
CAAD Lab Technical Report 2004-02

FPGA Acceleration of Rigid Molecule

Interactions?

Tom Van Court, Yongfeng Gu, and Martin Herbordt

Department of Electrical and Computer Engineering
Boston University, Boston, MA 02215
herbordt|maplegu|tvancour@bu.edu

Abstract. Modeling of molecule interactions often uses two or more
successive models of increasing complexity. Rigid models based on corre-
lation techniques are common as early screening passes—to detect inter-
actions worth costlier examination—and are often at the heart of later
passes as well. Even these rigid models are time-consuming when applied
to large models at 103 − 105 different three-axis rotations. This paper
presents an FPGA structure for performing the correlations efficiently by
using a systolic array for 3-D correlation and arithmetic tailored to the
application. The system includes a novel addressing technique for per-
forming a three-axis rotation of a 3-D voxel model using modest amounts
of logic and nearly no cost in time or buffer space. We compare our FPGA
implementation with one on a PC using the standard transform-based
method and find a speed-up of a factor of 200. We present extensions for
handling implementation technologies with different performance char-
acteristics and for handling models too large to fit on-chip.

1 Introduction

Molecule interaction modeling is the simulation of chemical systems to under-
stand how two compounds will bind. This is important in many biological inter-
actions, including screening drugs for human disease, understanding regulatory
networks in living systems, and evaluating treatments for emerging pathogens.

Molecule models vary widely in the precision with which they capture chem-
ical interactions and in their computational costs. Complex models may include
many subtle phenomena, including quantum mechanical effects and flexing. Such
models typically require hours of computation to describe one interaction, even
when the starting position is close to the biologically significant or docked config-
uration. Initial screening programs test the small drug molecules (called ligands)

? This work was supported in part by the National Science Foundation through
CAREER award #9702483 and the National Institues of Health through award
RR020209-01.

2 T. Van Court, Y. Gu, and M. C. Herbordt

against the large biomolecule (substrate), looking for relative positions of pos-
sible interest; this is a six-dimensional search involving all three-dimensional
translations and three-axis rotations.

Screening typically makes a number of simplifying assumptions. One is to
treat the flexible molecule as a rigid body. This approximation is used in ZDOCK,
RDOCK, Situs, and other applications [1–3]. Another is that forces between
molecules may be approximated as scalar values at fixed geometric relationships
to the molecules themselves. This simplification still allows for geometric, elec-
trostatic, atomic contact energy, and desolvation energy [4] effects.

Even these models require hours for processing just one ligand/substrate pair.
Assuming 10◦ angular sampling intervals, there are 9588 three-axis rotations to
try, and all (x, y, z) translations are checked at each rotation. This computation
must be repeated for each drug candidate in the library, typically 103 − 105 of
them. The significance of faster screening is that it would enable the testing of
more candidates, or the higher quality of testing of each candidate.

We report an FPGA-based hardware accelerator for rigid interaction models.
This implementation keeps the chemists’ original docking computation, but con-
verts each step into FPGA-compatible terms. The result is an FGPA application
accelerator that gives a 200× speedup in the rigid docking model.

2 Application Detail and Serial Reference Code

Rigid molecule behavior and scalar values describing interactions are captured
by digitizing each molecule onto a three-dimensional grid. The two grids repre-
senting the two molecules are given some relative placement: an (x, y, z) offset
and a three-axis rotation. Corresponding voxels (3-D grid cells) in each model
are tested against each other and scored. The score for one relative placement is
the sum of voxel scores in that placement. Total scores for all relative placements
are compared, and the highest-scoring placements are processed further.

Close shape
complementarity

Collision Non-intersection Poor fit

Fig. 1. Shape complementarity, collisions, misses, and poor matches

Figure 1 shows a basic match rule: shape complementarity. Matching voxels
represent the interiors of both molecules and indicate a collision. That decreases
the score for the particular relative placement. A few collisions do not automat-
ically disqualify a relative placement, since real, flexible molecules might shift
during the interaction. Desirable surface interactions represent positive scores.
More complex phenomena, such as electrostatics or solvation effects, can also
increase or decrease the value of a voxel interaction.

FPGA Acceleration of Rigid Molecule Interactions 3

One scoring technique represents each voxel as a vector, with one element
per effect modeled. Chen [4] represents the interior of each molecule as a positive
imaginary value ρ i. When two interior values are multiplied together, this yields
a negative score value −ρ2. Other effects, such as electrostatic charge, are repre-
sented as positive or negative real values in other vector elements. The score at
each voxel position is the dot product of the vectors at corresponding voxels in
the A and B grids, and the total score S for the relative placement is the sum
of voxel scores:

S = ∑

i

∑

j

∑

k ai,j,k · bi,j,k

A relative displacement of (x, y, z) between the two voxel grids has score

Sx,y,z =
∑

i

∑

j

∑

k ai−x,j−y,k−z · bi,j,k

where array elements with out-of-bounds subscripts have 0 value. A change of
index variables creates A′ = A where a′x−i,y−j,z−k = ai−x,j−y,k−z . In other words
the score Sx,y,z is the convolution A′ ? B. Direct 3-D convolution takes time
O(N6) for cubes of edge size N. In order to avoid this computational penalty,
researchers observe that time for the Fourier transform F(A′) (or the inverse
transform) grows only as O(N 3 log N), and that

Sx,y,z = A′ ? B = F−1(F(A′)×F(B))

Only one of the molecules (assume B) needs to be rotated with respect to
the other, so only one Fourier transform needs to be performed at each rotation.
Assume F(A′) is computed once and its cost is amortized over all rotations.
Then, the computation sequence for each rotation consists of:

– a three-axis 3-D rotation of grid B, giving grid B ′,
– a 3-D Fourier transform F(B′),
– the 3-D multiplication F(A′)×F(B′),and
– the inverse Fourier transform F−1 on the product.

Fig. 2. Bounding box of rotated model

A few practical points are worth noting. First, in the worst case, the grid B

may contain non-empty voxels in all of its corners. The rotated grid B ′ must

4 T. Van Court, Y. Gu, and M. C. Herbordt

be at least the size of the bounding box around that rotation of B, as shown in
Figure 2. That means that the edge dimension of grid B ′ may be up to

√
3 ≈ 1.73

the size of grid B, or
√
3
3 ≈ 5.2 the number of voxels. Since the molecule is

not a repeating structure, the grids containing A′ and B′ must both be padded
in three dimensions to a size that can contain both molecules without overlap.
Padding and expansion in rotation do not change the polynomial complexity
of the calculation, but might worsen the computation time by a factor of 40
or more, relative to the un-padded, un-rotated computation. The rotation and
multiplication steps run in O(N 3), so do not affect the polynomial complexity.

3 FPGA Algorithm, Implementation, and Results

The purpose of the Fourier transform and inverse is to avoid direct convolution.
Convolution is a staple of signal processing, however, and so has been well stud-
ied; efficient structures are available for performing it. In fact, many FPGAs
are optimized specifically for convolution or similar operations. The modest val-
ues and dynamic ranges of the voxel model inputs match the assumptions built
into the FPGA arithmetic structures. Common current models have sizes up
to N = 128 = 27, or 221 = 2M voxels. That fits readily into current FPGAs’
on-chip or on-board memory. Thus, a large, contemporary FPGA is well-suited
to a highly parallel systolic convolution.

The rest of this section shows an accelerator for rigid molecule docking. First,
we present the individual cells used in the convolution array. Second, we present
a modified McWhirther-McCanny convolver that generates nearly one S score
value per clock cycle. Next, we present a novel technique for addressing the
voxel model so that 3-D rotation is eliminated as a separate step. This reduces
four passes in the serial algorithm—rotation, transformation, multiplication, and
back-transformation—to one pass in the FPGA algorithm.

Finally we demonstrate that, for realistic N , direct convolution can run faster
than the transform-based algorithm. The time needed for 3-D floating point
Fourier transforms and inverses slows the serial algorithm. Also, the FPGA algo-
rithm benefits from zero loop and load/store overhead, from massive parallelism,
and from our other optimizations. The net effect is an FPGA algorithm roughly
200× as fast as PC-based serial code.

3.1 Scoring arithmetic

Transform-based correlation is generally implemented using floating point values.
Various scoring effects, representing shape complementarity, electrostatics, etc,
are combined into a single score. Higher score values represent a higher net
balance of attractive forces, lower scores represent stronger net effects due to
collisions and repulsive forces. Computation of score values is indirect: score
sums are output from the inverse Fourier transform.

We consider each component of the score separately, however. For example,
collisions (when one spatial location contains interior voxels of both molecules)
affect scores negatively. It is reasonable to assume that, once a certain number
of core collisions has been detected, the relative positioning of the molecules is

FPGA Acceleration of Rigid Molecule Interactions 5

infeasible. Strong attractions elsewhere cannot overcome the collision penalty,
and higher collision counts will not make that relative position any worse. The
collision component of the score can therefore be implemented as an incrementing
counter that saturates at some score specified by the biochemists.

Other attractive and repulsive effects often counter each other and tend to
have different relative weights. Naive worst-case analysis requires that the highest
absolute value for any voxel score be assigned to all (NA +NB)

3 voxels. Given
each N ≈ 128, this allocates at least 24 bits, or more bits depending on the
precision of the voxel scores, and a sign bit. Realistically, however, the worst
case would count only the number of surface or near-surface voxels that could
participate in the inter-molecule interaction. Surface area tends to grow as N 2,
not N3, reducing the range of total scores to consider. Positive and negative
voxel scores often cancel. Above some positive threshold, however, the attractive
forces may unconditionally qualify a positioning for further analysis. Likewise,
some negative threshold indicates that repulsive forces disqualify the positioning.
Either way, saturating arithmetic captures the score’s meaning and limits the
number of bits needed for scoring arithmetic.

Our initial implementation models only shape complementarity. One bit in
each voxel distinguishes molecule interiors from exteriors, and a second bit marks
voxels on the molecule’s surface. Separate counters record interior-interior over-
laps (collisions) and surface-surface interactions. The multipliers and accumula-
tors of standard convolution reduce to AND gates and increment operations.

3.2 Systolic array for three-dimensional convolution

Our 3-D convolution is based on the non-recursive form of the systolic array
described by McWhirther and McCanny (MM) [5]. The biggest modification is
the extension of the array from its original 2-D form to 3-D form. This extension
starts with the MM structure shown in Figure 3. Each row in the MM array
consists of a 1-D convolver and a fully synchronous FIFO line buffer.1

The 1-D array represents a row of A having length xA. The 1-D convolution
of respective rows in A and B generates a result of length xA + xB − 1; results
beyond the xA length of the 1-D convolver are held in the FIFO. The sizes
of A and B can both vary according to the molecules being modeled and the
rotation of B, so the FIFO has adjustable length. Variations in the size of A
are accomodated by using parts of the 1-D convolver as storage elements. We
assign the smaller molecule to grid A and the larger to grid B. This allows the
relatively gate-intensive computation cells to hold the A values and the RAM
FIFO to hold the rest of the results. Since the 1-D convolvers store the voxel
values for the smaller grid, the number of convolution cells sets the upper bound
on the size of the smaller molecule’s grid.

FIFOs (line buffers) extend the 1-D convolver from length xA to xA+xB−1
before sending results to the next row in that 2-D plane. Likewise, the 2-D plane
consists of yA rows of the 1-D convolver-plus-FIFO units. The full size of the

1 The shown connections between 1-D convolvers, FIFOs, and input differ somewhat
from the classic MM structure.

6 T. Van Court, Y. Gu, and M. C. Herbordt

X
input

1-D convolution FIFO line buffer

1-D convolution FIFO line buffer

0

1-D convolution FIFO line buffer

1-D convolution Result

Fig. 3. Modified McWhirther/McCanny 2-D convolution array

2-D result is xA + xB − 1 by yA + yB − 1, so an additional buffer of length
(yB − 1) × (xA + xB − 1) is added to each plane. Like the line buffers, these
plane buffers are RAM FIFOs that can be programmed to handle different values
of (yB − 1) × (xA + xB − 1), according to molecule sizes and rotations. The
entire 3-D array consists of zA of these 2-D planes, as shown in Figure 4.

This structure yields one convolution value per clock cycle, except for a rel-
atively small number of control cycles. Voxel values for the A grid are loaded
once and reused for all rotations of the B grid. B values then stream past the
convolvers. Since the B input has size (xB , yB , zB) and the convolution result
has size (xA + xB , yA + yB , zA + zB), there are more output values than inputs.
The same number of values are clocked in as are clocked out, so the B voxel
values are padded after every line, after every plane, and after the last plane.

After the extension to 3-D and technology-specific implementation choices,
our third modification of the MM structure customizes the arithmetic opera-
tion in each systolic cell. As described above, shape complementarity can be
summarized using one bit each for the molecule’s surface and interior. The con-
volution’s multiply/ accumulate step is replaced by one-bit AND and saturated
conditional incrementing. The classic MM array used single values at each stage
of the convolution; this implementation uses value-pairs.

xA xB-1

yA

Plane buffer

(yB-1)*(xA+xB-1)

yB-1

sum
input

output

serial
input

(A) Single plane (B) Series-connected planes

B
input

Sxyz

output

zA

azA

azA-1

a1

Fig. 4. Two-dimensional convolver extended to 3-D

3.3 Address generation for 3-axis rotation

Before each 3-D convolution, docking requires a three-axis rotation of one molecule
relative to the other. The naive approach would be for the host or FPGA to cre-

FPGA Acceleration of Rigid Molecule Interactions 7

ate a new buffer, then create the rotated image in that buffer. After this O(N 3)
step, the convolver would scan the rotated model in linear order. Instead, our
implementation scans the unrotated model directly in rotated order.

Let (x, y, z) coordinates index the un-rotated 3-D model. Also let (i, j, k) co-
ordinates index the model in its rotated position. The conversion of (x, y, z) to
(i, j, k) is a change of basis vectors,M , such thatM(x, y, z)T = (i, j, k)T . TheM
transformation is obviously invertible, since the rotations that it represents can
be reversed. LetM ′ represent the inverse ofM , such that (x, y, z)T = M ′ (i, j, k)T .
Expand that as

m′
ix m′

jx m′
kx

m′
iy m′

jy m′
ky

m′
iz m′

jx m′
kz

i

j

k

 =

x

y

z

The vector (m′
ix,m

′
iy,m

′
iz) is a unit vector, representing the projection of i

onto the (x, y, z) axes. A unit step in the i direction is identically a step along
i’s direction cosines in the (x, y, z) framework. Corresponding vectors exist for j
and k, with corresponding interpretations.

The systolic convolution array described earlier requires that the input molecule
be traversed in (i, j, k) order:

1. for indices i

2. for indices j

3. for indices k

4. use element (i, j, k) of rotated form of B

Line 4. can be rewritten as

4a. compute (x, y, z) from (i, j, k)
4b. use element Bx,y,z

or

4a. x = round(m′
ixi+m′

jxj +m′
kxk)

4b. y = round(m′
iyi+m′

jyj +m′
kyk)

4c. z = round(m′
izi+m′

jzj +m′
kzk)

4d. use element Bx,y,z

The bounding box of the rotated model may be larger than the original
model, as shown in Figure 2. In that case, the range of the (i, j, k) indices exceeds
the range of the (x, y, z) limits of the unrotated molecule. As a result, some values
of (i, j, k) do not correspond to values of (x, y, z) that lie within the original
model. Line 4d in the algorithm above must be modified to perform a range
check and to provide padding when the computed (x, y, z) value is out of range.

A few more observations allow this expression to be implemented efficiently
in hardware:

– Direction cosines m′ have values 1 ≤ m′ ≤ 1, limiting the number of more
significant bits required.

8 T. Van Court, Y. Gu, and M. C. Herbordt

– The x, y, and z sums must be precise to within ± 0.5 over the whole range
of (i, j, k). This sets the number of fixed-point fraction bits needed.

– Out of range values must be detected in x, y, and z - this sets the number
of fixed-point integer bits required.

– The round(t) can be closely approximated by truncation b t+ 0.5 c.
– The i, j, and k values increment predictably, so strength-reduction converts
the multiplications in 4a-4c to additions.

– After strength reduction, the 0.5 value needed for rounding can be pushed
into the initialization values for the additions.

A final operation converts the (x, y, z) index into a linear memory address.
Given B dimensions (xB , yB , zB), the address polynomial x + xB(y + z yB)
performs that conversion. This is trival when xB and yB are powers of two.
Hardware for the address polynomial is simplified if the (xB , yB , zB) values are
fixed and smaller models are padded to the size of the larger grid.

For each rotation, simple off-line computations convert three Euler angles
into 18 control parameters: direction cosines, offsets, and range limits. Each new
rotated convolution starts by downloading the parameter values that represent
the desired rotation. Pipeline registers allow new parameters to be loaded while
the previous convolution is still running, so setup time is negligible.

Our VHDL implementation of this addressing scheme requires 268 logic slices
in a Xilinx Virtex-II Pro to handle rotation of a 128× 128× 128 molecule grid,
using only ordinary optimization, with no multipliers. This includes computation
of the linear 21-bit memory address, detection of (i, j, k) values that lie outside
the unrotated molecule, and setup and control features. If a molecule model
does not fill the whole 1283 grid, loop counters cover only the section of the grid
needed. The (i, j, k) bounding box around a rotated model is always larger than
the original (x, y, z) size, except when rotating by exact multiples of 90◦. On the
other hand, the average bounding box is considerably smaller than the worst
case. Address computation presents each rotated form in the smallest (i, j, k)
box able to hold that particular rotation, resulting in a 30% average savings in
result voxels and computation cycles.

3.4 FPGA implementation

We require a computation grid that accomodates typical drug candidates: a
25 × 25 × 25Å model handles the majority of pharmacophores of interest. The
computation must also handle common stubstrate molecules, or at least their
active regions. A model 200 × 200 × 200Å is acceptable for our initial imple-
mentation. Resolution around 2Å is common in models of the substrate proteins
[6]; grid cells representing 2Å units matches that resolution. The ligand and
substrate should be at least 123 and 1003 grid cells, respectively.

We use 8-bit counters to handle overlap and surface contact scores. A convo-
lution cell requires two 8-bit scoring registers and a 2-bit voxel register: 16 bits
for results or 18 bits for a computation cell. The Xilinx Virtex-II Pro XC2VP100
FPGA can hold a cubical convolution array 14 cells along each side, with memory
adequate for 1003 grid cells in the substrate model and convolution buffers.

FPGA Acceleration of Rigid Molecule Interactions 9

3.5 Performance results

We synthesized an accelerator with the following characteristics for a Xilinx
XC2VP100 FPGA:

– two-bit models of the substrate and ligand molecules, describing only shape
complementarity,

– pairs of eight-bit, unsigned, saturated values as convolution results,

– 143 cells in the computation array, allowing 143-sized ligands
– buffer capacity for substrates to 1003, and

– rotated addressing for access to the substrate model.

Limited use of timing constraints led to a 24.9ns clock rate (47.8MHz). This
student design gives usable results, but is almost certainly open to more aggres-
sive optimization.

For comparison, we implemented the computation described in Section 2 in
C and ran it on a 3GHz Intel Xeon processor. The 3-D transform and inverse
were taken from [7]. The C code operates only on cubes of size 2L for integer L,
so we could not compare directly to the size-114 limit of our FPGA convolution.
FPGA timings are based on a post place and route clock estimate of 24.9ns. We
also assume 5376 rotations, corresponding to angles sampled at 12.7◦ intervals.
Loading of models is amortized over the 5376 rotations, so FPGA load times are
ignored.

Table 1: Performance results, FPGA vs. serial C code

FPGA 3GHz Xeon FPGA
Result size once (ms) 5376× once (ms) 5376× Speedup

1 100 ? 14 35.8 3:13 - - -
2 66 ? 14 12.2 1:06 4,250 6:20:48 347
3 worst 66 ? 14 52.1 4:40 4,250 6:20:48 82
4 avg 66 ? 14 20.3 1:49 4,250 6:20:48 209
5 result size 256 - - 36,840 55:00:52 -
6 worst 100 ? 14 159.8 14:19 36,840 55:00:52 230
7 avg 100 ? 14 73.5 6:35 36,840 55:00:52 501

Table 1 shows timing comparisons between our FPGA implementation and
the serial algorithm. Table entries have the following meanings:

1. “100 ? 14” represents convolution of a 1003 grid with a 143 grid, giving a
result of size (100 + 14− 1)3. The PC algorithm computes only results with
edge lengths that are powers of two, so no matching PC result is available.

2. The PC implementation can produce results of size 1283. That is taken to be
a 115?14 convolution. A box of size 115 can hold the worst-case rotations of
a box size 66, so 66 is the molecule size used for comparison. Even unrotated,
the PC implementation must round 66 ? 14 up to size 128, so time for 128 is
reported.

10 T. Van Court, Y. Gu, and M. C. Herbordt

3. The “worst 66 ? 14” row reports the worst-case rotation of a molecule size
663, i.e. 1153. Since the unrotated grid has size ≤ 100, the FPGA handles
handles this directly.

4. The bounding box of a rotated size 66 varies over a 1 :
√
3 range in each

dimension. This line reports the average time for convolving a rotated box
of size 66 and a size-14 box.

5. The FPGA cannot compute a convolution with result size 256, but the PC
implementation can.

6. The FPGA can compute the worst case of a rotated size-100 box convolved
with a size-14 box. The PC implementation must round this up to a size-256
result.

7. This compares the average rotation of a size-100 box convolved with a size-14
result. The PC implementation is assumed to round up to a size-256 result
in all cases.

4 Discussion and Extensions

One limitation of the accelerator implementation as just described is that the
ligand must be small relative to the substrate molecule. Although this is the most
important case in drug design, study of protein-protein interactions requires two
large molecules. The extension is simple. Convolution is a linear operation: if
A = A1 + A2, then B ? A = B ? (A1 + A2) = B ? A1 + B ? A2. If A1 and A2

partition A, then the total convolution is the sum of the partition convolutions.
Also, we have implemented only scoring functions based on shape comple-

mentarity. Many other functions exist, based on electrostatics and other phe-
nomena, whose implementations are a straightforward extension. More complex
force models remain to be explored.

References

1. Chen, R., Weng, Z.: A novel shape complementarity scoring function for protein-
protein docking. Proteins 51 (2003) 397–408

2. Ritchie, D., Kemp, G.: Protein docking using spherical polar fourier correlations.
Journal of Molecular Biology 39 (2000) 178–194

3. Wriggers, W., Milligan, R., McCammon, J.: Situs: A package for docking crystal
structures into low resolution maps from electron microscopy. J. Structural Biology
125 (1999) 185–195

4. Chen, R., Weng, Z.: Docking unbound proteins using shape complementarity, des-
olvation, and electrostatics. Proteins 47 (2002) 281–294

5. Swartzlander, E.: Systolic Signal Processing Systems. Marcel Drekker, Inc. (1987)
6. Berman, H., et al.: The protein data bank. Nucleic Acids Research 28 (2000)
235–242

7. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C: The
Art of Scientific Computing. Cambridge University Press (1992)

