled in a

scalable hardware friendly way. Finally, SystemC is not generally synthesizable, and

leads to the requirement of maintaining a RTL implementation that can actually be

implemented and a SystemC implementation that is used to verify the specification,

leading to duplication of work and the potential for errors.

2.7 Introduction to Rendezvous

The concept of rendezvous was first introduced in CSP [Hoare, 1978] and CCS

[Evangelist et al., 1989]. A rendezvous is generally regarded as an atomic, syn-

chronous communication mechanism among processes. In its simplest bi-party form,

two processes wait for each other at their respective rendezvous points where they

expect to communicate. When both parties reached the rendezvous points, the ren-

dezvous occurs, allowing both processes to continue to progress. In its more general

form, as pointed out by [Joung and Smolka, 1996], we can define a rendezvous as an

n party interaction with k roles. A role is a particular type of participant for the

interaction and could be satisfied by a fixed or a variable set of parties.

We can then further classify rendezvous based on which primitive composition

rules are allowed. Conjunction is the case where multiple rendezvous must occur

simultaneously. Disjunction is the case where only one of a set of rendezvous occurs

at a given time. A system can then be classified based on the allowed freedom of
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composition of these basic rules. In summary, the use of rendezvous can be classified

based on the following characteristics.

1. Multipartiness - the number of parties involved in each occurrence of a ren-

dezvous

2. Variability - whether participants for each party of a rendezvous must be a fixed

set of processes or a variable set

3. Composition Rules - the number of restrictions placed on the combination of

the primitives below.

(a) Disjunction - whether a rendezvous can be used in disjunction so that one

of several choices should occur

(b) Conjunction - whether a rendezvous can be used in conjunction so that

several rendezvous must jointly occur

Figure 2·1 illustrates these features. It shows an example network of sequential

processes in the form of state diagrams. C1 and C2 represent computing clients.

M1 and M2 represent resource arbiters. The state transition edges are labeled with

rendezvous. A transition along an edge requires the occurrence of all the rendezvous

on the edge. With respect to the four characteristics of rendezvous:

1. The req’s and rel’s are bi-party rendezvous. As a convention throughout this

work, we name the two roles “+” and “-”. Exactly one “+” party and one “-”

party should participate in each occurrence of a bi-party rendezvous. A multi-

party rendezvous reset brings all processes back to their initial states from their

respective current states. It has four roles, one for each of the four processes

involved.
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0 1 a b

0 1 a b

Figure 2·1: An Example Process Network

2. Req1 and rel1 are variable as their “+” roles can be assumed by either C1 or

C2.

3. Every state has disjunction involved. For example, state S0 of C2 can transition

to either S1 when req1 occurs, or to itself when reset occurs.

4. Process C1 requires the simultaneous occurrences of req1 and req2 to advance

to S1. It will also activate rel1 and rel2 simultaneously to return to S0. Such

simultaneous occurrence means conjunction.

As we can see from the use of conjunction and disjunction, in this case we can have

both forms of composition from each state.

Theoretically speaking, multipartiness and variability can be synthesized from

conjunction and disjunction. A multiparty rendezvous involving n-parties may be

represented as (n-1) bi-party rendezvous used in conjunction. For example, the reset
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0 1 a b

0 1 a b

Figure 2·2: Decomposition of Variability

in Figure 2·1 can be decomposed into three bi-party rendezvous, say ra, rb, and rc.

The reset label in M1 can thus be replaced by a conjunction of ra+, rb+, and rc+.

The reset labels in C1, C2 and M2 can be replaced by ra-, rb-, and rc-, respectively.

The result network has identical behavior as the original one. Similarly, a variable

bi-party rendezvous involving n processes in one role and m in the other can be

decomposed into n*m bi-party rendezvous. For example, the req1 in Figure 2·2 can

be decomposed into 2*1=2 fixed bi-party rendezvous: a req11 between C1 and M1,

and a req12 between C2 and M1. The same can be done for rel1. Figure 3 shows the

resulting network after the decomposition of reset, req1 and rel1. More generally, a

variable k-party rendezvous with ni processes for each role can be decomposed into ni

bi-party rendezvous. The inclusion of multipartiness and variability make modeling

convenient as they greatly reduce the number of symbols in the network.

Another concern addressed in [Joung and Smolka, 1996] is the composition rules
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for conjunction and disjunction. When used in isolation, conjunction and disjunction

are of limited value. However, their full and free combination, in the so called Discrete

Normal Form (DNF), allows for the maximum expressivity of different communica-

tion patterns. However, a problem with this unfettered composition is that, while

examining the possibility of occurrence of a rendezvous solely from the local context

of one process, it becomes difficult to determine how other rendezvous may be com-

posed at the remote party. These remote compositions may cause other rendezvous

to be dependent on this one for occurrence.

2.8 Nondeterminism using Rendezvous

Nondeterminism, in the case of rendezvous models, can be simply defined as the

case where, for the same input global state, there are multiple possible next states,

each of which can be atomically reached through the occurrence of a different set

of state transition edges. From a modeling perspective, high level models often use

non determinism to abstract low level details. For example, when all processes are at

their respective left states in Figure 2·1, either a transition of C1 accompanied by the

occurrence of req1 and req2, or a transition of C2 accompanied by the occurrence of

req1, is a valid step.

When a model is converted to an actual implementation, this nondeterminism

needs to be removed. This can be achieved by either modifying the model through the

addition of semantic constraints, or by imposing a run time scheduling policy for the

resolution of nondeterminism. This problem can be solved at every run time iteration

either in software by a scheduling core, or, in hardware, through a synthesized logic

circuit consisting of arbiters and coordinators. As is clear, run time resolution of

nondeterminism is not a trivial task. As this becomes the main task for each run

time iteration, the communication complexity of the end system can be defined in
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terms of the amount of nondeterminism present.

There are many sources of nondeterminism in rendezvous based models. Variabil-

ity implies competition between different processes for the same role of a rendezvous.

Disjunction, on the other hand, implies the competition amongst several transition

choices. These two sources of nondeterminism respectively correspond to horizontal

and vertical nondeterminism in [Joung and Smolka, 1996]. In both cases, the end

result remains that the global state has multiple possible transitions, each of which

result in different next states. The free composition of these properties further exac-

erbates the degree of nondeterminism. The simultaneous appearance of disjunction

and variability multiply the degree of nondeterminism. Furthermore, conjunction can

make an otherwise deterministic edge participate in a nondeterministic choice.

In terms of [Armoni and Ben-Ari, 2009], the nondeterminism in this approach is

due solely to the choice of execution of the system based on the rendezvous. Even

though the methodologies are inherently concurrent, and hence potentially another

source of nondeterminism, since they are used for hardware modeling, the concurrent

nature is assumed to be simply resolved by the creation of parallel hardware. An

important note though is that unless specified, the approaches do not have an implicit

method of resolution of concurrency that may arise from this parallel definition, and

thus though the system can be created, when it executes it might become incapable

of making progress.

2.9 Rendezvous Based Approaches

Communicating Sequential Processes, introduced by Hoare in [Hoare, 1978], was

among the first process calculi to model a system as a network of sequen-

tial processes communicating over rendezvous. CSP, in its basic form, sup-

ports only disjunctive composition of rendezvous, and the use of multiparty ren-
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Language Multiparty Variability Disjunction Conjunction

SHIM X

Ada X

Occam X

Handel-C X

Haste X X X X

Table 2.3: Feature Comparison

dezvous. Following the creation of CSP and CCS, many rendezvous-based concur-

rent languages were developed. These include Ada [Taft and Duff, 1997], Occam

[Barret, 1992], Handel-C [Celoxica Ltd, 2003], Haste [de Wit and Peeters, 2006], and

SHIM [Edwards and Tardieu, 2005]. Among these, Occam, Handel-C and Haste are

all based on CSP, though their support for some aspects of rendezvous differs. A well-

known language in verification community is Lotos [Bolognesi and Brinksma, 1987],

which is based on both extended CCS and CSP. However, since it is designed as a

specification language but not a programming/modeling language, we omit it in the

comparison. Table 2.3 compares the rendezvous features that the languages support.

The multiparty column refers to fixed multiparty barrier. The variability column

refers to bi-party rendezvous.

The languages vary in their support of rendezvous features, and consequently in

their degree of nondeterminism. The extreme case is SHIM, which is completely deter-

ministic. The resulting model is a variation of a Kahn Process Network [Kahn, 1974]

and provably possesses similar properties of determinism. It is free of variability and

disjunction, and also forbids simultaneous write access to a shared variable. Schedul-

ing of such a system is trivial and can be fully determined by the processes themselves.

Ada defines its rendezvous as a non-atomic communication between a ”caller”
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Figure 2·3: Unresolved Nondeterminism

and a ”callee”. It supports limited variability on the ”caller” side. Ada proactively

removes the nondeterminism associated to its variability by using an implicit queue in

the ”callee”. The queue ensures that the callers are served on a first-come-first-serve

basis. In other words, Ada uses time-based arbitration policy to prevent its nonde-

terminism. Occam strictly uses bi-party rendezvous channels. A channel connects

exactly one reader process and one writer process. It allows disjunctive composition

on the reader’s side. So a process may wait to read from several rendezvous channels

using the ”Alt” statement. An Occam process may wait to read from several ren-

dezvous channels, but cannot wait to write to several channels. The writer process

must be committed to join the rendezvous channel it writes to. Thus, only the read

side may have nondeterminism arising from disjunction. Fortunately, such nondeter-

minism can be resolved locally within the process by any fixed priority scheme that

the process chooses. Therefore there is no need for global scheduling in Occam.

In Haste, only limited arbitration is done for variable rendezvous. In general, for

a rendezvous to successfully occur between two Haste processes, at least one of them

must be committed to joining the rendezvous. For the example of Figure 2·3, the two

processes are not committed to either rendezvous due to disjunctive composition at

their left states. Thus neither rendezvous can occur, resulting in a deadlock. More-

over, Haste does not support instantaneous data flow across conjunctively composed

rendezvous. Therefore, it is not capable of modeling the example in Figure 2·3.
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Handel-C prohibits variability but allows disjunctive composition. Its handling of

disjunction is very similar to Haste and therefore suffers from the same drawback as

pointed out in Figure 2·3.

In the case of the example in Figure 2·1, SHIM, Ada, Handel-C and Occam would

be unable to model the conjunction of the rendezvous req1 and req2 in process C1

due to their lack of support for the conjunction primitive. The incomplete support for

resolution of nondeterminism in disjunction for languages that do support it, makes

Haste and Handel-C unable to model the example shown in Figure 2·3. Finally, all

presented languages lack the support for combinational data flow across conjunctively

composed rendezvous.

In summary, the existing languages support different sets of features of rendezvous

and thus different degrees of nondeterminism. In Haste and Ada, local arbitration is

performed to resolve nondeterminism introduced due to variability. But none of the

surveyed languages performs the scheduling of global rendezvous.

2.10 Other High Level Approaches

While this work focuses on other rendezvous based languages, they are by no means

the only forms of high level modeling. A recent high level language that is worth men-

tioning is Bluespec [Nikhil, 2008], despite the fact that it does not use rendezvous.

A Bluespec model contains a set of atomic rules guarded by Boolean conditions. For

communication between processes, Bluespec contains methods which can be asym-

metrically invoked. A Bluespec method maps to a combinational circuit, which can

perform some computation and update state. Bluespec supports implicit concurrency,

but does not support nondeterministic model definitions, as the atomic condition

guards are mutually exclusive. As we cannot place it in the framework developed in

[Joung and Smolka, 1996] , we will instead analyze it using the methods developed
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in Section 5.

Synchronous languages, a family of design languages based on Esterel

[Berry and Gonthier, 1992], are in use to describe reactive systems. Esterel has some

theoretical underpinnings in CSP, but eschews the use of rendezvous, instead replac-

ing it with the notion of synchrony. In Esterel, synchrony basically refers to the

assumption that all computations, updates, communications in the system happen

atomically, and instantly. Esterel, thus implicitly contains the notion of instanta-

neous data flow. However, Esterel has no support for multipartiness or variability of

communication, due to its deterministic nature.

High level design and synthesis approaches are being used to model systems at the

behavioral level [Sangiovanni-Vincentelli, 2003]. Even though the level of abstraction

of computation has increased, the abstraction level of communication has not. In

transaction level modeling[Cai and Gajski, 2003], the modeling of communication is

a significant factor in the complexity of the design. Extending software based mod-

els to perform hardware design is not feasible as it cannot synthesize a subset of the

design[Automation, Design and Committee, Standards, 2006]. Furthermore, the lack

of a formal model for the systems increses the complexity of generation and verifica-

tion of arbitrary hardware designs[Man, 2005b]. The design approaches for RTL level

hardware design, such as Verilog[IEEE, 2001] and VHDL[IEEE, 2000], provide only

wires as primitives for communication. The lack of other primitives for the compo-

sition of communication and expression of synchronization makes them infeasible for

use in behavioral level description. In this dissertation, we describe on a novel method-

ology that uses the concept of rendezvous for the abstraction of communication and

synchronization. Unlike previous rendezvous based approaches, this approach allows

for the full flexibility of composition of rendezvous[Joung and Smolka, 1996]. Using

a novel communication scheduler, which is implemented as a software scheduler and



44

can be synthesized into a hardware module, this approach can express a wide variety

of communication patterns, while retaining the ability to synthesize hardware.
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Chapter 3

Lyra: An Introduction

In this chapter, we describe Lyra, a novel hardware design methodology that uses a

rendezvous based communication abstraction. We describe the basic features of the

methodology - the model of computation and communication. We briefly describe the

communication and synchronization primitives available and how they are modeled.

We finally deal with the need for nondeterminism in the description and the resulting

need for a communication scheduler.

3.1 An Overview

For a modeling methodology, the selection of features of rendezvous that must be

supported depends on its application. As we are targeting hardware design, it is

important that common communication patterns in hardware be easily modeled.

Combinational data flow is such a pattern, necessitating support for conjunctive

composition. Further, conjunction is essential to model the all or none semantics

that frequently appear in hardware. Disjunction represents a very basic primitive

for choice and therefore must be part of any modeling methodology. As multiparty

synchronization is very easy and commonplace, there should be a simple way for the

designer to express it. Similarly, as variability allows a designer to easily express

shared resource contention, it should also be explicitly supported. Thus, the choices

of supported rendezvous features arise from practical concerns in the application of

this methodology. The languages discussed were mostly aimed at software implemen-
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tations, in which primitives like conjunction and multiparty communication are hard

to implement. As a result, the previously discussed languages only support a small

subset of rendezvous features.

The primary focus is in allowing the maximum expressive freedom in designing

systems while at the same time keeping in mind that the end result must be syn-

thesizable to hardware. The proposed modeling methodology shares features, such

as support for multipartiness, variability and free composition of conjunction and

disjunction primitives, in common with Haste. However, the use of scheduling and

the flexible dataflow make it more expressive than Haste. Of the modeling languages

discussed so far, the proposed framework is the most flexible in terms of allowing

variability, conjunction, disjunction and composition of both, as well as supporting

multi party rendezvous.

3.2 Description of Lyra

Lyra, the proposed approach uses rendezvous as the primary means of communica-

tion between networks of sequential processes. The two fundamental communication

primitives are a variable participant, bi-party rendezvous and a fixed participant,

multi-party barrier. The choice of these two types of rendezvous aims to meet the

common communication patterns in hardware systems. The bi-party rendezvous typ-

ically models bi-party synchronization, or resource transactions involving choice and

competition. Barrier models group synchronization among several processes. It is

often used to represent a clock or a reset signal. As shown previously, a barrier is not

essential and can be created using conjunction. However, as it represents a common

pattern used in hardware design, it is included in the methodology. Note we choose

to omit variable multi-party rendezvous since it is rarely useful in practice. If such a

rendezvous is ever desired, it can be implemented as a set of multiparty rendezvous.
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Figure 3·1: Synchronous data flow example

Processes are expressed as state diagrams, where the transition edges (TEs) are anno-

tated with the rendezvous they are participating in, as well as the associated semantic

actions and the conditions guarding the transition. For the process to transition along

a given TE, all rendezvous on the edge must occur and the Boolean expression on

the edge must be true. When a transition takes place, all statements on the edge are

evaluated and updated atomically. For maximum expressive power, we allow both

disjunctive and conjunctive composition of rendezvous. For data flow modeling, we

permit the following:

1. Bi-party rendezvous can carry bidirectional data flow.

2. Multi-party barrier can have one writer of data and multiple readers.

3. Data flows synchronously between the input and the output of a bi-party ren-

dezvous, and across conjunctively composed rendezvous. In other words, the

input data of one rendezvous may be forwarded to another rendezvous instan-

taneously. This is similar to the synchronous data flow of Esterel.

The synchronous data flow is illustrated by the example in Figure 3·1. Rendezvous

a1 forward a value of 10 to process M2, which immediately forwards it to M3 via a2.
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M3 increments the value, and send the result instantaneously back to M2, which im-

mediately sends it back to M1. Such synchronous data forwarding is useful to model

combinational paths across hardware components. It enables similar expressiveness

as synchronous languages such as Esterel for processes connected via conjunctive ren-

dezvous. Synchronous data flow may lead to combinational cycles, which we consider

invalid in our approach.

In the classic CSP theory, communication is solely via rendezvous. In practical

implementations, however, this is not convenient. In the proposed model, in addition

to rendezvous based communication, processes can also communicate via shared vari-

ables. The use of shared variables in our approach is partially motivated by the need

for model reactivity. For example, when a process is busy doing computation, it may

not react to queries from the environment. To realize reactivity, a separate process

that has access to its state can be used to respond to the environment. In theory,

it is possible to merge the two processes into one process and thus to keep the state

private. But such an approach is against the general engineering practice of sepa-

ration of concerns, and invariably results in huge state diagrams. After all, shared

variable is common in multithreaded programs. Thanks to the atomicity assumption

of state transitions in our approach, it is easy to resolve race conditions associated

with shared variables.

To simplify the modeling of large dataflow circuits, the proposed methodology sup-

ports the use of combinational datapaths, as well as combinational signals. These can

be used to provide a purely synchronous dataflow like Lustre [Halbwachs et al., 1991].

The combinational datapaths can be local to each module. The signals behave like

Verilog’s wires and can read from the datapath or registers, but cannot update a

register. This is to ensure that all race conditions arising from register writes exist

only inside processes, on atomic state transitions.
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Lyra, the proposed modeling methodology, provides several benefits compared to

existing rendezvous based languages, due to its support of multipartiness, variability

and free composition of conjunction and disjunction. Its support for instantaneous

synchronous data flow allows it to use model patterns similar to Esterel. Unlike

Bluespec, where rule composition is hard, Lyra makes it easy for designers to specify

the relationships between rendezvous. Compared to SystemC, the theoretical basis of

Lyra makes it easier to generate formal semantics for models. Further, Lyra retains

a clear path to synthesis of hardware.

However, these advantages come at the cost of the need of global scheduling. The

use of these features of rendezvous introduces nondeterminism in the system that

cannot always be resolved using local knowledge. Thus, in order to verify if a partic-

ular Transition Edge (TE) can occur, a Lyra model must check not only other roles

of a rendezvous, but also all rendezvous that are related to it through composition,

potentially involving the entire system. In the absence of a global scheduler, there

exists the possibility of scheduling deadlocks. For example, in the system in Figure

2·1, if all processes are in their left state, then without a global scheduler, the ren-

dezvous req1 is contested. Using only local knowledge, processes C1 and C2 might

independently come to the conclusion that req1 should occur. When the processes

attempt to make progress on this basis, a choice cannot be made on how req1 should

occur, and as a result, the system deadlocks.

3.3 The need for nondeterminism in Lyra

The need for nondeterminism for high level modeling is two fold. Primarily, nonde-

terminism hides the details of implementation of communication by handing off the

complexity of the problem to the tool rather than the designer. As a result, the de-

signer is able to express complex communication patterns in a simple fashion, rather
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than having to design a communication protocol. The second reason for the need

for nondeterminism is that when this degree of freedom is allowed in communicating

process based methodologies, nondeterminism helps reduce the level of complexity of

the design, and manages one of the main problems with the use of finite state machine

based approaches in modeling practical systems - i.e. state explosion. While the ef-

fects of state explosion are explored more in depth in chapter 6, the can be informally

explained as follows: When multiple state machines are communicating, the resulting

overall system, can in turn be expressed as a larger state machine. While the state

space for each component state machine is added to the overall state machine’s input

state space, the overall output function is the Cartesian product of the overall input

and the overall state spaces. As a result, the linear increase is amplified, and causes

an exponential increase in the size of the system description. The value of nondeter-

minism is in providing an exponential decrease in complexity [Edwards et al., 2001].

Very specifically, the presence of conjunctive and disjunctive compositions in a system

with inherent concurrency exponentially reduces the size of the system description

[Drusinsky and Harel, 1994].

3.4 Communication Scheduling

The expressive power of the model, represented by the freedom of composition of

disjunction and conjunction, as well as the inherent support for nondeterminism ne-

cessitates some external method to coordinate the communications between processes.

To solve the problems due to nondeterminism, Lyra implements a synthesis friendly

scheduler. A more detailed description of the scheduling framework is presented in

Chapter 4. Additionally, the formal model for the scheduler is discussed in Chapter

6. The impact of the scheduler is further discussed in the Lyra tool flow chapter. In

brief, the input Lyra system is analyzed to create a final graphical representation that
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captures the basic sources of nondeterminism in the system. This nondeterminism is

then resolved using a user defined policy, a pair of which are described in Chapter 4.

By partitioning the problem into a static analysis phase and a run time scheduling

phase, the resulting system is amenable to hardware synthesis, while retaining the

run time decision making ability of a software scheduler. Thus, the scheduler forms

the basis for both the hardware synthesis and the software simulation tools, which

are further described in Chapter 7.
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Chapter 4

Scheduling

In this chapter, we describe the novel communication scheduling mechanism that is

used for Lyra. We examine the constraints and properties that a communication

scheduler should posses. We then discuss scheduling policies that a scheduler can

use, and their impact on the communication patterns in the system

4.1 Overview of Scheduling

The expressive power of the model, represented by the freedom of composition of

disjunction and conjunction, as well as the inherent support for nondeterminism ne-

cessitates some external scheduler which can coordinate the communications between

processes. Such a scheduler, based on a given scheme, can provide us with the best set

of transition edges (TEs) to be simultaneously activated for the system to progress.

The definition of best set of TEs is done on the basis of some predefined scheduling

policy that allows us to choose between multiple sets of TEs. In the most general

case, the proposed modeling methodology needs a scheduler to progress. Other lan-

guages circumvent the need for a central scheduler by limiting the expressive power

of the system, by restricting the features of rendezvous. Another approach, used by

languages like Haste, is to relax the assumption that the system is free of scheduling

deadlocks.

The remainder of this section discusses the problem of scheduling and the prop-

erties of a scheduler. Section 5 presents the graphical methods, based on finding
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relationships between state transition edges in the TRG and between minimal candi-

date schedules in the ORG. The graphical methods deal with static analysis, i.e. the

analysis we can perform on a model, given no run time information. We discuss con-

siderations that go into the design of a scheduler and introduce two possible choices

for the scheduler policy. The analysis of the effects of these properties and the choice

of policies will be in Section 4.3 after we introduce the graphical notation which we

will be using for scheduler analysis. Finally, we will deal with dynamic scheduling, or

the selection of a schedule given a global state. Dynamic scheduling is the scheduling

we perform per run-time iteration of the system. Some of this work was previously

discussed in [Venkataraman et al., 2009b].

4.2 Properties of Scheduling

In general, the scheduler is a process which receives the set of process and the global

state as an input, and produces a set of TEs, which upon simultaneous occurrence,

result in the system transitioning to a new global state. Additionally, the scheduler

may contain within it a specific policy, which allows us to select between possible

sets.

Given the proposed modeling methodology, we can formulate some basic principles

that must be followed. Synchronicity is the notion that all process transitions for

every TE in a given set of TEs happen simultaneously, and thus atomically. All

data flow defined on the TEs in a set is synchronous, i.e. data can flow through

conjunctively composed rendezvous, from one TE to another, and such data flow is

evaluated in light of the synchronicity. As a result, we can consider that such a system

models combinational paths. The task of the scheduler is to allow the system to make

progress. It does so by generating a set of TEs. We can call a set of TEs, whose

domain is defined on any subset of the set of processes, a schedule for the system if
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it fulfills the validity constraints below.

1. Process Constraint: There can exist only one scheduled TE per process from

the current process state.

2. Participation Constraint : Every scheduled TE must participate in all ren-

dezvous that are annotated on it

3. Role Completion Constraint : Every rendezvous that is seen in the schedule

must have exactly 1 TE corresponding to each of its roles

4. Contention Free : There should be no contention of shared variables (i.e. two

TEs in the same schedule cannot write to the same register)

5. Condition Satisfaction : Every condition present on every scheduled TE must

be true

Certain properties of schedules are of interest. Two smaller schedules are said to

be compatible if the union of the two sets also satisfies all validity constraints. This is

easy to examine if the process domains of the two smaller schedules do not intersect.

In such a case, the schedules affect independent sections of the system. The union

of these two schedules will not violate any constraints. The schedule formed by the

union is said to be composed. On the other hand, if two schedules satisfy the validity

constraints, but the union of their set does not, they are referred to as incompatible.

A schedule can be called minimal if there are no schedules that can be composed

to create it. Thus, there is no smaller subset of a minimal schedule that can be a

schedule chosen instead of the given set. Similarly, we can define properties of any

good communication scheduler

1. Scheduler Validity : Any schedule produced by the scheduler should be valid

(i.e. satisfy the rules previously defined)
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2. Live-ness : If there exists at least one non empty schedule, the scheduler should

produce a non empty schedule.

The practical effect is that the scheduler is an external mechanism for removing

non determinism in the model. A scheduler then can be defined as an algorithm,

implementing a particular policy, which on being given as input a set of processes,

their state and produces as output a schedule, and satisfies the general scheduler

properties.

4.3 Policies

Unfortunately, as shown in [Joung and Smolka, 1996] the problem of creating such a

scheduler that must handle variability in the presence of free composition of disjunc-

tion and conjunction, implementing a general global policy is an NP hard problem.

In practical problems, such complexity is rarely fully reached. Further, the choice of

scheduling policy affects the complexity of the scheduler implementation. As a result,

heuristic based algorithms, or pruning based algorithms are capable of producing sig-

nificant speedups in practical models. Further, we will have a short discussion of

possible policies and analyze them using the graphical framework in order to better

understand their effect on the complexity of the scheduler.

Consider a process network consisting of rendezvous connecting communicating

processes, with each rendezvous having some non negative integer weight associated

with it, representing its importance. Each schedule will then have a weight, which is

the sum of the weights of the rendezvous activated in that schedule. In this context,

we can examine several policies for the choice of a scheduler. One possible policy

would be to select the valid schedule which contains highest total weight. This policy,

called the Global Weight Optimal (GWO) policy, appears simple, but has significant

complexity due to the global nature of the policy. In order to ensure global weight
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optimality, different combinations of schedules must be tested. As a simple example,

if we consider a system with 3 valid schedules S, S’ and S”, with weights such that

S > S’ > S”, then simply selecting S as the optimal schedule may not be enough. If

S’ and S” are compatible, but S is incompatible with the others, then it is possible

that a new schedule S”’ formed as composition of S’ and S” may have a higher weight

than S.

Another possible policy would be to guarantee that if two incompatible minimal

schedules are valid, the higher weight schedule would be chosen. In such a case, we

do not need to worry about considering all compositions of schedules in generating

new schedules. Furthermore, since the weights are known before hand, and the run

time evaluation of compositions is not being done, the problem of run time selection

becomes easier. Thus, the policy uses local weights to create a static order a priori,

which is used in the dynamic scheduling phase to determine the final schedule. Such

a policy, referred to as Static Local Weight Ordering (SLWO) policy, represents a

relaxed superset of the GWO policy, that simplifies the scheduler implementation.



57

Chapter 5

Graph Based Tools

In this chapter, we describe the novel graph based approaches that we created to cre-

ate a communication scheduler. We start by presenting the concept of a Transition

Relation Graph (TRG), and examine how we generate a set of simultaneous com-

munication patterns, called Minimal Candidate Schedules(MCS ). We then describe

the Occurrence Relation Graph(ORG), which used to identify all communication pat-

terns in the system. We examine how scheduler policies are mapped into the graphical

algorithms and affect the generation of the final communication scheduler.

5.1 Graphical Analysis of Process Networks

As discussed in Chapter 2, other rendezvous based approaches avoid using a scheduler,

instead choosing to restrict the expressivity of the language to remove nondeterminism

from the system. In order to understand and visualize the complexity of the problem

the scheduler must solve, it helps to examine the possible ways the system may

progress. This can be done by finding and examining relationships between all possible

valid minimal schedules. In order to perform this, we propose the following two step

algorithm. First we convert the input process network into a Transition Relation

Graph (TRG), which relates TEs and rendezvous and captures various compositions

in the original system. Based on the TRG, we compute a new graph, the Occurrence

Relation Graph (ORG), which relates all possible minimal candidate schedules. This

ORG can then be used to analyze the original system and the effects of various
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policies.

5.2 Transition Relation Graph (TRG)

The purpose of the transition relation graph is to establish occurrence relationships

between different state transition edges. There exist two types of TRG vertices,

transition vertices, which represent TEs from the original system; and rendezvous

vertices, which represent rendezvous. A transition vertex is annotated with a set of

rendezvous labels belonging to the corresponding transition edge. Each rendezvous

vertex is annotated with a rendezvous label. In order to capture the relationships be-

tween TEs, we define two kinds of TRG edges, a related edge (represented graphically

as a solid line) and mutual exclusion (ME) edge (represented by a dashed line). ME

edges can be divided into two basic types. Deterministic ME (DME) edges are those

that can be resolved using run time information of the system. For example, when

two TEs leaving the same state have mutually exclusive data conditions, we create a

DME edge. Nondeterministic ME (NME) edges on the other hand require run-time

decision by the scheduler for one of the transition edges to be selected. Such edges are

typically introduced due to variability and disjunctive composition. An NME edge

can also be introduced when both transition edges write to the same variable. Such

edges help to prevent race conditions in the system. In the TRG, we prefer DME

edges. Thus, if a pair of transition vertices is related by an NME edge, but can be

resolved using run time information, the NME edge is converted to a DME one.

Graphically, the TRG is the union of a bipartite graph containing solid edges

connecting rendezvous vertices and transition vertices, and a set of ME edges between

transition vertices.

To construct a TRG for a system, we first create transition vertices for all tran-

sition edges in the system, and rendezvous vertices for all rendezvous. As a small
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optimization step to reduce the number of vertices, we merge sets of transition ver-

tices that share the same set of rendezvous labels but are at different source states in

the same process. Since a process can only be in one state at a given time, the actual

transition edge that this merged vertex represents can be fully resolved at run time.

We then create the edges in the TRG.

1. For every rendezvous labeled on a transition vertex, draw a solid edge between

the corresponding rendezvous vertex and the transition vertex.

2. If two transition vertices share a common role of a rendezvous, draw an NME

edge between them. This captures the competition due to variability.

3. If two transition vertices share a common source state, draw an NME edge

between them. This edge captures the choice due to disjunction.

4. If two transition vertices from two processes write to the same variable, draw

an NME edge between them. This prevents race conditions.

5. If two transition vertices from two processes have mutually exclusive data con-

ditions, draw a DME edge if none exists, or convert the existing NME edge to

a DME one. This allows us to distinguish between ME relationships that can

be resolved at run time and those that cannot.

As a final pass, after all the edges are created, if any NME edge connects transition

vertices that belong to the same machine, but have different source states, the NME

edge is converted to a DME one.

We use the process network in Figure 2·1 as an example. For the clarity of

description, we make the reset edges explicit, and mark each transition edge with a

unique integer, as shown in Figure 5·1. The TRG diagram will refer to these numbers.

We start by converting all the state transition edges into TRG transition vertices

and all the rendezvous into TRG rendezvous vertices. This resulted in 16 transition
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Figure 5·1: Annotated Example Process Network

req1 rel1req2 rel2 reset

1 23 45 67 8 9||1011||1213||1415||16

Figure 5·2: Vertices in the TRG
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Figure 5·3: Adding Solid edges in the TRG

vertices and 5 rendezvous vertices. As our first optimization step, we merge the two

transition vertices labeled with reset of every process. This results in all the vertices

shown in Figure 5·2. The merged transition vertices are shaded diagonally. In effect,

we have a graph that can be divided into 3 types of vertices : Transition vertices,

Merged transition vertices and rendezvous vertices. The merging process helps us

reduce the size of the graph by reducing the number of nodes in the system. This

helps simplify the succeeding steps.

The next step is the addition of solid edges in the TRG, shown in Figure 5·3. In this

step, we create solid edges between the transition vertices and the rendezvous vertices

who share a common rendezvous. For example, since we can see that Transition Edge

3 contains a “req1-” role, we can create a solid edge between the vertex labeled 3 and

the req1 rendezvous vertex. Similarly, since TE 1 contains the conjunction of “req1+”

and “req2+” roles, we create two solid edges from the vertex labeled 1 to the req1

and req2 rendezvous vertices. Thus, we can note that for a transition vertex, the

number of solid edges from the vertex is the degree of conjunction of rendezvous

present on that TE in the original system. For a rendezvous vertex, the solid edge

degree simply represents the total number of roles of that rendezvous in the system.
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Figure 5·4: Final TRG

Note that since a rendezvous has at least 2 roles, and solid edges do not preserve

the role information, the solid degree of a node cannot be directly correlated to the

amount of nondeterminism present in the rendezvous.

Then, we create ME edges for this TRG, by examining pairwise all transition

vertices. Any two transition vertices can be related using mutual exclusion either

deterministically (DME) or nondeterministically (NME). The main cause of the non-

determinism arises from the input system description from the designer. As a result,

the nondeterminism in this graph is a direct transformation of the original system.

There are 3 main sources of nondeterminism. Firstly, nondeterminism caused by the

choice of exactly how to fire a rendezvous. This nondeterminism is easily identified

as two transition vertices sharing an identical rendezvous role label. For our example,

we can consider the vertices 1 and 5, both of which posses a common “req1+” role

label. As a result, in the TRG, we must introduce an NME edge between the two

transition vertices. A second source is the presence of disjunction, or choice within a

process. This is captured by examining the source states for the TE corresponding
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to the given transition vertices and creating NME edges between them if the source

states are identical. There is a caveat here, in that if there additionally exists a guard

condition that can be statically shown to be deterministically mutually exclusive, this

edge can be created as a DME edge instead. In this phase of the TRG construction,

determinism trumps non determinism. To clarify, if there exist a pair of transition

vertices that would be related as nondeterministically mutually exclusive (NME), but

due to statically exclusive guard condition will always provably be resolved, we can a

priori resolve the nondeterminism and promote the NME edge to a DME one. This

promotion is responsible for the reduction of scheduler nondeterminism and has con-

sequences for the ORG construction phase, as will be discussed later. In this example,

if we examine the pair of transition vertices 1 and 9|10, we can see that they share a

common source state of S0 in process C1. As there is no static guard condition, we

can draw a NME edge between the two vertices. The final source of NME edges is

from race conditions on shared variables. This is captured by examining the pair of

transition vertices to see if their semantic actions write to the same shared variables.

In this case too, if there is a precluding source of determinism, we can convert the

NME edge into a DME one. In this example, there are no such edges, but it would

not be difficult to see why this is necessary. Adding all the ME edges gives us the

TRG shown in Figure 5·4.

The TRG finds relationships between all Transition Edges in the system. Doing

this allows us to begin examining possible valid minimal schedules in the system. We

can see that each solid connected TRG component represents one possible schedule

for the system. The algorithms for doing this are discussed in the remainder of this

section.

From the construction algorithm, it is easy to see that the size of the TRG is

well bounded for a given system description. The number of vertices in the TRG is
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always no higher than the sum of the number of transition edges and the number

of rendezvous in the system. The number of solid edges in the TRG is bounded by

the total number of rendezvous labels on all transition edges. However, the number

of NME edges added due to variability and disjunction are quadratic with respect

to the degrees of variability and disjunction. In practical systems, these sources of

nondeterminism are usually limited. The number of DME edges is dependent on the

model and is hard to quantify without knowledge of the actual system. However,

since DME edges help us eliminate occurrence choices, they simplify the analysis of

the system. Thus, a large number of ME edges at this stage is beneficial for our

approach. Additionally, we also note that all TEs belonging to the same process form

a ME clique. In this clique, TEs that are nondeterministic (via disjunction from some

state) are related via NME edges, and all other edges are DME.

5.3 Minimal Candidate Schedules (MCS)

A minimal candidate schedule(MCS) is a set of transition vertices that form a valid

schedule for the system and are minimal, i.e. there is no nonempty subset of the

MCS which is also a valid candidate schedule. While further discussion of the MCS is

present in Chapter 4, it is easy to examine the effect of the MCS in graphical terms.

As a refresher, an MCS must satisfy the following properties :

1. Process Constraint: There can exist only one scheduled TE per process from

the current process state.

2. Participation Constraint : Every scheduled TE must participate in all ren-

dezvous that are annotated on it

3. Role Completion Constraint : Every rendezvous that is seen in the schedule

must have exactly 1 TE corresponding to each of its roles
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4. Contention Free : There should be no contention of shared variables (e.g. two

TEs in the same schedule cannot write to the same register)

An important fact to keep in mind here, is that by definition, an MCS does not

have any requirement on the condition satisfaction criterion, the idea behind the

MCS is that the schedule can become valid. Thus, the condition may be dynamically

satisfied, i.e. satisfied at some future run time iteration.

In order to find all candidate schedules in the system, we need to examine the

TRG that has been created. Since the TRG is statically generated, TRG vertices with

data conditions will create candidate schedules due to the lack of run time information

to check the data conditions. This candidate schedule will have to be evaluated at

run time to check if all the validity constraints are met for it to become a valid

schedule. If so, the candidate schedule is said to be enabled. An MCS is observed to

be a solid-edge connected sub-graph of the TRG which satisfies the following three

conditions.

1. For every transition vertex in the sub-graph, all its solid edges must be included.

2. For every rendezvous vertex in the sub-graph, we must include as many solid

connected neighbors as it has roles.

3. For every sub-graph that is selected, there should be no two vertices connected

in the original TRG by an ME edge.

Together, these three rules help find all minimal candidate schedules in the system.

The first rule ensures that all rendezvous on a transition edge are included, i.e. that

the set of transition vertices meets the Participation Constraint. We can further

observe that this rule encapsulates complexity from conjunctive composition, as that

would cause transition vertices to have more than one solid neighbor.
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The second rule ensures that the sub-graph contains as many transition vertices

as the roles the rendezvous has, i.e. the Role Completion Constraint for the set of

transition vertices is met. Now, we must note that this step may not be trivial, as it

is possible that the rendezvous can satisfy a role using multiple transition vertices.

The third rule ensures that all transition vertices in the sub-graph are compatible.

During the creation of the TRG, we note that all TEs belonging to one process are

related either via DME or NME edges, as a result, we satisfy the Process constraint.

We can also note that the creation of NME edges during the TRG construction

ensures that the third rule will also ensure that candidate schedules are free of resource

contention, variability and disjunction. As we can see, the only remaining property

to be checked for validity of the candidate schedule is the condition satisfaction.

However, this might depend on run time information, and cannot be done a priori.

The algorithm for the constraint based computation of the MCS is based partly on

classical backtrack based approaches, with some heed paid to dynamic programming

and early pruning. This algorithm, referred to as the wavefront algorithm depends

on the definition of a few concepts.

A wavefront is described as a set of TRG vertices of the same type that represent

the active vertices that are being processed at each phase of the algorithm. Each

wavefront is used to generate its successor, starting from an initial seed point. A

terminal wavefront is a wavefront that has no successor. This history of wavefronts

is called the path of a wavefront. Effectively, the path of a terminal wavefront will be

a solid connected component.

The algorithm can be described in simple terms as follows. The problem is broken

into solid connected components, temporarily ignoring the ME edges between them.

Then, we perform a depth first search of the TRG beginning at an arbitrarily selected

initial transition vertex, but in sets of vertices called wavefronts. At each step in the
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computation of the children, we avoid the sets that will cause the component to be an

invalid schedule, which is easily seen as a ME edge in the TRG. Once we cannot make

any further progress, we must stop, and if some basic conditions are satisfied, add

the entire set of transition vertices in the path into a MCS for the system. Finally,

in order to ensure all possible MCS are captured, we must repeat the algorithm with

the initial point set to each of the ME neighbors of the original choice.

1. Divide the graph into solid connected components

2. Begin at any Transition vertex, as the initial wavefront

3. Mark all vertices as seen

4. For a wavefront containing transition vertices, compute the next wavefront as

all solid connected unvisited Rendezvous vertices

5. For a wavefront containing rendezvous vertices, compute a set of next wavefronts

such that there are no mutual exclusion edges between them and vertices already

in the path

6. Repeat until the wavefront becomes terminal

7. If the path of the terminal wavefront satisfies the conditions, add it to the list

of MCS

8. Unmark all the vertices in the current wavefront and return to the previous step

in the path

9. Repeat for all mutual exclusive neighbors of the original starting node

10. Repeat for all disjoint components



68

9||10

reset

11||1213||1415||16

req1

1

req2

3 7

rel1

24 8

rel2

req1

3 5

rel1

4 6

Figure 5·5: Minimal Candidate Schedules in the system
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For the example network in Figure 2·1, we can examine the wavefront algorithm

in action. Let us say we begin by examining the TRG. We can see that there are 3

solid connected components as seen in Figure 5·3. Let us begin with the component

containing the transition vertices 3,5, 1 and 7. Let us begin with the choice of vertex

3 as the initial vertex for the first wavefront. Thus, we compute the first wavefront

to contain the vertex 3, and mark 3 as visited. The next vertex must contain req1

and as it has not been visited and is compatible with the existing path, we create the

next wavefront containing req1. We now mark req1 as seen, and since this vertex is a

rendezvous, we examine the number of roles required. As req1 is a biparty rendezvous,

we need to determine how to compute the next wavefront. We can see that there exist

2 solid neighbors of req1, 5 and 1 which are compatible with the path so far. However,

5 and 1 are NME related. As a result, there are 2 possible wavefronts we can progress

along. The first wavefront will contain only 5. This wavefront is terminal as there are

no unvisited solid neighbors. Additionally, the conditions for role satisfaction are met

by the path {3, req1, 5}. Thus, we can create the MCS {3, 5}. Now, we unmark node

5 and return to the previous wavefront in the heirarchy. At this point, we make the

second choice, i.e. the next wavefront as 1. We mark 1 as seen, and note that there is

only one way to make progress, i.e. wavefront to req2 and then to 7. As a result, the

path for the terminal wavefront at transition vertex 7, {3, req1, 1, req2, 7} is created as

a new MCS {3, 1, 7}. Now, all these wavefronts have been simple, i.e. have contained

only one vertex. If the choice of initial vertex had been transition vertex 1, then the

algorithm would have proceeded differently. The first wavefront would have been 1.

The next wavefront would have been {req1, req2}. The successor wavefront to this

would be the wavefront 3,7. As this is a terminal wavefront, and the path meets the

conditions, {1, req1, req2, 3, 7} would be created as a new MCS. Note, that this is the

same as the second MCS created from the choice of initial vertex as vertex 1. Now,
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since there was a ME neighbor of the source vertex, i.e. 5, the algorithm is repeated

starting at that vertex. For this case, the next wavefront is {req1}, which in turn has

the terminal successor wavefront {1}, giving rise to the MCS {5, req1, 3}. Thus, the

choice of the starting point does not affect the final result, but does affect the order

of the generation of MCS. The final MCS are shown in Figure 5·5.

An important fact to note is that the wavefront algorithm divides the TRG into

components based solely on solid edges. Thus ME edges between solid components

are ignored for this phase of the scheduler construction. However, these edges must

not be deleted as they represent important information about the nondeterminism

the scheduler must resolve. The information about these edges thus is still preserved

in the TRG and will be used in the next step. The reason we can ignore them in

this step is that the ME edges between solid connected components are effectively

edges that affect the run time decision of arbitration between schedules, whereas ME

edges that exist within a solid connected component are the edges that determine

whether two edges can exist in a schedule and are thus static. Thus, we can say that

ME edges that affect the static portion, i.e. whether a set of TEs creates a schedule

is always local to a solid connected component. ME edges that affect scheduling

nondeterminism on the other hand (i.e. choices between schedules) can be either

local (i.e. contained within a solid connected component) or remote (i.e. between

solid connected components).

5.4 Occurrence Relationship Graph (ORG)

The Occurrence Relationship Graph relates all minimal schedules. Each vertex of the

ORG is a unique minimal candidate schedule for the system. Each ORG vertex can

also be assumed to carry a weight, which is the sum of the weights of its component

state transition edges. The vertices of the ORG are related via ME edges of different
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1,3,7

3,5

2,4,8

4,6

9||10, 11||12, 

13||14, 15||16

Figure 5·6: Occurrence Relationship Graph

types. Unrelated vertices can be considered to be compatible schedules and thus

capable of occurring together.

We can construct the ORG by first determining all candidate schedules in the

system via enumeration. We then relate the candidate schedules by carrying the

NME edges in the TRG to the ORG. Thus, if two schedules contain TRG vertices

that are related in the TRG via a NME edge, we can draw a ME edge (denoted as a

black dashed line) between the two ORG vertices. DME edges from the TRG do not

need to be carried into the ORG as they can be resolved at each run time iteration

by the state of the machine or the dataflow conditions for a given schedule. Thus,

they represent relationships which do not need to be arbitrated by the scheduler.

If two schedules can be multiply related, i.e. they contain one pair of TRG vertices

related by DME and another by NME, then the NME relationship dominates the

DME. Thus, the resulting ORG vertices will remain connected via an NME edge and

will require the help of the scheduler at each run time iteration.

In the case of the system in Figure 5·1, we can walk through the generation of

the ORG. Let us consider pairwise all MCS created using the wavefront algorithm.
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In this situation, we can draw NME edges between any 2 MCS that were so related

in the original graph. If we consider {1, 3, 7} and {3, 5}, we can note that the TRG

shows a NME edge between 3 and 5. As a result, the two MCS are ME related in the

ORG. Similarly, {2, 4, 8} and {4, 6} are ME related in the ORG. Finally, the MCS

corresponding to the reset rendezvous, i.e. {9|10, 11|12, 13|14, 15|16} is ME related

to all other MCS from the relationship seen in the TRG. In the case of unrelated

MCS, such as {3, 5} and {4, 6} there is no relationship between the MCS as there is

no mutual exclusion between the TRG vertices. The final ORG is shown in Figure

5·6. For the sake of simplicity, each ORG vertex is annotated only with the numbers

of the TRG vertices in the related candidate schedule

An important fact is that the ORG only contains one type of edge : Nondetermin-

istic Mutual exclusion. Thus, every edge in the ORG represents nondeterminism in

the system. Additionally, unrelated MCS in the ORG are assumed to be concurrent,

as they may be active independently. The ORG is the graphical representation of

the nondeterminism present in the system. In the case of the formal representation

of the scheduler is explained in Chapter 6. As a way of linking the two explanations,

the MCS nodes together represent the input set. The Acceptable set is the set of all

subgraphs of the MCS such that no two MCS are mutually exclusively related.

5.5 Policy Implementation

This work proposes to use a scheduling algorithm based on the ORG. Any such

algorithm must satisfy the live-ness and validity criteria proposed in Section 4.2.

One way such an algorithm would work is to implement the policies in such a way

that the general scheduler properties are met by the policies themselves. In this

case, the scheduling algorithm consists merely of providing inputs to and using the

outputs of the scheduling policy to update the global state. This is the scenario being
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considered in this work. The role of a scheduler is to resolve nondeterminism in the

system, and select a set of transitions to activate. Since transitions are grouped into

minimal candidate schedules in ORG, and run-time nondeterminism are preserved

in the ORG as ME edges, the ORG is a suitable tool for the scheduler to rely on.

To simplify the task, the scheduler can first prune the ORG by excluding candidate

schedules that are invalid at the current global state. As a process can only be in

one state at a time, all candidate schedules involving transition edges that are not

related to the current states can be eliminated from consideration. Similarly, since

each minimal candidate schedule is free of nondeterminism within itself, the complete

data flow on the transition edges are deterministic. Thus, all Boolean conditions can

be evaluated. If one transition edge has a false condition, the ORG vertex is disabled.

The validity of candidate schedules is determined using this run time information. For

example, in Figure 2·1, when the variable timeout is false, all ORG nodes containing

that transition edge are disabled.

5.5.1 Global Weight Optimal Policy

The Global Weight Optimal (GWO) policy is the policy where the scheduler selects a

schedule, which may be composed of several minimal schedules, such that the weight

of the selected schedule is the highest possible. We need to compute the maximum

weight set of enabled schedules at each run time iteration. We perform this by first

encoding the ORG into a tree based structure statically, and then using run time

information to selectively enable or disable certain candidate schedules. A single pass

evaluation is then used to compute the next valid schedule. In order to compute the

best set of minimal schedules to be chosen, we can create a decision tree. This tree

will contain 3 types of nodes.

1. Internal decision nodes represent points where a decision will be made whether

a particular schedule is selected or not.
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2. Internal join nodes connect schedules that are independent.

3. The leaf nodes of the tree are schedules.

BUILD(G, Vpin)

if numvertices (G) = 1 then

l =new leaf node (V(G))

return l

else if G is disconnected so that G =
⋃

Gi then

j =new join node

for all Gi do

add BUILD(Gi, Vpin) as child to j

end for

return j

else

find v ∈ V (G) of maximum ME degree st v /∈ Vpin

d =new decision node (v)

G′ = G\ ME neighbors of v

G′′ = G \ {v}

add BUILD(G’, Vpin ∪ {v} ) as taken child to d

add BUILD(G”, Vpin ) as untaken child to d

return d

end if

The algorithm starts with an input ORG. It adds all disconnected components as

children of a join node. For each connected component, it selects the vertex with the

highest ME degree. It then creates a decision node in the tree around this vertex.

The two children of the decision node represent the two possibilities, one child, called

the taken branch, where the vertex is present, and as a consequence, all ME neighbors
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9||10, 11||12, 13||14, 15||16

1,3,7

1,3,7 3,5

Taken Untaken

Taken Untaken

9||10, 11||12, 

13||14, 15||16

2,4,8

2,4,8 4,6

Taken Untaken

Figure 5·7: Tree for GWO policy scheduling

are absent. And the other, called the untaken branch, where the vertex is absent.

In both cases, new subgraphs of the ORG are generated and the partition process is

continued until the ORG has exactly one vertex remaining. When this happens, the

vertex is added to the tree as a leaf node.

The algorithm is described in pseudo code above. It accepts G=(V,E) and Vpin,

where G is an ORG subgraph, V is the set of its vertices and E is its set of edges, and

Vpin is a set of pinned vertices. Initially, G is the entire ORG and Vpin is empty.

As the algorithm runs, G empties while Vpin increases in size. Since the algorithm

implementing this policy is reductive, i.e. every operation reduces the size of G, the

algorithm will terminate after execution. In the case of the example in Figure 5·1 the

decision tree as shown in Figure 5·7. The internal nodes represented by a square are

decision nodes. The internal nodes represented as a circle with a cross though them

are join nodes. The ovals are leaf nodes.
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The per iteration selection task then consists of first enabling all candidate sched-

ules based on the current global states and condition satisfaction rules. Then, we can

compute the weights in a bottom up manner. Decision nodes will add the weights of

their children. At pick nodes, we implement our policy by picking the child which has

the higher weight. Thus, at the root of the tree we obtain the final set of schedules

which satisfy the GWO policy for a given iteration. The software implementation is

an algorithm that accepts the statically generated tree (T) and the global state (S) as

inputs and produces a schedule as its output. It runs the function enable that enables

the TRG vertices, and, by implication, the ORG vertices, based on the current state

and the value of the guard conditions. The getWeight helper function returns the

sum of weights of all enabled schedules in a subtree rooted at a given vertex.
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GWOScheduler (T, S)

enable(T,S)

return traverse(root(T))

traverse(v)

if v is a normal leaf then

return {v}

else if v is pruned then

return

else if v is join then

for each child Ci of v do

result = traverse(Ci)

end for

return result

else if v is decision then

resultt = traverse(Ctaken)

resultu = traverse(Cuntaken)

takenwt = getWeight(resultt)

untakenwt = getWeight(resultu)

if takenwt > untakenwt then

return resultt

else

return resultu

end if

end if

Compared to the SLWO policy discussed next, the GWO policy selects at a global

scope and this has more complexity. This form of scheduling is more suitable to
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2,4,8
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13||14, 15||16

Figure 5·8: Directed Acyclic Graph for SLWO policy scheduling

smaller process networks.

5.5.2 Static Local Weight Ordering Policy

Static Local Weight Ordering is a much easier policy to implement. In this case,

the scheduler can fully prioritize all vertices in the ORG according to user provided

hints (e.g. weights for rendezvous, or for transition edges). The scheduler will always

pick a maximum set of ORG vertices, subject to the following rule: if a ME edge

exists between two enabled vertices, pick the one with higher priority. In the example

ORG in Figure 5·6, when all processes are at their left states, the right two vertices

are disabled due to the current states. If the vertices are prioritized based on the

number of transition edges included in each, the middle vertex has the highest priority,

followed by vertex (1,3,7). If the variable timeout is true, then the middle vertex will

be selected. Due to the ME edges, the left two vertices are disabled. If timeout is

false, the (1,3,7) vertex is selected. We can convert each ME edges in ORG into

directed edges from the higher priority vertex to the lower priority one. The whole

ORG then becomes a directed acyclic graph (DAG) as shown in Figure 5·8.
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The per iteration selection task then consists of first enabling all candidate sched-

ules based on the current global states and condition satisfaction rules. Then, we

suppress all schedules according to the directed edges in the ORG. Thus, an ORG

vertex with a higher priority will supersede one with a lower priority. In the exam-

ple above, if all schedules are enabled, then the (9||10, 11||12, 13||14, 15||16) ORG

vertex, corresponding to the reset rendezvous will disable the others. If the (1,3,7),

(3,5), (2,4,8), (4,6) schedules were the only ones enabled, then the priority rules would

cause (3,5) and (4,6) to be disabled. Thus (1,3,7) and (2,4,8) would be selected for

occurrence. As each directed edge determines how to disable NME related schedules,

the resulting scheduler will always remove all non determinism from the system.
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Chapter 6

Formal Notation

In this chapter, we will examine the current ways finite state machine based languages

are formally represented and extend the definitions to include the use of rendezvous as

a communication mechanism. Further, we will develop use the notation on the state

machines in Lyra and examine their effects on the formal notation of the graphical

tools developed in Chapter 5. Finally, we will examine the formal notation for a

complete Lyra model, including the scheduler.

6.1 Basic Concepts

Finite State Machines (FSMs) are a well studied branch of digital design. From their

inception, they have been defined using formal mathematical models. Informally, a Fi-

nite State Machine is a process containing a set of states and transition between states.

At any given instant in time, the FSM is in exactly one state. To make progress, the

FSM computes the next state it should transition to, based on its definition and

atomically activates that transition, updating its state and producing some output.

Classically, a Finite State Machine is defined as a 6 tuple [Hachtel and Somenzi, 1996]

〈I, S, δ, S0, O, λ〉

where:

I is the input alphabet, i.e. set of input values

S is the set of states
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δ : S × I → S is the next state function

S0 ⊆ S is the set of initial states

O is the output alphabet

λ : S × I → O is the output function

Here, we are making a few assumptions. Firstly, this representation is that of a

Mealy type machine, where the output is a function of the state and inputs. While

there are equivalent transformations from Mealy to Moore machines, it is easier to

deal with Mealy machines as the choice of state transition affects the output in cases

of nondeterminism. The next assumption is that both I and S are finite, non empty

sets. This follows from the basis of definition of state machines. In this section, as

previously, we will be graphically presenting state machines as state transition dia-

grams. Furthermore, we are assuming that the FSM being described is deterministic

and completely specified.

While this a sufficient description of a standalone FSM, for practical applications,

we need to extend the definition of an FSM to allow for transitions and local vari-

ables. Here, we can define an Extended Finite State Machine (EFSM) as follows

[Lee and Yannakakis, 1996] :

〈I, S, T, V, S0, O〉

where:

T is the finite set of all transitions

V is the finite set of all variables

Each transition t in T is defined in turn by the tuple :

〈Ssrc, Sdst, Iin, Oout, Ct, At〉

where:

Ssrc ∈ S is the source state for the transition
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Sdst ∈ S is the destination state for the transition

Iin ∈ I is the input value

Oout ∈ O is the output value

Ct is condition predicate on variables for the transition. Ct (V ) is either TRUE or

FALSE, depending on whether the condition for the transition are satisfied.

At is the action on variables for the transition. At (V ) will assign a value to each

element in the set V

As we note, EFSMs and FSMs differ in some crucial ways. Firstly, EFSMs now

have the notion of local variables, and correspondingly semantic actions and guard

conditions. The local variables act as data storage within a processes, allowing the

modeling of real hardware systems, where a process needs to retain state information

and data. Semantic actions, defined as At : V → V are basically present to allow

the assignment of new values into the local variables. In general, we can assume that

Vi = At (Vi) where At (Vi) is an arbitrary function of Vi. More interesting is the case

of the condition predicate. We can informally define the predicate of a transition as a

“guard condition” or, the condition, which allows the transition to be used as a valid

transition in the EFSM if and only if Pt (V ) = TRUE. As a further definition, we

can define XPt
= {Vi : Pt (Vi) = TRUE} as the Valid Variables of transition t.

We changed the way transitions are defined. We could equivalently describe FSMs

as the 5 tuple:

〈I, S, V, S0, O〉

where:

T = δ · λ

So far, we have been considering deterministic FSMs, i.e. FSMs where there is

exactly one state for any given pair of current state and input. In effect, this implies

that there are no two transitions that share the same source and input value but have
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different destination states. We can express this as

if
(

tiSsrc
= tjSsrc

ANDtiIin = tjIin

)

⇔ i = j

or alternately, we can say that for a given tuple (s, i) such that s ∈ S and i ∈ I

the δ function, presents a single element s′ where s′ ∈ S.

For nondeterministic FSMs, we do not have this restriction. Thus, it is possible for

multiple transitions to have the same source state and input value, but have different

destination states. The addition of local variables does not affect this definition except

to add an extra degree of flexibility. Thus, for nondeterministic EFSMs, multiple

transitions may share the same source state and input alphabet, but may vary in

one or more of : destination state, condition predicate, or semantic action. Another

difference between a nondeterministic EFSM and a deterministic EFSM is in the

property of the condition predicate. In deterministic EFSM, the condition predicates

of any two transitions must be mutually exclusive. This follows from the definition of

a deterministic EFSM, i.e. for any given state and input, there must exist only one

transition that can be used. For a nondeterministic EFSM, the condition predicate

may not be mutually exclusive.

6.2 Lyra Formalization

As might be intuitively obvious, Lyra models correspond closely to the nondeter-

ministic FSMs previously proposed. The main difference, of course, is in the use

of Rendezvous, the synchronous communication construct[Edwards et al., 2001]. In

general, a Lyra system can be defined as the tuple :

{P,R,GI,GO}

where:

P is the set of processes
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R is the set of rendezvous

GI is the set of global data inputs

GO is the set of global data outputs

As a quick note, the inputs defined as GI and GO are purely signal based. Fur-

thermore, the inputs in GI cannot directly write to a register. They must be read

by a semantic action on a transition that then performs the write to a state holding

element. The outputs in GO are either the output of a register, potentially involving

additional combinational logic, or directly generated as combinational functions from

GI. The primary item to note is that no element in GI or GO is a rendezvous.

Each process p in P is similar to an EFSM and can be described as :

p = 〈I, S, T, V, S0, O,DP 〉

where each term retains its meaning from the EFSM description. In this case,

the inputs and outputs I, and O, correspond to the signal inputs and outputs for the

process. In addition DP refers to the combinational datapath present in the process.

The datapath produces an output at every iteration and is only allowed to read from

local variables. The output values are thus always a combinational result based on the

inputs and the value of the variables. This statement is basically defined as follows :

DP : I × V → O

Each transition t in T is defined as follows :

t = 〈Ssrc, Sdst, Iin, Rti , Ct, At, Rto〉

where:

Ssrc is the source state

Sdst is the destination state

Iin is the set of input values from the input signals to the process
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Ct is the condition predicate for t

At is the set of semantic actions notated on t

Rti is the set of rendezvous role labels that act as inputs for the semantic actions

Rto is the set of rendezvous role labels that are outputs for the semantic actions

As we can see, the process definition now has multiple possible sources and desti-

nations of data. While the existing sources I and O are used to signify the traditional

signal based communication, the rendezvous based communication is primarily shown

on the transitions. Iin is a set of process input values that are used by this transi-

tion. For the condition predicate to be true, we must now add the conditions that all

rendezvous in the set Rti ∪ Rto must be able to commit to occur. Furthermore, the

semantic actions are now made up of two portions - the updates to the variables and

the updates that must be written to the the elements of Rto . More formally,

Ct =



















TRUE :
Ct (v) = TRUE ∀v ∈ V&

commit(r) = TRUE ∀r ∈ {Rti ∪Rto}

At =



















v = At (v) ∀v ∈ V

r = At (r) ∀r ∈ Rto

A rendezvous is a communication construct that can have n roles. Each role is

associated with a unique label. By design, Lyra systems have rendezvous role labels

present on transition edges. For the rendezvous to be enabled, a set of valid transitions

must be chosen such that exactly one label for each role is present. Also, for the guard

condition on a transition to be satisfied, all rendezvous for all role labels present on

the transition must be committed to occur. This means that in the remainder of the

system, transitions that satisfy this role completion of the chosen set of rendezvous

must be selectable. Now, we can formally define a rendezvous r in R as follows:
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r = 〈RL0 . . . RLn, δr〉

where: RLi is a set of Rendezvous Role Labels corresponding to role i. Each

element of RLi is a transition.

δr is a function that maps valid sets of transitions that satisfy a rendezvous’

conditions.

6.3 Graphical Tool Algorithms

As we have discussed in Chapter 4, the scheduler is a very important part of what

makes Lyra unique among rendezvous based approaches. In this section, we will

quickly examine the graphical tools used to create the scheduler and examine some

bounds on the complexity of the description.

The scheduling algorithm is best expressed as the following steps :

1. Creation of TRG

2. Creation of MCS

3. Creation of the ORG

The basic steps to create the TRG can be summarized as follows :

1. Create a Rendezvous vertex for each rendezvous

2. Create a Transition Edge vertex for each state transition

3. Merge all Transition vertices having the same edge labels, in the same process

with different source states

4. Create Solid edges between Rendezvous vertices and the Transition vertices

having those rendezvous roles
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5. Create Mutual Exclusion edges between two transition edges leaving the same

state, two transition edges having a common role label and two transition edges

that write to the same vertex

At the end of this, we create a graph GTRG (VTRG, ETRG) where VTRG is the set

of vertices of the TRG. By construction, we know that

|VTRG| ≤ |R|+
∑

∀p∈P |Tp|

Furthermore, the number of edges in the TRG can be expressed as a sum of the

number of solid edges and the number of mutual exclusive edges. The number of

solid edges is exactly equal to the number of rendezvous role labels in the system.

The number of mutually exclusive edges is a conditional sum, bounded in the worst

case as a fully connected subgraph. A more precise count however is preferable. We

can compute the number of transitions leaving the same state and the number of

transition edges having the same role label. For now, let us assume there are no

transition vertices that write to the same resource. Then we have,

|ETRG| ≤
∑

∀r∈R (
∑

n |RLi|) +
∑

∀r∈R

(
∑

n
1

2
· (|RLi|) · (|RLi|+ 1)

)

+
∑

∀p∈P

∑

∀s∈S
1

2
· (|Tp,s|) (|Tp,s|+ 1)

where Tp,s is the set of transitions in process p that have a source state s

The next step is the identification of solid connected components in the TRG to

create the Minimal Candidate Schedules (MCS). This process occurs using the wave-

front algorithm described in Chapter 5. In brief, the algorithm can be summarized

as follows:

1. Divide the graph into solid connected components

2. Begin at any Transition Edge vertex.
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3. Add all solid connected unvisited Rendezvous vertices to the path

4. For each newly added Rendezvous vertex, compute a set of next Transition

Edge vertices such that there are no mutual exclusion edges between them and

vertices already in the path

5. Repeat until all reachable Transition Edge vertices are seen

6. Repeat for all mutual exclusive neighbors of the original starting node

7. Repeat for all disjoint components

We will attempt to prove the complexity bound on this algorithm in terms of the

TRG graph. Let us begin by considering some edge cases. If the original structure

is a long chain of conjunctively composed rendezvous, i.e. if each process has one

state, with one transition edge, and the whole system contains n processes, and n− 1

rendezvous, then we can say that the running time for the algorithm is O (n). Now

consider a case where we have a system with only 2 processes, but n rendezvous

communicating between them such that the n rendezvous are nondeterministically

mutually exclusive. Such a case may be easily shown to be analogous to the situation

where there are n transition edges that use the same rendezvous to communicate be-

tween the 2 processes. To be more specific, we are considering a biparty rendezvous

which has n “+” role labels and 1 “-” role labels, and thus has a total of n commu-

nication patterns. In this situation, the running time of the algorithm is O (n). If we

consider a case where we have a single biparty rendezvous communicating between

2 processes with n “+” role labeled nondeterministic mutually exclusive transition

edges in one process and a similar n “-” role labels in the next process, i.e. the ren-

dezvous has n2 ways of occurring, then the running time of this algorithm is O (n2).

More generally, the running time of this algorithm can be defined using the fol-

lowing recurrence relation



89

T (n) =







































Θ(1)n = 1

T (n− 1) + deg (n)n is odd

Vvalid

d

d
(T (n− d) + d)n is even

While the general solution to this may seem to be exponential, in practice, it is much

more restricted. The presence of Mutual Exclusion both deterministic and static can

be used to remove complexity at each step in the wavefront computation. As a result,

it is not simply sufficient to examine the entire state space. The presented recurrence

relationship represents a loose upper bound on the running time, as any tighter bound

will necessarily depend explicitly on the input design.

An alternate way to examine this is that in the worst case, the number of MCS is

bounded by the powerset (i.e. set of all sets) of the number of transition vertices in

the TRG. As a simple pruning mechanism, sets that contain just a single element will

be disregarded, as they cannot form valid schedules. We can also disregard sets that

may contain mutual exclusion. As a simple number, this is equal to the number of

mutually exclusive edges in the TRG. This loose bound is in practice further reduced

by the number of roles that each rendezvous has, a factor that is not expressed here.

This can be expressed as :

|MCS| ≤ 2
∑

∀p∈P |Tp| −
(

|ETRG| −
∑

∀r∈R (
∑

n |RLi|)
)

−
∑

∀p∈P |Tp|

After the generation of the minimal candidate schedules(MCS), these can be re-

lated by pairwise examination of the TRG for nondeterministic relationships. By

applying these relationships, we can create the Occurrence Relationship Graph, de-

fined as GORG (VORG, EORG). From the construction algorithm, we know that VORG

is the number of MCS generated by the wavefront algorithm. As a very loose up-

per bound, we know that |VORG| = |MCS|, or that the total number of candidate
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schedules must exist within the power of the transition vertices in the TRG. As these

come from the description of the system, we can say that the number of vertices in

the ORG is a power set of the union set of all transitions. We can give a very loose

bound on the number of edges in the ORG as the square of the number of vertices,

i.e. the case where the ORG is a fully connected graph. In more practical terms,

each edge in the ORG is caused by a Nondeterministic Mutual Exclusion edge in the

TRG. In turn, each mutual exclusion edge in the TRG is caused by an edge in the

original system description. In order to create a tighter upper bound, let us consider

the sources of nondeterminism separately.

For nondeterminism arising from variability, i.e. from cases where two transitions

are sharing the same rendezvous role label, we can compute its contribution to the

edge count as the worst case, where the role labels for the rendezvous create a situation

where the number of ORG nodes is in the product space of the roles, and the resulting

ORG is fully connected.

EORG,v =
∑

∀r∈R

∏

∀rl∈RL (|rl|
2)

Similarly, we can consider the contribution of disjunction, i.e. the cases where

two transitions share the same source state. In this situation, we can compute the

number as the product space of the number of transitions that share the same source

state

EORG,d =
∑

∀p∈P

∑

∀s∈S

∏

∀t∈Tp,s
|VORG,t|

where

VORG,t is the set of vertices in the ORG that contain the transition t

In a similar fashion, the number of edges arising from race conditions on shared

variables can be found as:

EORG,r =
∑

∀p∈P

∑

∀v∈V |VORG,v|
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where

VORG,v is the set of vertices in the ORG that write to variable v.

The total number of edges in the ORG, thus can be given as :

EORG ≤ EORG,d + EORG,t + EORG,v

The reason this might be less is clear. The case for the variability based non

determinism assumes the worst possible case. Furthermore, some of the edges may be

double counted, as the graph is not a multigraph, and thus multiple mutual exclusion

edges from the TRG may result in only one edge in the ORG. Finally, the ORG does

not include deterministic mutual exclusion, i.e. edges where the guard conditions

provably cannot overlap. As a result of these factors, the number of edges in the

ORG will be much lower than the bound in practical designs.

6.4 Scheduler Description

As we have discussed in Chapter 4, the scheduler is a very important part of what

makes Lyra unique among rendezvous based approaches. In this section, we will

examine the scheduler’s construction in formal terms, and try to express the scheduler

using a formal notation. Finally, we will demonstrate that the constraints on the

formal model of the scheduler can be translated back into the original model and

verify that the provision of nondeterminism is a useful feature.

Firstly, we need to define the notion of a Finite Automaton (FA) as the following

5 tuple [Carrol and Long, 1989], [Hopcroft et al., 1979]:

A = 〈I, S, δ, S0, A〉

where:

I is the input alphabet

S is the set of states
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δ : S × I → 2S is the next state function

S0 is the initial state marking

A is the set of accepting or final states

A run of a automaton is defined as a ordered set of states that the automaton

progressively passes through. More formally, a run using the input string x (denoted

as sx) is defined as :

sx = sx
0
, . . . , sxn where s0 ∈ S0 and si ∈ δ (si−1, x) ⊆ S and x = (x0, . . . , xn−1) where

xi ∈ I ∀ 0 ≤ i < n

A basic property of an FA is the accepting property, defined as follows :

The string x is accepted if and only if there exists a run sx such that the final state

sxn ∈ A

For the sake of convenience, we can extend the δ function defined so that it maps

strings. i.e. δ : S × In → S. Thus when we designate δ (s, x) this returns the final

state after the string x has been applied to the automaton.

Further, we define as the language of a FA as the set of all accepted strings that

begin from the initial state and finish in the accepting state, denoted as L.

More informally, we can say that an finite automaton will accept a given series

of inputs only if the final state of the automaton after applying the inputs is in the

accepting set. Thus, by clearly defining the accepting set, we can define which strings

are allowed and which are not.

This discussion is general for both deterministic and nondeterministic systems.

The main difference between a deterministic finite automaton (DFA) and a nondeter-

ministic finite automaton (NFA) is in the δ function. In the case of a DFA, there is

only one possible next state, given a current state and input. In the case of an NFA,

there are multiple next states possible for a given present state and input.
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If we consider the fundamental problem of scheduling in Lyra, we can see that it

is analogous to generating a NFA where the input alphabet is a set of schedules, and

strings are a series of schedules that are going to be attempted to be run in parallel.

If the string is accepted, then the scheduler is signaling that this set of schedules can

be executed concurrently for this iteration. The nondeterminism from the original

description causes a choice in schedules at runtime that is resolved by the application

of a policy. This policy application can be seen as the construction of an equivalent

DFA from the scheduler’s NFA, while keeping in mind the criteria to be optimized.

Thus, the formal Lyra scheduler can be expressed as the n tuple

〈M,S, δ, S0, A〉

where:

M is the set of input Schedules

A is the set of acceptable Schedules

As we can see, based on the ORG, we can compute A as A ∈ 2|VORG , or that the

accepting set is the set of all schedules that can be composed out of the minimal candi-

date schedules such that no subset violates the mutual exclusion rule. Consequently,

the language of this machine is the power set of minimal schedules.

Throughout the design of the Lyra methodology, a lot of emphasis has been placed

on the use of nondeterminism. Let us examine some of the practical aspects of the use

of nondeterminism. An important factor is that by construction, the ORG captures

the nondeterminism in the original description. The presence of non determinism in

the original description is the necessary and sufficient condition for the presence of

the same in the scheduler.

The ORG as presented contains concurrency between unrelated MCS. Be-

tween related MCS, we have explicit nondeterminism. Thus, as shown in

[Drusinsky and Harel, 1994], the ORG definition follows the E [Kozen, 1976] and A
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[Chandra and Stockmeyer, 1976] [Chandra et al., 1981] properties. Thus, the inclu-

sion of AND and OR semantics in the ORG make it double exponentially more com-

pact than the original description. For the ORG based scheduler, the AND semantics

are implicit in the concurrency assumption of unrelated MCS. The OR semantics are

due to the mutual exclusion edges between the various processes.

In addition, a similar analogy can be drawn from the original description. As

Lyra permits the use of conjunction and disjunction, the original description posses

AND and OR semantics. The lack of a clock imply that each process is inde-

pendent, outside of rendezvous based synchronization. Thus the A property from

[Drusinsky and Harel, 1994] applies. The mutual exclusion based form of nondeter-

minism in the rendezvous selection, modeled as variability and disjunction, satisfies

the E property. Thus, the presence of nondeterminism in Lyra allows the input size,

i.e. the description of the system, to be exponentially smaller than it would have had

to be in the absence of nondeterminism.

The major problem with the ORG based scheduler as a NFA is that a NFA

cannot be synthesized. While the NFA to DFA construction is well known

[Hopcroft et al., 1979] [Carrol and Long, 1989], it is polynomial in the size of the

DFA. As the scheduler must be implemented in hardware, this polynomial size be-

comes a bottleneck. In order to allow some designer input, and constrain the size of

the translation, we introduced the notion of a scheduler policy. While informally, the

policy is simply a way for the scheduler to make deterministic choices where nonde-

terministic ones exist, it is formally a construction of an equivalent DFA, based on

the formulated scheduler NFA, such that the heuristic constraint is held.

The GWO scheduling policy, discussed in 5.5.1 is an optimal policy, and as such

follows a traditional NFA to DFA expansion. The primary differences are due to the

constraint on the input alphabet (as the input alphabet will always be a strict subset
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of the total schedule space), and the usage of rendezvous weight allow the creation of

a tree. This tree, while not always strictly polynomial, presents a definite overhead, as

intermediate nodes in the tree must perform and store computation. More formally,

the GWO constraint is a simple modification to the DFA construction, where the

input alphabet is a subset of the working alphabet. In other words, the internal

nodes of the tree correspond to intermediate states introduced by the conversion of

the NFA into a DFA. Each transition is clearly disambiguated and thus becomes

resolvable.

The SLWO scheduling policy, discussed in 5.5.2 is a much easier to implement

policy. By sacrificing the global nature of the weight assumption, the SLWO policy is

able to restrict the overhead due to the scheduler. In construction terms, it is based

on the notion of weight, and the reduction in the state space by strictly ordering the

possible transitions. In the case of nondeterminism, a transition with a lower weight

is simply removed. Thus, the DFA will contain exactly as many states as the NFA,

but with a reduction in the number of transitions. The equivalence of this DFA to

the original NFA is one way. In other words, for a fixed set of inputs, the DFA from

the application of the SLWO policy will behave like one possible run of the original

NFA. An alternate way to consider this is that the DFA is constructed by simply

examining the set of transitions and discarding any duplicate transition.

6.5 Implementation

One of the main issues that remains, as might be obvious to the reader is the fact

that a FA is usually implemented as a sequential machine, whereas in this case, we

need a combinational implementation. However, this is not a hurdle here. We know

that by the expansion of the entire state space of the storage element of a sequential

machine, we can implement it as a combinational circuit. In this case, there are no
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internal variables, except for the state. If we examine the NFA, we can see that the

internal states actually correspond to sets of MCS that have been grouped together.

Thus, as long as the combinational circuit accounts for the possibility of considering

multiple MCS in the final schedule, there can be a combinational implementation. The

tree like implementation in the GWO case, and the separated directed acyclic graph

implementation in the case of SLWO policy actually ensure that the computation of

sets of MCS happens in parallel. In addition, since the SLWO policy is only one way

equivalent, some of the sets of MCS are actually ignored.
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Chapter 7

Lyra Tool Flow

In this chapter, we describe the implementation of the Lyra methodology. We describe

the simulator and synthesis tools that were implemented. We provide a description

of the hardware synthesis tool, including how the graph based approach is mapped

into hardware.

7.1 Overview of the Lyra tool flow

The Lyra methodology has been implemented as a set of software tools - one for

synthesis and another for simulation. These tools are written in C++ and use the

Standard Template Library(STL) and the Boost C++ Libraries for the implementa-

tion. Due to the way the methodology is constructed, these tools are able to share

a large part of their codebase. Thus, the tools access a shared library that provides

the front end to the language parser, its abstract syntax tree and intermediate repre-

sentation generator, and finally the ORG generator. The common ORG is then used

differently by the simulator and the synthesis tool to dynamically execute the system

and generate a SystemC representation of the system respectively.
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7.2 Simulator

The simulator for Lyra based systems is a straightforward implementation based on

the ORG. The ORG is presented as a graph to the simulator. At this point, the

synthesis policy is mapped onto the graph. In the case of GWO policy, the structures

are created to store the system in its tree based representation. In the case of the

SLWO policy, this changes the graph into a directed acyclic graph. In the case of the

software implementation, this requires simply making minor changes on the direction

of the given edges.

The structure initialization is performed by analyzing the model. Once this phase

is complete, the simulator presents an interactive shell where it can be run, stepped

and variables and data can be examined. At each run time iteration, all the ORG

vertices are evaluated to determine if their guard condition and state based condi-

tions are satisfied. The valid MCS are then marked in the internal policy dependent

representations to determine the set of MCS that can occur. These MCS are then

scheduled to occur and their semantic actions are evaluated. Finally, the variables

are updated from the semantic actions and the system proceeds to the next state.

7.3 Synthesis

In order for the modeling methodology to be able to model hardware, it would be

useful to examine how synthesis occurs. We can define this problem simply as follows

: given a concurrent system described using the proposed methodology, create a

synthesized version that can be implemented in hardware, using existing synthesis

flows.

The following section describes the synthesis flow in further detail. In brief, the

ORG based approach has given us some initial insight into this problem. As the
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ORG will express all possible candidate schedules in the system, it becomes possible

to create hardware equivalents for each of them. The problem of selection becomes

simpler as we can test all these possibilities in parallel. Furthermore, we can observe

that each ORG vertex, or minimal schedule, is self contained and therefore can be

implemented as a single block. The main problem of synthesis can then be distilled

into the creation of the connections between ORG blocks based on the scheduling

policy. Another area of concern, especially for the practical use of this methodology,

is in the estimation of the performance of the generated hardware and identification

and optimization at a high level of the system to improve such performance. Ideas

for the same are discussed further in this section.

7.3.1 Overview of Approach to Hardware Synthesis

This work proposes a general synthesis flow that is shown in Figure 7·1. The basic

flow accepts a process network as input to the synthesis tool. The tool creates output

files containing circuit descriptions, which are then synthesized to hardware using

an existing tool flow. These output files are behavioral descriptions in SystemC for

integration with SystemC based hardware synthesis tools.

We can examine the basic tasks the synthesis flow must perform in Figure 7·2. The

synthesis flow is conceptually divided into two sections - a target language indepen-

dent section and a target language dependent section. This is to allow the synthesis

framework to support multiple target languages. The input process network is used

to generate its ORG. Then, each MCS, register, and datapath are translated into

synthesis friendly descriptions. These translations basically involve ensuring naming

uniqueness, creation of modules and hierarchy, handling of datatypes, and reordering

of statements as appropriate. Finally, the whole system is translated into a synthe-

sizable, language independent structure. At this point, language specific routines are
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used to create the final output in the specified language (such as SystemC) from this

structure.

In general, a Lyra system is synthesized into a description shown in Figure 7·3.

Each MCS is created as a separate block of hardware. The enable signals from the

MCS blocks are sent to the scheduler. The scheduler accepts the enable signals and

produces a set of fire signals, one for each MCS block. These fire signals are sent to

the state registers and the data registers. At the state register, receiving a fire signal

performs an appropriate update of state. As the fire signals correspond to the MCS,

the knowledge of the fire signal being active is sufficient to compute the next state.

For the data registers, the data computed in the MCS is sent to the data register and

is selectively multiplexed into the register, based on the fire signal. The current state

is fed into the MCS blocks, where it is used to generate the MCS ready signal. The

data register values are fed back into the MCS or can be sent to the toplevel output.

7.3.2 ORG Node Creation

Each ORG node in the software scheduler is synthesized into a unique combinational

block. This block contains two major components. One portion of the block is

the data flow associated with the MCS. Further, conditional guard statements on
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each transition edge would be synthesized to an appropriate combinational hardware

equivalent. The other portion of the logic computes the enable signal for the MCS by

examining the values of the state registers associated with the transition edges, and

contains inputs from the synthesized guard condition hardware.

In Figure 7·4 is an example of a synthesized version of an ORG block with one

ready output and one data output. The readiness is based on whether each transition

edge involved is incident to the current state of its owner process, and whether the

guard conditions on all transition edges are true. When all are true, ready becomes

1. The dataflow associated with the 2 edges, specifically the register writes are sent

to the data output.

Note that in a logic block in Figure 7·4, evaluating the guard condition of a

transition edge may depend on the data value brought to the edge via the synchronous

data flow through several conjunctively composed rendezvous. Since all conjunctively

composed rendezvous must appear in the corresponding ORG node and thus the

logic block, the evaluation of the condition is self-contained in the logic block. The

actual data flow block is synthesized during process synthesis using existing behavioral

synthesis tools.
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7.3.3 Policy Mapping

A major area of the work of the scheduler and, consequently, the synthesis algorithm,

is in the implementation of a specified scheduling policy. The exact synthesis algo-

rithm for this stage depends on the policy being implemented. In general, due to the

design of the synthesized system, the specifics of the scheduler’s implementation do

not matter. The scheduler is simple a block that has 1 bit enable signals for each

of the MCS blocks, and produces a 1 bit fire signal for each MCS. The fire signal

corresponds to whether that particular MCS will be active in that iteration. Below

are examples of synthesis for the policies previously discussed in Section 4.3.

Static Local Weight Optimal (SLWO) Policy Synthesis

When synthesized into synchronous hardware, the behavioral specification in Figure

5·8 will become Figure 7·5. Each rectangle in Figure 7·5 is a block of combinational

logic derived from one ORG vertex. Based on the priority-based scheduling scheme,

the ready and enable signals can be chained according to the previously mentioned

DAG.

This simple policy is the currently implemented synthesis policy. This is because

this policy exhibits significantly less overhead and is far more amenable to hardware

implementation. The policy itself is not very far away from optimal, and does allow

for a lot of concurrency in many practical cases.

7.3.4 Other considerations for Synthesis

The synthesis tool is implemented using a framework that allows for the extension

of the tool into different flows. While the current target is to SystemC, it would be

possible to generate RTL verilog from the the synthesis tool. In addition, in SystemC,

modules communicate via sc signals that behave like Verilog registers, i.e. follow non
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blocking or delayed update semantics. In order to bypass problems of synthesis caused

by this, the SystemC model is forced to make progress by making each method have

a zero time wait function, that allows for a delta update. This is a practical method

to model combinational wires in SystemC.
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Chapter 8

Comparison to Other Approaches

In this chapter, we compare Lyra to other rendezvous based approaches. We use the

graph based analysis that we have developed in this dissertation to provide a common

framework for comparison. We begin by explaining the effect of each feature of the

rendezvous on the graphical method in general, and then considering the specific

languages previously presented.

8.1 Effects of Rendezvous Features

Using the graphical tools presented in Section 5, we can compare different rendezvous

based modeling methodologies. The complexity of the candidate schedules is a pa-

rameter that depends heavily on the construction of the system and the features of

rendezvous being used. In the simplest case, we consider a model where rendezvous

are neither variable, nor conjunctively or disjunctively composed. In this scenario, ev-

ery solid-edge connected component in the TRG contains only two transition vertices

and one rendezvous vertex. Each connected component forms a minimal candidate

schedule. Thus the number of candidate schedules will always be exactly equal to the

number of rendezvous in the system.

The introduction of variability alone will increase the number of ways a particular

rendezvous can occur, and hence requires us to examine the number of labels of a role

of a given rendezvous that exist. Thus it increases the number of candidate schedules.
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As previously mentioned, a variable k-party rendezvous with ni processes for each role

can be decomposed into ni bi-party non-variable rendezvous. Since each non-variable

rendezvous maps to one candidate schedule, the variable rendezvous will result in ni

candidate schedules.

Disjunctive composition alone will not create any effects on the number of can-

didate schedules; however, it may affect the run-time choice of candidate schedules

since it may introduce NME edges into the TRG and ORG.

Conjunctive composition alone, on the other hand, increases the sizes of the solid-

edge connected components in the TRG by bonding rendezvous together into multi-

party candidate schedules. Each component will include more than one rendezvous

vertices, but still corresponds to only one candidate schedule.

However, when combined together, these features collectively increase the number

of candidate schedules. For example, given two variable bi-party rendezvous, one with

n processes for the ’+’ role and one for the ’-’ role, and another with m processes

for its ’+’ role and one for the ’-’ role. When used independently, the first one

introduces n candidate schedules and the second introduces m. However, when the

two rendezvous are bonded together by conjunctive usage of their ’-’ roles, their

number of the candidate schedules multiplies to n*m. In the example TRGs presented

in Figure 8·1, the rendezvous a has three ’+’ roles and one ’-’ role, and the rendezvous

b has four ’+’ roles and one ’-’ role. When there is no conjunction, this system has

7 candidate schedules. However, when the two ’-’ roles are conjunctively composed,

the number of candidate schedules increases to 12.

The free combination of all of these features, particularly the increase in possible

candidate schedules from variability and the implied dependence due to conjunction,

makes the analytic determination of number of candidate schedules hard.
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Figure 8·1: Complexity Increase due to conjunction

8.2 Graphical Analysis

The TRG presents us with a simple graphical representation of the communication

complexity of the system. Each unique solid connected component in the TRG, or

an ORG vertex, corresponds to a communication pattern in the system. The NME

edges provide us with Transition Edges where global scheduling is necessary. In the

case of the languages described in Chapter 2, the effects of the restrictions on the

TRG and ORG are quite clear.

In the case of SHIM, the TRG will be free of NME edges. Each connected com-

ponent contains one rendezvous vertex and two transition vertices (or more for mul-

tiparty barrier). It directly maps to a disconnected vertex in ORG.

In the TRG for an Ada model, each connected component contains exactly one ren-

dezvous node, one ”callee” transition node, and n (n≥1) mutually exclusive ”caller”

transition nodes. The component will be mapped to n mutually exclusive nodes in
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ORG.

In the TRG of an Occam model, each connected component by solid edges contains

one rendezvous vertex and two transition vertices. Several transition vertices may be

connected by NME edges due to disjunction within a process. Due to the lack of

conjunction and variability, each TRG NME edge directly corresponds to exactly one

ME edge in the ORG. Thus, in the ORG, there are exactly as many ME edges as NME

edges in the TRG. The Haste TRG and ORG should be similar to that of Lyra’s.

However, the main difference is that Haste assumes that all disjunctive compositions

are resolved by each process locally. Similarly, variability in Haste is always arbitrarily

resolved. In graphical terms, Haste treats all state transition edges as DME related,

and thus the ORG contains disconnected vertices. When implemented in hardware,

such a Haste system would be nondeterministic. In a software simulation, such a

description should deadlock. Bluespec based models look exactly like Lyra models,

but instead of resolving nondeterminism, they sforcibly remove it by composition of

rules. Thus, the job of creating the scheduler is handed to the designer.
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Chapter 9

An empirical example of a Lyra based

system

In this chapter, we describe the practical use of Lyra in modeling a heteregenous

system on chip. The system consists of a cycle accurate processor model that interacts

with a transaction level model of a PCI Express bus network created using Lyra.

We describe the overall system and then detail the PCI Express topology and its

implementation in Lyra.

9.1 Introduction

The expressive power of Lyra lends it to the easy modeling of a wide variety of systems.

A useful way to model Systems-on-Chip is by performing heterogeneous simulation,

where different components of a system are at different levels of abstraction, allowing

the user to balance simulation speed with accuracy in a finer grained manner. In this

case study [Venkataraman et al., 2009a], we will examine a cycle accurate simulation

of a PowerPC like processor communicating with a transaction level model of a simple

PCI Express Network [Automation, Design and Committee, Standards, 2006]. The

PCI Express network is described using Lyra contains a simple root complex, switch

and two endpoints. The processor model is a 5 stage in order pipelined processor

that supports a PowerPC instruction set. These models are integrated into a system
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simulator described using SystemC. The following sections examine each component

of the system model in further detail.

9.2 PCI Express Model

Lyra PCI Express Model In the following section we first examine the PCI Express

protocol [Budruk et al., 2003] in general and then the implementation of some of the

features using Lyra to create the transaction level model. After a general discus-

sion, we delve into the modeling of each component of the protocol in detail, further

elaborating the need for certain implementation decisions based on the protocol.

9.2.1 PCI Express Overview

PCI Express is a refinement of the previous Peripheral Component Interconnect bus

architecture. PCI Express is a high speed, scalable, packet based, point to point bus

protocol. PCI Express networks usually contain at least one or more root complexes,

switches and endpoints that are connected by PCI Express links. A processor or set

of processors is connected to each root complex and can issue commands into the

network. The topology is logically directed from the root complex to the endpoints,

where the direction towards the root complex is called upstream and that towards the

endpoints is called downstream. The PCI Express protocol defines 3 types of packets

for the 3 layers of the OSI model in which the protocol is defined. Transaction Layer

Packets (TLPs) for the transaction layer, Data Link Layer Packets (DLLPs) for the

data link layer and Physical Layer Packets for the physical layer. From a high level

perspective, the main task of a PCI Express network is to transfer data in the form

of TLPs from one component to another. The data link and physical layer packets

are internal packets that are not directly controlled by the system designer.

The physical layer level components consist of the electrical components necessary
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for bus communication as well as low level function such as device discovery, packet

framing and link training and initialization. Data link layer elements include link

functionality elements such as components for retransmission of unreceived/corrupted

data, acknowledgment of packets, flow control and packet CRC generation and vali-

dation. The transaction layer is mainly in charge of reassembling transactions based

on packets received, replying to transaction requests, accepting new packets from the

software level and allowing configuration of the device.

9.2.2 Overview of the Lyra implementation

In this case study implementation of PCI Express, we will model mainly the transac-

tion and data link layers of the PCI Express protocol as modeling the physical layer

would be orthogonal to our problem. We will be considering a simple tree like net-

work, consisting of one root complex, one switch and two endpoints, where the links

between components are rendezvous. This is shown in Figure 9·1. The small squares

within each PCI Express component are the ports the link connects to. Upstream

ports are colored white and downstream ports are shaded gray. A subset of features of

the PCI Express will be supported at first, with possible extensions for other features

later on.

The model was developed while keeping in mind the principles of code reuse and

hierarchical design. As a result, it was noted early on that the primary difference in

functionality between the different PCI Express components was in the transaction

level behaviors. A common module, the PCI Express Port, was created to handle the

data link layer functionality of a PCI Express component. However, as the behavior is

not quite identical, this module is controllable via parameters to modify the behavior

depending on whether it is instantiated in a PCI Express switch, endpoint or root

complex. In the remainder of the section, we examine each of the basic Lyra modules
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that are created, the protocol basis for each and a little bit about the implementation

of the module behavior in Lyra. As a quick reminder, the Port module is not part

of the protocol specification, whereas the root complex, switch and endpoints are

specified components of PCI Express.

9.2.3 Port Module

The Port Module abstracts the data link layer behavior for all PCI Express com-

ponents. It implements two rendezvous for the public input and output portions of

the PCI Express component and two additional rendezvous for the private transac-

tion level input and outputs. The terms public and private are with respect to the

scope of the parent component as part of which the port has been instantiated. As

such, the port contains the data link layer functionality of the PCI Express protocol.

While not part of the PCI Express specification, creation of the port module allows
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for simplification of the design and code reuse.

Shown in Figure 9·2 is a simplified state diagram of part of the Lyra implementa-

tion of the port. The CRC test process accepts input from the rendezvous connected

to the public interface input. This causes the machine to transition to state C where

it computes the CRC and checks it. If the CRC if the packet is valid, it proceeds

to state D where the destination of packet and the addressable range of the port are

tested. If the test is passed, it queues an acknowledgment packet for transmission

via the Q ACK rendezvous, while passing the packet to the next processing step by

the PktGenOut rendezvous. If the destination test is failed or the CRC test is failed,

a negative acknowledgment is queued through the Q NAK rendezvous. After any of

these paths, the process returns to the initial state and prepares for the next input.
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9.2.4 PCI Express Endpoint

A PCI Express endpoint is shown in Figure 9·3. It consists of a port and transaction

layer logic for the protocol. In addition, there exists some custom software layer logic

that implements the actual behavior of the endpoint. In this case study, the behavior

is to present a small byte addressable memory that can be read from and written to.

The main purpose of the transaction layer logic is to test if a packet is destined for

this endpoint and to ensure that commands to be sent to the custom logic are valid

ones. The custom logic implements a simple read write interface that reads from and

writes to the memory.

Figure 9·3 is a state diagram for the process that reads from the memory. New

requests arrive in the RdRq rendezvous, with the base address and a counter for the
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number of bytes to read. A counter is initialized and the process moves to the Rd

state where it loops reading 1 byte at a time into a register. When the full number

of bytes is read, the process outputs the data on the RdRslt rendezvous and returns

to the initial state I.

9.2.5 PCI Express Switch

A PCI Express switch has multiple sets of public interfaces, each set containing an

input and output, with exactly one upstream interface and multiple downstream

interfaces. Packets arriving at any of the public interfaces are routed based on the

type of addressing used, the expected destination of the packet and the direction the

packet is traveling.

In Figure 9·4, the state diagram for the process watching the input on the upstream

interface is shown. Upon receiving a packet on the UpIn rendezvous, the process

transitions to state D. In this state, the packet’s routing information is checked against

the known data for the two downstream ports and bits D1 and D2 are set if the packet

is bound for the first downstream port or the other. If the packet is bound for a port,

then the process queues it up with that port’s output. If there is no match, an error

message is queued up to be returned to the upstream link.

9.2.6 PCI Express Root Complex

The main role of a root complex is to act as an intermediary between the processing

element, main memory and the PCI Express network. In addition to this role, the

root complex also behaves as an endpoint, and in the case of a root complex with

multiple downstream ports, as a switch.

The root complex implemented in Lyra for this case study, shown in Figure 9·5,

possesses only one downstream port and additional transaction level queuing logic.
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The queuing logic is connected to a pair of top level, signal based, input and outputs

which are fed sequential data by the CPU. This is discussed in greater detail in section

9.4.

9.3 ADL Model

Architecture Description Language (ADL) and micro Architecture Description Lan-

guage (uADL) are two open source tools developed at Freescale Semiconductor, that

allow the quick and efficient exploration of the design space of a new microprocessor

or the functional modeling of an existing one. By describing the architecture of a

microprocessor using ADL and its micro-architecture in uADL it becomes possible to

create a cycle accurate instruction set simulator of a processor. The normal design

flow using ADL is shown in Figure 9·6. ADL and uADL have a custom language that
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Figure 9·6: ADL Design Flow

enables the description of a microprocessor core. These two files are run through ADL

tools that generate a pair of C++ header and source files that describe the behavior

of the given processor. These files are compiled and linked against the uADL libraries

that provide the external interface, instantiation, and library components necessary

to produce an executable instruction set simulator.

The generation of the executable instruction set simulator is controllable, and can

be targeted to produce a shared library that has a SystemC compatible interface.

9.4 Integration

In order for these two very different simulators to communicate it was neces-

sary to reach some common ground. By basing the integration on SystemC

[Automation, Design and Committee, Standards, 2006], we can utilize existing Sys-

temC signal based interfaces to communicate between the ADL processor and the
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Lyra PCI Express. Additionally, as these interfaces are standard, other simulators

could be similarly bridged into the system. Figure 9·7 shows a block diagram overview

of how the models communicate. Both models are driven by a shared clock and com-

municate using a serial protocol via a SystemC signal based interface. The interface

consists of two sets of signals to allow for bidirectional communication and contain

both control and data signals. Both the Lyra and ADL portions of the system simu-

lator contain a few simple processes to convert the data to and from the serial form.

The reason for this serial interface is that it alleviates mismatches in size between the

ADL memory accesses and the PCI Express packets. As a result, it is more effective

to transmit the data serially. Additionally, as the Lyra model may be synthesizable

into hardware, it is beneficial to have a simple serial protocol that is area efficient.

The protocol supports data sent in small increments, such as four bytes at a time,

where the first 2 bytes define the length of the remaining message. In this implemen-

tation, the TLP packet is sent as the body of the message. There are other equally

valid ways to implement the same functionality.

In the Lyra portion, this interface is based purely on shared register and signal

communication. Using a tool that accepts Lyra models and creates SystemC equiv-

alents, the model can be synthesized. Once synthesized to SystemC, these top level

ports are presented as SystemC signal input or output ports. Two separate input and

output processes buffer the data that has been received or is to be transmitted. As

these processes are not rendezvous based, a third process is needed to communicate

with the remainder of the system via rendezvous.

For the ADL portion of this interface, we use custom written function calls that

replicate the same behavior as the Lyra case. We created a separate external memory

module that could communicate with both the main memory and the ADL processor

via a function call based interface and to the Lyra model via the SystemC based
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serial interface. This external memory module takes the place of the normal ADL

memory and intercepts all calls to main memory. In case of calls that attempt to

access certain ranges of memory, they are transferred to the Lyra PCI Express model

via the SystemC serial protocol. When calls are completed in Lyra, they are sent

to the memory over the SystemC serial protocol, which returns the responses to the

processor model.

As the clock is shared, the two models proceed in lock step. The shared clock

requirement could be relaxed in the future by making the protocol fully asynchronous,

in order to allow the simulators to proceed completely independently.
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9.5 Results

The final PCI Express model in Lyra contained 26 processes and 20 rendezvous for

the entire network. The ADL model consists of a 5 stage in order pipelined processor

that accepts a PowerPC like instruction set. A small program was created that would

write 8 bytes of data to an address mapped to a PCI Express endpoint, and read it

back into the processor’s memory. The resulting system simulates at 15 cycles/sec. As

all the simulators share the same clock, the estimation of work done by the resulting

simulator varies. For the ADL simulator, a SystemC clock tick corresponds to one

cycle for the processor. For the Signal interface, a SystemC clock tick corresponds to

the transfer of 4 bytes of data. In the Lyra model, a SystemC clock tick corresponds to

the computation of a new schedule. This schedule could involve as much as multiple

transactions or as little as reading from a signal into a register. Allowing these three

domains to have different clocks should improve the performance of the resulting

simulator.
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Chapter 10

Empirical Results

In this chapter, we describe the empirical results of using Lyra for system modeling.

We examine models that cover a diverse array of modeling styles and abstractions.

We quantify the impact of different scheduling algorithms on the communication.

10.1 Empirical Result Overview

The results of developing a new methodology can be hard to quantify. As a result, we

will be examining the results in a few separate pieces. Firstly, the primary problem

with the adoption of rendezvous based approaches has been the question of search

space that must be traversed at each run time iteration. Thus, a valid quantitative

measure is to compare the improvement (i.e. reduction in search space) for the

scheduler compared to a naive brute force scheduler and to an improved scheduler.

In addition, since the scheduler is extremely model dependent, we can consider the

practical results using these models.

10.2 Models

We performed tests on the following models, which represent a wide variety of mod-

eling styles and abstraction levels. A short discussion of each of these models follows.

1. Elastic Buffer Pipeline of N stages (EP N)
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2. PCI Express Simplified model (PEX)

3. Synchronous MIPS (SyncMIPS)

4. Asynchronous MIPS (AsyncMIPS)

5. Software JPEG encoder (JPEG)

10.2.1 Elastic Buffer Pipeline

The elastic pipeline concept was first introduced in [Cortadella et al., 2006]. This is a

concept that was brought from the field of asynchronous design into the design of sys-

tems with multiple clocks. The notion of elasticity refers to the variable latency that

is experienced by data going into the module, based on whether the module connected

to the output is ready to accept a new piece of data. In a multi clock system, such a

buffer, or pipeline of buffers can help a producer and consumer running at different

clock rates communicate. As modern system-on-chips contain multiple cores running

at different clock rates, an elastic buffer based pipeline can be used in many places

to allow them to communicate. The problem with modeling these using traditional

methodologies is that the variable latency of the blocks, and complex communication

patterns possible, make it difficult to design a scalable implementation. To imple-

ment this in Lyra, a basic block was created that presents an input rendezvous and

an output rendezvous. The module contains a single register of the same data type as

the input and output. If the register is empty, and both input and output rendezvous

can fire, then the data is passed straight from the input to the output, bypassing the

register. If the output rendezvous cannot fire, but the input rendezvous is requested,

the data is buffered. If the buffer is full, then the input is not allowed to fire either. If

the output rendezvous alone occurs while there is data, it is sent on the rendezvous,

otherwise, the output is not allowed. Finally, if the buffer is occupied, but both input
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and output rendezvous can fire, then the behavior is like a pipeline stage, where the

input data is stored into the buffer, and the previous contents of the buffer are sent

on the output rendezvous. This basic block is then chained multiple times to create

a buffer pipeline of a fixed length.

10.2.2 PCI Express Simplified

The PCI Express protocol is discussed in much more depth in Section 9.2.1. In this

simplified implementation, the finite state machines are a lot simpler and implement

a subset of the PCI Express space. In addition, the simplified model mainly tests

the routing correctness of the model and as a result, the data payload of each TLP

packet is simply set to 4 bytes. Finally, the testing of the PCI Express model occurs

by integrating it with dummy endpoints and a specially designed root complex that

generates a simple test pattern. Another very important fact is that this simplified

PCI Express model only contains the bare essential portions of the root complex,

and is self sufficient. Thus, there is no external interface mechanism to load data to

and from the root complex. Finally, the model is preconfigured. In the PCI Express

specification, each module is configured by setting data in its configuration address

space, however, as the simplified model does not really implement the data handling,

the modules are configured using template parameters.

10.2.3 Synchronous MIPS

This is an implementation of a 5 stage pipelined, 32 bit MIPS processor, much like

in [Patterson and Hennessy, 2009]. As we are using a higher abstraction level design

tool, we use a similar approach to modeling the system. We have 5 processes, one

for each stage of the pipeline, and use rendezvous to represent all communications

between the processes. For this model, we attempted to try to model at a lower
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abstraction level. This was done by basing the model on the RTL implementation

seen in [Patterson and Hennessy, 2009]. Each FSM contained the combinational logic

for that stage, as well as the pipeline register corresponding to that stage. In general,

the rendezvous outputs of the stage would be simply reading from the register, but

rendezvous inputs to the stage would be making changes to the FSM. The usage of

rendezvous, and their synchronous nature, allows for easy modeling of data forwarding

and combinational behavior. At the same time, rendezvous used in conjunction with

registers can give a good approximation of RTL. As a result, the resulting design is

almost a transactional model of an RTL implementation. The reason this model is

being called synchronous is that the model posses very tight coupling of rendezvous,

i.e. there is an external rendezvous simulating a clock with is conjoined with most

edges. As a result, the system is forced to synchronize very often and there is a lot

of mutual exclusion that must be resolved by the scheduler.

10.2.4 Asynchronous MIPS

The asynchronous MIPS model is a variant of the synchronous MIPS model discussed

in Section 10.2.3. Like SyncMIPS, the asynchronous model posses 5 pipeline stages,

where each stage is modeled as a process, with rendezvous communication between

them. The main difference between this and the synchronous model is that this model

follows the asynchronous style of modeling. As a result, each stage has loose coupling

of rendezvous. By using extra stages in the FSMs, many conjunctions are avoided.

This has a noticeable effect in simplifying the ORG, and reducing the work that the

scheduler needs to do. As might be clear, the performance of this approach is slightly

worse than that of SyncMIPS as the data will have a higher latency due to the extra

stages in the FSM.
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10.2.5 JPEG Encoder

The JPEG encoder is a software dataflow style model. This model cannot be syn-

thesized into SystemC due to its dependence on software functions to read and write

to files. It implements the standard expressed in [Wallace, 1992]. The various stages

of the data flow are implemented as separate FSMs, communicating via rendezvous.

The data is read into a temporary buffer from a file by an input FSM. Next, the DCT

is performed by another FSM. The next FSM in the chain performs the quantization,

after which the cofficients are calculated. The next stages perform Huffman coding.

Finally, the data is written to a file by a an FSM, which sends a signal back to the

first machine, signalling it ready to accept a new file.

10.3 Scheduling approaches

While there are very few approaches that attempt to use the communication schedul-

ing of their system to resolve concurrency and race conditions, the increasing com-

plexity of communication makes it important. The problem of a metric for results of

high level synthesis is an open one. Run time alone is not a good measure of a new

methodology. Important factors include the “ability to search a large portion of the

design space” [McFarland et al., 1990], the ability to synthesize models in addition

to the flexibility of the methodology. Thus, a primary focus shall be the search space

that must be examined at each run time iteration, i.e. the work the communication

scheduler must do.

As a baseline for comparison, we consider a Brute Force Scheduler (BFS) algo-

rithm that evaluates all combinations of rendezvous that can occur at each run time

iteration, and, for each rendezvous, tests all TE combinations that can cause that

rendezvous to occur. The steps of the brute force algorithm (BFS) are shown as

pseudocode. It receives as input the set of all rendezvous R, and the current state S
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of all processes and returns the best subset of rendezvous to fire. The screen function

filters the rendezvous set R based on the current state information. It removes those

rendezvous that do not appear on the edges from the current states.

The Brute Force Scheduler (BFS) shown accepts a set of rendezvous, and screens it

based on the current state. It then iterates through all subsets of the rendezvous set.

In each iteration, the subset is tested to see if it can indeed occur. In order to perform

this test (by the test function above), all combinations of the “+” and “-” labels of

all rendezvous in the selected subset must be checked to see whether the selected set

can occur jointly. If the subset can occur, and the total weight of the subset is higher

than the maximum weight seen so far, then the subset and the weight are stored.

At the end, if a valid subset had been found, it occurs and the system transitions to

the next state. In general, for each bi-party rendezvous, the algorithm checks m*n

occurrence possibilities, if it has m labels of role “+” and n labels of role “-”, and 1

non-occurrence possibility. Similarly, a barrier has bj occurrence possibilities where

bj is the count of its labels of role j, and 1 non-occurrence possibility.

BFS (R, S)

Rs = screen(R, S)

maxWeight = −∞

maxComb = φ

for all Rt ⊆ Rs do

if total weight of Rt ¿ maxWeight & test(Rt, S) then

maxWeight = total weight of Rt

maxComb = Rt

end if

end for

return maxComb
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As a simple improvement, we consider the use of state based pruning where TEs

that are not incident to the current state are removed from consideration. As the

removal of some TEs may cause the elimination of a role of a rendezvous, all TEs

bearing other roles of the given rendezvous must be eliminated. As these new deletions

may result in further removals, this procedure is run recursively until there are no more

unready TEs left. A previous method of utilizing relationships between rendezvous

to improve BFS was presented in [Wang et al., 2009].This approach, called Guided

BFS (GBFS), is used as the second baseline for comparison. The Guided Brute Force

Scheduling (GBFS) algorithm accepts a rendezvous decision tree, which contains data

about how to decide between rendezvous using weight. The rendezvous decision tree

contains 3 types of nodes - decision nodes, which decide between the two subtrees,

join nodes, that imply concurrence of subtrees and leaf nodes. The leaf nodes contain

sets of related rendezvous, i.e. the product space of the TEs of all related rendezvous.

These rendezvous relations are extracted through simple state analysis of the original

description. This tree is sent to the GBFS algorithm which then prunes it to remove

branches and vertices it knows cannot occur under the current state. The algorithm

then examines the tree in a top down manner, starting at the root node. Whenever

a join node is encountered, the algorithm can evaluate each child separately and

combine the best results from the children. When a decision node is encountered, the

scheduler evaluates both branches and selects the better result between them. Only

when a leaf node is encountered, the BFS algorithm is used to evaluate the set of

vertices at the node.
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GBFS(T, S)

prune(T, S)

if root(T) is a decision node then

comb1 = GBFS(taken child, S) ∪{root(T )}

comb2 = GBFS(untaken child, S)

return best of comb1 and comb2

else if root(T) is a join node then

result = φ

for all child Ti do

result = result GBFS(Ti, S)

return result

end for

else

return BFS(R(T))

end if

10.4 Result Summary

In the current implementation of the scheduler, used to generate the results, we

make the assumption that the system behaves in a synchronous manner. Thus, every

process is assumed to behave synchronously and is at a fixed state for each scheduling

iteration. For performance metrics, we can compare the average search space per

run time iteration for each model. For the BFS and GBFS approaches, we define

the search space as the average number of schedules per step. For the ORG based

approach, we define the search space as the average number of minimal schedules

that are activated at each step. Furthermore, the current version of the algorithm

has been implemented in the software simulator and the results are summarized in
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Model BFS GBFS ORG

EP 2 4 4 2.5

EP 4 28 28 3.5

EP 8 2188 2188 5.5

EP 16 14348908 14348908 9.5

PEX 416286 703 1.6

SyncMIPS 346420800 208285 1

AsyncMIPS 155 16 2.56

JPEG 6563 7 2.15

Table 10.1: Scheduler Search Spaces

Table 10.1.

As we can note, the search space for ORG based algorithms is the same. However,

the choice of policy affects the number of schedules selected. An interesting fact to

note is that the search space for expands with factorial complexity in the presence of

a large degree of conjunction, that neither of the previous approaches (i.e. BFS and

GBFS) could handle well. The best example of this is the elastic buffer pipeline. As

each stage contains a combinational path, a pipelining path and a read only and write

only path, there is a large amount of conjunctive composition in each rendezvous. As

the pipeline must allow for bypass of all empty buffer stages, potentially of n stages

in an n stage pipeline, there exist some long combinational paths in the resulting

system. The search space for the BFS based approach is factorial as it must compute

the power set of all possible sets of transition edges, assuming forwarding to the nth

stage, the n-1th stage etc.

In this scenario, the GBFS approach, which relies on rendezvous relations fails as it

cannot determine the exact nature of the relationships. The benefit of the ORG based
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Model BFS GBFS ORG

EP 2 9 16 8

EP 4 32 60 17

EP 8 387 736 47

EP 16 29325 55784 155

PEX 697 1345 70

SyncMIPS 120 239 120

AsyncMIPS 45 84 28

JPEG 7686 13440 93

Table 10.2: Scheduler Search Spaces

scheduling mechanism is clearly shown in Figure 10·1. The approach using the ORG

based scheduler grows almost linearly, as opposed to the BFS based approach that

is super linear. As the other models do not posses this high a degree of conjunction,

the GBFS approach presents some benefits, but the ORG based approach is superior

compared to it.

The storage space needed for each policy is summarized in Table 10.2.

The benefits of using the ORG based scheduler approach are clear. The general

comparison was performed using the GWO approach, which solves the same problem

and presents the same solution as the BFS and GBFS approaches. By the determi-

nation of dependencies between transition edges in a static manner, we can reduce

the space that must be examined at each run time iteration.
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Chapter 11

Conclusions and Future Work

11.1 Conclusion

The need for a high level methodology for the design of modern computer systems

has been shown. Presently, there has been no agreement on the approach necessary

to replace RTL. While many different tools and flows are currently being developed,

the most popular among them - Transaction Level Modeling based on SystemC has

some fundamental shortcomings. The extension of a software programming language

to hardware bring with it well studied problems of modeling concurrent systems using

a sequential approach. The lack of a formalization for this approach complicates the

creation of hardware from such models. The lack of a good abstraction for commu-

nication does not allow for the modeling of complex communication patterns.

This work demonstrates a novel methodology for the high level modeling of

systems using a rendezvous based communication abstraction. This methodol-

ogy has advantages compared to previous rendezvous based approaches and to the

TLM/SystemC approach. Compared to other rendezvous based approaches, this

methodology can allow for the modeling of complex communication patterns as it

allows the full and free composition of rendezvous using the conjunction and disjunc-

tion primitives. The presence of nondeterminism in the resulting model allows for

the expression of complex models with partial descriptions, reducing the work done

by the designer and raising the level of abstraction. The presence of an underlying
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formal basis makes this approach much more attractive compared to TLM/SystemC.

The novel nondeterminism resolution mechanism allows for the creation of syn-

thesis friendly systems, while retaining the speed benefits of using a higher level

approach. The scheduler framework is shown to be extensible, allowing for future

extensions to different tradeoffs between size and complexity of the nondeterminism

resolution heuristic. The general synthesis flow for Lyra is shown to be functional,

while retaining independence between the scheduler and the system.

The graph based tools developed for the approach demonstrate their usefulness in

analyzing other approaches that are based on atomic actions and their composition.

Further, they demonstrate a formal method of construction of a scheduler, from

an input design. This construction creates a NFA, which has been shown to be

exponentially smaller in complexity than a deterministic scheduler. The use of the

scheduling policy as a heuristic to create a DFA from the NFA is also shown and the

two policies are examined in terms of the construction complexity.

While the basic work has been done to create a viable high level modeling and

synthesis flow, there are many aspects that remain to be addressed. The extension

of the formal model for verification and model checking. Design verification is an

increasingly important area. The presence of a formal basis for Lyra makes it much

more capable of performing in-depth formal analyses of models compared to ad hoc

approaches like SystemC. The creation of tools for symbolic model checking and for-

mal verification of Lyra models is a logical next step in this approach. Another area

that can be addressed is the creation of a performance optimization suite for Lyra.

The use of a high level design give rise to opportunities for powerful design opti-

mizations. As the complexity of Lyra models can be analyzed using the graph based

approaches, a performance analysis tool could help designers by giving design hints.

As a simple example, the presence of high concurrency has been shown to increase
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the size of the scheduler and the complexity of the design. A sample optimization

would be then be the detection in the TRG of the solid edges which, when removed,

cause the maximum number of solidly disconnected components. These edges could

then be presented to the designer as conjunctions that could be sources for removal.

Lyra presents a new methodology for the design of modern systems. By expand-

ing the power of rendezvous, it allows the designer the freedom to design complex

systems, in a simple fashion. The familiar finite state machine based description

makes it easy for hardware designers to utilize the language, while the rendezvous

abstraction allows for simply expressing complex communication and synchronization

patterns. The presence of synchronous dataflow and combinational signals allows for

pure dataflow modeling. The novel communication scheduler ensures the resulting

design is synthesizable in a transparent manner. The choice of scheduling policy al-

lows the designer to retain control and provide hints. The synthesis friendly design

ensures that the models remain synthesizable. The approach has been demonstrated

using a series of practical models that exhibit a wide variety of modeling styles and

levels of abstraction.
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