
Communication Requirements for FPGA-Centric Molecular Dynamics

Md. Ashfaquzzaman Khan Martin C. Herbordt
Department of Electrical and Computer Engineering

Boston University, Boston, MA

Abstract—FPGA-centric clusters use FPGAs for both com-
putation and communication and thereby address three fun-
damental problems of future High Performance Clusters:
efficient use of silicon, power, and removing communication
bottlenecks. In this study we report on the plausibility of
using such clusters for Molecular Dynamics simulations, in
particular by determining the communication requirements
for such a cluster. We begin by reviewing MD on a single
FPGA-based node and use that performance to determine the
time budget for the communication. We then characterize the
data communication characteristics for a production MD code
(NAMD) in two ways: analytically and by instrumenting the
code. We apply this information to clusters of various sizes
and node complexity. The conclusion is that a cluster with 256
FPGAs distributed in 64 nodes is appropriately provisioned,
even for modest simulations, with a bidirectional 3D torus
where each link consists of 1-2 of an FPGAs serial ports.

Keywords-High Performance Reconfigurable Computing;
Molecular Dynamics; FPGA-Centric Compute Clusters

I. INTRODUCTION

Molecular Dynamics (MD) is one of the workhorses of
computational science. In medicine and biology its impact
can be seen at PUBMED which shows over 2,000 articles in
the last year alone. MD is also compute bound. Large scale
experiments involve thousands compute node-days. These
have included simulations of viruses (9,000 node-days [1])
and ion channels (50,000 node-days per significant event
[2]). Achieving high performance for MD has therefore
received much attention, including effecting scalability on
large clusters [3], [4], creating dedicated hardware [5], [6],
and deploying GPUs [7] and FPGAs [8], [9] as accelerators.
There yet remains a many order-of-magnitude gap between
the largest current simulations and the potential physical
systems to be studied. This is the difference between current
heroic computations, which simulate millions of particles for
microseconds, and the simulation of cell-level phenomena
at biologically relevant time-scales (billions of particles and
more for milliseconds to seconds).

A critical issue in MD is data movement. By Amdahls
Law, scalability of parallel applications that have significant
communication depends on the number of nodes, the prob-
lem size, and the ratio of communication to computation
(comm/comp) hardware support. Right now MD can scale

This work was supported in part by the NIH through award #R01-
RR023168-01A1 and by the MGHPCC.

well for thousands of nodes for well-designed codes (e.g.,
[3], [4]) and sufficiently large simulations, or for much
smaller simulations using dedicated hardware [10]. The
problems are as follows:

1) Technology trend. Nodes will continue to get ever
more powerful. Process technology appears able to
advance with Moores Law for a few more generations
even while operating frequencies remain static or
decrease. And the fraction of silicon available for
computation is increasing both through the use of
accelerators (on and off chip) and with the increased
emphasis on performance in new generation high-
end CPUs [11]. All of these factors decrease the
comm/comp support ratio.

2) Scaling with accelerators. Using accelerators makes
scalability more challenging, as seen, e.g., with respect
to three of the most prominent MD codes: NAMD
[7], [12], AMBER [13], and GROMACS [14]. The
problem is two-fold: (i) there is additional overhead
to move data onto and off of the accelerator and (ii)
the reduction in compute time per time-step makes the
communication latency harder to hide.

3) Overall cost. Large computer systems have enormous
costs for acquisition, management, power, and cooling,
necessarily making them a limited resource. This
provides a fundamental limit to the number and size
of problems that can be addressed.

4) Long time-scale simulations. At some point, no
matter what the hardware, the number of nodes will
become too large or the problem size too small to
achieve strong scaling. It appears, however, that signif-
icant MD problems in the range of 10s of thousands of
particles can currently achieve strong scaling only with
specialized hardware [10]. This lower limit on problem
size increases with both number of nodes and node
size. As a consequence, achieving long time scales for
problems of any size is difficult. But this lower limit
increases with better integration of communication
and computation to reduce overhead and latency.

The implications are as follows. Overall cost will be
reduced by continued use of ever more powerful commodity
accelerators and integrated components as they become
available. But running simulations at biological time-scales

will require ever tighter integration of communication and
computation. That is, not only is low-latency communication
critical now, but it is only going to get more so. In current
high-end clusters this communication includes transfers be-
tween accelerator and CPU. While projected integration of
accelerator and CPU will help, the other problems remain.
The obvious solution has two parts: (i) provisioning nodes
with appropriate bandwidth and (ii) reducing latency by
integrating communication directly into the computation
chip. The first part is straightforward, while the second,
although more challenging, has been well studied. Here are
some solutions, past, present, and future:

Past: In the early 1990s several projects looked at integrating
communication and run-time systems into the chip fabric
(e.g., [15], [16]) and reduced latency of the entire commu-
nication stack to a few cycles.
Present: The Anton processor [6] uses dedicated hardware
to pipeline communication with computation and effec-
tively reduce amortized communication latency to zero.
An alternative, described here, is using FPGAs for both
communication and computation.
Future: The need for direct communication solutions for
GPUs has been stated by Patterson as one of his Top Three
Next Challenges [17] and proposed by Dally in his plan
for GPUs as Exascale accelerators [18]. The Intel Xeon Phi
has an integrated network interface that could potentially be
used for direct coprocessor interconnects [19].

What we examine in this work is a solution for the present
that is built entirely with commodity hardware. In particular,
we examine the possibility of, and requirements for, large-
scale clusters scalable for MD based on FPGAs as the central
component for both computation and communication. This
design is motivated as follows.
• In previous work we have demonstrated that FPGAs

can be competitive for single node MD acceleration. In
particular, the range-limited parts of the 93K APOa1
benchmark can be computed in less than 25ms per
time-step [9] using 2008-era technology. The range-
limited force is computed with full electrostatics and
is compatible with production MD codes. Updating to
the (current) Stratix-V should more than double this
performance.

• Many prototype FPGA-centric clusters have been built
and include products from BEEcube [20] and Sci-
Engines [21]. One example, the Novo-G Reconfigurable
Supercomputer at the University of Florida, has a peak
performance of 10 PetaOPs (32 bit) or 100 GigaFLOPs
while drawing less than 12KW power and requiring no
additional cooling infrastructure [22].

• The primary market for high-end FPGAs is as com-
munication processors, especially in high-end routers
[23], [24]. The use of FPGAs for communication of-
fload is also well established. For example BittWare

(www.bittware.com) has long had products that use
this approach for large-scale DSP. For HPC, computers
with FPGAs for communication are currently in use for
Physics computations [25], [26].

Expanding on the idea of using FPGA for HPC commu-
nication, there are three attributes that make them ideal for
this purpose: (i) huge available bandwidth, (ii) low latency
through direct connection with the application processor, and
(iii) intelligent channels, or the ability to process data as it
streams through the interface.

We begin by reviewing MD on a single FPGA-based node
and use that performance to determine the time budget for
the communication. We then characterize the data commu-
nication characteristics for a production MD code (NAMD)
in two ways: analytically and by instrumenting the code.
We apply this information to clusters of various sizes and
node complexity. We find that a cluster with 256 FPGAs
distributed in 64 nodes is appropriately provisioned, even
for modest simulations, with a bidirectional 3D torus where
each link consists of 1-2 serial ports. This is a small fraction
of the available communication capability in current high-
end FPGAs.

II. BACKGROUND

A. MD Overview

MD is an iterative application of Newtonian mechanics to
ensembles of atoms and molecules. MD simulations gener-
ally proceed in iterations (time-steps) each of which consists
of two phases, force computation and motion integration.
In general, the forces depend on the physical system being
simulated and may include LJ, Coulomb, hydrogen bond,
and various covalent bond terms:

Ftotal = F bond+F angle+F torsion+FHBond+Fnon−bonded

(1)
Because the hydrogen bond and covalent terms (bond, angle,
and torsion) affect only neighboring atoms, computing their
effect is O(N) in the number of particles N being simulated.
The motion integration computation is also O(N). Although
some of these O(N) terms are easily computed on an FPGA,
their complexity is low and we ignore them for the rest of
this preliminary study. The LJ force for particle i can be
expressed as:

FLJ
i =

∑
j 6=i

εab
σ2
ab

{
12

(
σab
|rji|

)14

− 6

(
σab
|rji|

)8
}
rji (2)

where the εab and σab are parameters related to the types
of particles, i.e. particle i is type a and particle j is type b.
The Coulombic force can be expressed as:

FC
i = qi

∑
j 6=i

(
qj
|rji|3

)
rji (3)

P

rc

rc

Figure 1. Shown is part of the simulation space about particle P. Its two
dimensional cell neighborhood is shown in white; cells have edge size equal
to the cut-off radius. The cut-off circle is shown; particles within the circle
are in P’s neighbor list.

A standard way of computing the non-bonded forces
(Lennard-Jones or LJ and Coulombic) is by applying a cut-
off. Then the force on each particle is the result of only
particles within the cut-off radius rc. Since this radius is
typically less than a tenth of the size per dimension of
the system under study, the savings are tremendous, even
given the more complex bookkeeping required. Moreover,
this allows the range-limited computation to scale linearly
with simulation size.

The problem with cut-off is that, while it may be suffi-
ciently accurate for the rapidly decreasing LJ force, the error
introduced in the slowly declining Coulombic force may be
unacceptable. A number of methods have been developed
to address this issue with some of the most popular being
based on Ewald Sums (see, e.g., [27]). Here we use the
standard convention of calling range-limited the LJ force
and the Coulombic force generated within a cut-off radius.
We refer to the Coulombic force generated outside the cut-
off radius as long-range.

We now briefly describe the characteristics of the MD
computation that affect communication. Calculating the
range-limited force involves, for each particle, summing the
contributions of all particles within the cut-off radius. Two
methods are used to take advantage of this cut-off: cell
lists and neighbor lists (see Figure 1). With cell lists, the
simulation space is typically partitioned into cubes with
edge-length roughly equal to rc. Non-zero forces on the
reference particle P can then only be applied by other
particles in its home cell and in the 26 neighboring cells
(the 3x3x3 cell neighborhood). We refer the second particle
of the pair as the partner particle. With neighbor lists, P
has associated with it a list of exactly those partner particles
within rc.

cutoff
radius

skin

neighborlist
radius

P

Figure 2. Neighbor lists are often computed for a larger radius than the
cutoff.

Most MD codes reuse the neighbor lists for multiple
iterations and so amortize the work in their creation. But
because particles move during each iteration, particles can
enter and exit the cut-off region leading to potential error.
The solution is to make the neighborlist cut-off larger than
the force cut-off, e.g., 13.5Å versus 12Å (see Figure 2).

Calculating the long-range force using, say, PME [27]
involves approximating particle charges with a grid and then
applying a transform to that grid. The mapping stage is
mostly local as the particles only contribute to grid points
in the immediate neighborhood. The transform generally in-
volves a transpose which requires all-to-all communication.

B. FPGA-Based Systems

We briefly state our assumptions about the target systems
with FPGA-based accelerators. They are typical for current
products.
• The overall system consists of some number of standard

nodes. Typical node configurations have 1-4 accelerator
boards plugged into a high-speed connection (e.g., the
Front Side Bus or PCI Express). The host node runs the
main application program. CPUs communicate with the
accelerators through function calls.

• Each accelerator board consists of 1-4 FPGAs, memory,
and a bus interface. On-board memory is tightly cou-
pled to each FPGA typically through several interfaces
(e.g., 3x128-bit) which can be virtualized into a much
larger number of independent streams, using, e.g., the
PROCMultiPort tool from Gidel [28]. 4GB-64GB of
memory per FPGA is currently standard.

• Besides configurable logic, the FPGA has dedicated
components such as independently accessible multiport
memories (e.g., 2000 x 1KB) called Block RAMs (or
BRAMs) and a similar number of multipliers. FPGAs
used in High Performance Reconfigurable Computing
typically run at 200 MHz, although with optimization

substantially higher operating frequencies can some-
times be achieved.

• FPGAs have substantial I/O and communication ca-
pability. High-end FPGAs have on the order of 1000
I/O pins which have latency of 5-6 ns. They also have
dozens Multi-Gigabit/s Tranceivers (MGTs). For exam-
ple, the Xilinx XC7VH870T has 16 28.05Gb and 72
13.1Gb MGTs [29] while the Altera Stratix 5SGXBB
has 66 14.1Gb MGTs [30]. For tightly coupled appli-
cations, end-to-end latency using the MGTs for FPGA-
FPGA communication can be less than 100ns. FPGAs
on a board typically communicate via I/O with latency
of a few cycles while internode FPGA-FPGA commu-
nication is typically done via the Gb interconnects.

We are initially targeting the Novo-G, the High Perfor-
mance Reconfigurable Supercomputer at the University of
Florida [22], which has nearly 400 FPGAs and both a COTS
interconnect and direct FPGA-FPGA connections.

C. MD on FPGA-Based Systems
We now give an overview of the overall accelerator design

(see Figure 3; for details see [9]) with the goal of justifying
the communication budget in the next Section.

Our accelerated MD system is currently running on four
FPGAs of a Gidel PROCStar III board [31]. The PROCStar
III is a PCI based system with an 8-lane PCI Express
(PCIe x8) host interface. Each processing unit contains an
Altera Stratix III SE260 FPGA and three memory banks,
each of which has a 128-bit interface. The system has also
been tested in simulation on an Altera Stratix-V, the current
generation FPGA, and has been integrated into and validated
with the full NAMD system. The host CPU runs the main
application program and communicates with the accelerator
board through function calls. The program is partitioned as
follows. The accelerators process the range-limited forces,
while the CPU cores process the balance of the computation.
Each iteration, new particle positions are downloaded to the
accelerator and forces are uploaded to the CPU.

Main computation pipeline
The main computation pipeline is partitioned into two levels.
The first is the filter pipeline; it determines whether the
particle pair has a non-zero force. The second level, the
force pipeline, accepts the particle pairs that pass the filter
and computes their mutual force. Six to eight force pipelines
fit on the 260E, each with 8-10 filter pipelines. This number
doubles for the Stratix-V.

Host-accelerator data transfers
At the highest level, processing is built around the timestep
iteration and its two phases: force calculation and motion
update. During each iteration, the host transfers position data
to, and acceleration data from, the coprocessor’s on-board
memory (POS SRAM and ACC SRAM, respectively).

Board-level data transfers

POS Cache

Filter Bank

ACC Cache

POS SRAM

Summation

ACC SRAM

Filter

Buffer

Filter

Buffer

Force Pipeline

Position

0 Acceleration

Figure 3. Schematic of the FPGA part of the single node MD system.

Force calculation is built around the processing of successive
home cells. Position and acceleration data of the particles
in the cell set are loaded from board memory into on-chip
caches, POS and ACC, respectively. When the processing of
a home cell has completed, ACC data is written back. Focus
shifts and a neighboring cell becomes the new home cell.

Force pipelines to ACC cache.
To support an optimization due to Newton’s Third Law, two
copies are made of each computed force. One is accumulated
with the current reference particle. The other is stored by
index in one of the large BRAMs on the Stratix.

The performance for the range-limited force computation
is as follows. Each of the 12-16 pipelines on the Stratix-
V runs at 200MHz and completes a payload (neighbor list)
force calculation every cycle. All data transfer latencies are
hidden as described in [9] yielding a compute time of less
than 20ms per time-step, or roughly 10x the speed of an
8-core CPU.

We have not yet implemented the 3D FFT, but highly
efficient IP is available for 1D and 2D FFTs from both
Xilinx and Altera. For charge assignment from particles to
the 3D grid and force mapping from 3D grid to particles we
use methods previously developed in our lab for computing
electrostatics with Multigrid using FPGAs [32], [33]. The
remaining parts of the computation are mostly the commu-
nication described in the next Section.

III. MD COMMUNICATION AND SUPPORT
REQUIREMENTS

In the first Subsection we describe the major types of
computations. In the second we quantify the communication
analytically and experimentally.

A. MD Communication Description

Several tiers of inter-processor communication take place
during a parallel run of MD. The majority of these transfers
are due to the non-bonded force computation, while most
the rest are required for maintenance of the simulation, e.g.,
re-assignment of particles to nodes as particles move during
each timestep.

1) Range-limited: Position data of each particle needs
to be updated every timestep before the range-limited non-
bonded forces can be computed for that particle. The owner
node of a particle (the node that is responsible for updating
the motion data of that particle) sends position data (and
also charge data as required) to all nodes that require this
data at the beginning of a timestep. After computing the
forces, these nodes send the force data back to the owner
node. The owner node then combines these results to update
the motion of that particle for that timestep.

With cell-based decomposition (or neighbor lists) the
amount of communication per particle is a constant with
respect to the problem size and the number of processors.
Assuming spatial decomposition and assignment of those
spatially decomposed cells to nodes we have two scenarios
defined by the ratio of problem size to cluster size.
* For large problem to cluster size, multiple cells are
assigned to each node, potentially cubes of slabs. If the
number of cells per node is the same for all nodes, each
node can simply compute forces for 13 neighboring cells for
each of the cells that is assigned to it. If that is not the case,
e.g., if some nodes own two cells, some own 3 cells, then
additional decomposition involving the force computation
improves load-balance.
* For small problem to cluster size, multiple nodes are
assigned to each cell. There is further decomposition of force
computations between neighbor pairs to nodes. That is, the
force computation of a cell will be decomposed such that it
can be done in parallel by multiple nodes. In the simplest
case, there are 13 cell-pairs for each cell. These 13 cell-pairs
are assigned to multiple nodes for computation. The motion
integration will still take place in one node.

Data communication for range-limited force computation
is typically limited to neighboring nodes, as long as node
assignment corresponds to the physical simulation space.

2) Grid Interpolation: For the long-range part of the
electrostatic force computation, there are potentially two
sets of three communication operations. First the charge
contributions of particles to nearby grid points needs to be
interpolated. This contribution is computed by the owner
node and is sent to the processors responsible for those

particular grid points. Second, the charge grid is redistributed
in preparation for the FFT, e.g., so that slabs of the charge
grid are distributed among nodes. Third, these grid data are
then used to compute forces in Fourier space, using the 3D
FFT. This involves a 3D transpose. These operations are then
repeated in reverse order until the forces are applied to the
particles by the owner node for motion update.

Grid interpolation thus requires two sets of two commu-
nications: one to sum (apply) the grid contributions and one
to linearize (delinearize) the grid. The first is local while the
second involves one-to-many (many-to-one) communication
along dimensions.

3) FFT/Transpose: The 3D FFT-based long-range force
computation requires all-to-all communication among nodes.
if the 3D FFT uses slab-based decomposition, then this
involves sending/receiving transpose data once each for the
forward and reverse FFT. For pencil-based decomposition,
this needs to happen twice for both the forward and reverse
FFT.

4) Others (Migration, Bonded Forces, etc.): While the
above three types of communication comprise the majority
of the data communication, there are a few other types of
communication required to maintain the simulation. These
include migration of particles and other system-wide com-
munication among nodes, e.g. synchronization. Migration
becomes necessary when a particle crosses the boundary of
its current cell by a predetermined margin. At that point, it
is re-assigned to another cell and this information must be
communicated among the involved nodes. Communication
for bonded forces is necessary when bonded particles reside
on different nodes. In both cases, data communication is
only a fraction of other communication and is limited to
among neighboring nodes.

B. MD Communication Characterization

Communication in MD is primarily determined by the
size of the problem, the number of computing nodes, and
the compute capability of the nodes. In this Subsection we
provide some simple formulas to predict this communication
amount and validate them using a production MD code.
The data are shown per node, assuming (unrealistically
for large systems) a direct communication link between
every node-pair. We use NAMD2.8 [34] and the ApoA1
benchmark for measuring data communication. The source
code of NAMD2.8 was instrumented for this purpose. The
ApoA1 benchmark consists of 92,224 particles and uses
periodic boundary condition with an original simulation box
of 108Å×108Å×78Å. It uses a cut-off radius of 12Å for the
range-limited force computation and a switching function is
applied to smooth the force when the inter-particle distance
is between 10Å and 12Å. The Coulomb force is evaluated
using PME. The cell (patch in NAMD terminology) di-
mension used for cell-decomposition is approximately 18Å,

Figure 4. Projected and measured data communication

which results in 6× 6× 4 cells. The number of grid points
used for PME is 108× 108× 80.

1) Range-limited: For a large number of cells per node,
the communication required for the range-limited force can
be approximated by assuming the import region to be a skin
of a sphere with a depth of rc. If the volume of region owned
by a node is 4 × π × r3/3, then the import volume would
be 4×π× (r+ rc)

3/3−4×π× r3/3, where r is the radius
of the spherical volume owned by the node and rc is the
inter-particle interaction distance. The number of particles
can be derived by using the density of the system, which is
about 0.1 for a typical bio-medical system.

For a small number of cells per node, this approximation
does not hold due to the cell-based decomposition. However,
assuming that neighboring cells are assigned to each node,
we can predict the communication using the following
equation

D = (C + 13)× P × d× 2 (4)

where D is the amount of data per node, C is the number of
cells per node, P is the number of particles per cell and d
is the amount of data amount per particle. The 2 at the end
of the equation is for a node’s contribution to other nodes.

For multiple nodes per cell, most of the computation
requires importing data from other nodes. This results in
a communication amount of (Number of compute objects
per node + 1) × (Number of Particles per cell) × (Amount
of Data per particle) × 2.

The left panel of Figure 4 shows the projected and
measured data communication for range-limited force com-
putation. For low processor counts (2 and 4), where there
are many cells per node, we use import volume; for the rest
we use Equation 4

2) Grid Interpolation: The communication for the grid
interpolation can be approximated by the following equation

D = (G/n)× d× 4× n1/4 (5)

where D is the amount of data per node, G is the total
number of grid points, n is the number of nodes and d is

the amount of data per grid point. The 4 in the equation
accounts for sending/receiving of grid data before and after
the force computation. The n1/4 is empirically determined
and not yet accounted for analytically.

The center panel of Figure 4 shows the projected and
measured data communication for grid interpolation.

3) FFT/Transpose: The communication for 3D FFT can
be approximated by the following equation (for slab-based
decomposition)

D = (G/n)× d× 4 (6)

where D is the amount of data per node, G is the total
number of grid points, n is the number of nodes and d is
the amount of data per grid point. The 4 in the equation
accounts for sending/receiving of grid data in the forward
and reverse FFTs.

The right panel of Figure 4 shows the projected and
measured data communication for FFT/transpose stages.

IV. FPGA CLUSTER COMMUNICATION: DESIGN
SKETCH AND REQUIREMENTS

In this Section we estimate the communication require-
ments for MD of an FPGA-centric cluster. We first summa-
rize its generic characteristics.
Nodes. We assume direct FPGA-FPGA connections with
MGTs among boards making the board a convenient des-
ignation of node granularity. FPGAs within a board have a
tighter interconnect based on the LVDS I/O. We assume that
each of the four FPGAs replaces 64 cores giving the node
a capability of 256 cores.
Topology. To take advantage of spatial locality we assume
a 3D torus.
Communication intelligence. The programmability of the
FPGA enables the creation of channels capable of processing
data. Examples are as follows.
• For the range limited force computation, particles can

be filtered by position so that only those with a non-
trivial partners get transferred to any neighboring node.

• For the transpose during the FFT, data reordering
facilitates highly efficient communication [35], [36].

• In general, data can be reordered according to a script to
support vector chaining enabling correct data to arrive
at the computation units as needed. This technique has
been used by the Anton processor with great success.

Bandwidth. The overall available bandwidth of the
aggregate MGTs of most high-end FPGA is over 5Tb/s.
The communication mechanisms just outlined increase the
effective bandwidth, but more likely will be used to reduce
the fraction that must actually be implemented.
Latency. Within the FPGA, data can be transferred to the
communication channels in just a few cycles yielding a
time-of-flight latency from application to application of less
than 100ns. The communication mechanisms just outlined
are critical in actually achieving this latency.

Our goal now is to determine the channel bandwidth
needed. We start by establishing a first-order time per time-
step budget from the computation alone. We then extend this

Figure 5. Time per timestep for various simulation sizes and core counts
assuming perfect scaling. This is computation only and gives the time
budget for communication.

Figure 6. Bandwidth requirement for various systems for a 100K particle
problem size. Systems are ideal with all-to-all interconnect and no in-
channel particle filtering.

to an ideal fully connected system. After that, we add the
assumption of the 3D torus with in-channel filtering.

Figure 5 shows an estimate of required time per timestep
for various simulation sizes on a CPU-only system, as-
suming perfect scalability, and as derived from the 92K
ApoA1 benchmark results at the NAMD web site [34].
This data, along with the communication characterization
from the previous Section, can be used to determine the
required bandwidth per node. Figure 6 shows these results.
The values for node counts 128 and 256 are computed using
the analytical methods from the previous Section.

The bandwidth requirement of an accelerator-based sys-
tem can be roughly determined by comparing to an equiva-
lent number of CPU cores. With high-end FPGAs, it should
be possible to achieve order of magnitude speed-up over an
8 core CPU, assuming communication is also improved as
required. This is shown in Figure 6 in terms of CPU core-
equivalence. For example, an FPGA-based node equivalent
to 256 CPU cores will have the bandwidth requirement of
the top-most line in this graph.

It should be noted that several adjustments are likely to
be necessary as system and implementation are specified
further. The bandwidth requirement shown is the absolute
amount of data, assuming an all-to-all network. In practice,
we must consider the header, the number of hops, and
other implementation issues. Therefore, actual bandwidth
requirement is likely to be at least twice that shown in
Figure 6. Although this data is derived using a benchmark
of about 100K particles, it should give a reasonable estimate
for larger simulations too, since both runtime/timestep and
amount of data communication will increase with the size
of the simulation. Another point to note is that this estimate
includes intra-node communication, which is significant at
low node counts, but can be ignored for high node counts.
That is, at low node counts, the observed inter-node band-
width requirement will be significantly lower than what we
present here.

We now examine the communication at the packet level to
determine whether latency (time-of-flight) is likely to have
an impact on channel provisioning. That is, we determine
whether packet count must be considered (in this preliminary
study) or bandwidth alone is adequate. A packet for range-
limited computation consists of all position/charge/force data
of all particles in a cell. With an 18Å cell and a particle
density of 0.1 particles per cubic angstrom, the average
number of particles in a cell is approximately 600. With
double-precision floating point, the position/charge data size
is 32 bytes per particle, while force size amount is 24 bytes
per particle giving an average packet size of 16KB. With
a 14Gbps MGT, this corresponds to 8.72 microseconds per
data packet. This time is significantly larger than what we
assume for inter-node data latency (a few hundred nanosec-
onds). An efficient implementation is likely to be able to hide
this latency. Similar arguments hold for grid interpolation

Figure 7. Bandwidth per channel requirement for various systems for a
100K problem size. Some likely system information is integrated such as
number of hops per packet and in-channel particle filtering.

and FFT/transpose. Therefore, for further discussion, we
only consider bandwidth.

Next we determine the actual bandwidth requirement,
assuming a 3D bi-directional torus network. Our goal here
is to determine the bandwidth needed for each of the 12
channels on a node in such a network topology. Data
communication for the range-limited non-bonded force com-
putation is contained within neighboring nodes at 1-3 hops.
This will on average cause about a 2× increase in data
communication. At the same time, however, the FPGA
easily supports in-channel filtering to remove particles not
needed by a particular neighbor. For cell/patch and cut-off
sizes described earlier, this results in a reduction of data
to be transferred (weighted by number of hops) to 73%
of the original. For long-range communication, all-to-all
communication is required which roughly doubles the data
amount for a 4× 4× 4 node system and further doubles it
on an 8× 8× 8 node system.

The final bandwidth requirement for a 100K simulation is
shown in Figure 7. Again, the series node = 256 cores
represents projected performance of a 4 FPGA node. For a
system with 64 such nodes, configured in a 3D bidirectional
torus, each channel must support 27Gb/s bandwidth; this is
possible with 2 14Gb/s serial links. The aggregate of 24
links is a small fraction of the roughly 200 available among
the four FPGAs on such a node.

Figure 8 shows the same results for a 1M particle simula-
tion. As expected, increasing the problem size significantly
reduces the communication requirement. Again examining
the series node = 256 cores we see that the last three
points (64, 128, and 256 nodes) require bandwidths of 17.2,
17.7, and 20.3 Gb/s, respectively. This approaches what can
be achieved with a single serial port, especially in the next
generation of FPGAs where the link capacity is likely to
double.

Figure 8. Bandwidth per channel requirement for various systems for a
1M problem size. Some likely system information is integrated such as
number of hops per packet and in-channel particle filtering.

V. DISCUSSION AND FUTURE WORK

We have described an initial requirements study for
the communication network for an FPGA-centric cluster
executing Molecular Dynamics simulations. We find that
current production boards (with 4 FPGAs) are appropriate
for use as nodes in such a system. Even for relatively small
simulations which are hard to scale to large clusters (<100K
particles) we find that only a small fraction of the FPGAs
communication capability is required. Some of this is due
to the fact that the FPGA channel is programmable which
can significantly reduce the amount of data that needs to be
transferred. We are investigating the implementation of such
a network on the Novo-G. The next steps are to formalize the
internal communication of such a node, including integration
of the various force types.

REFERENCES

[1] P. Freddolino, A. Arkhipov, S. Larson, A. McPherson, and
K. Schulten, “Molecular dynamics simulations of the com-
plete satellite tobacco mosaic virus,” Structure, vol. 14, pp.
437–449, 2006.

[2] F. Khalili-Araghi, E. Tajkhorshid, and K. Schulten, “Dy-
namics of K+ ion conduction through Kv1.2,” Biophysical
Journal: Biophysical Letters, vol. 91, pp. L72–L74, 2006.

[3] Bowers, K.J., et al., “Scalable algorithms for molecular
dynamics simulations on commodity clusters,” in Proc.
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis – Supercom-
puting, 2006.

[4] J. Phillips, G. Zheng, and L. Kale, “NAMD: biomolecular
simulation on thousands of processors,” in Proc. ACM/IEEE
International Conference for High Performance Computing,
Networking, Storage and Analysis – Supercomputing, 2002.

[5] Y. Komeiji, M. Uebayasi, R. Takata, A. Shimizu, K. Itsukashi,
and M. Taiji, “Fast and accurate molecular dynamics simula-
tion of a protein using a special-purpose computer,” Journal
of Computational Chemistry, vol. 18, no. 12, pp. 1546–1563,
1997.

[6] Shaw, D.E., et al., “Anton, a special-purpose machine for
molecular dynamics simulation,” in Proc. International Symp.
on Computer Architecture, 2007, pp. 1–12.

[7] J. Stone, D. Hardy, I. Ufimtsev, and K. Schulten, “GPU-
Accelerated Molecular Modeling Coming of Age,” Journal
of Molecular Graphics and Modelling, vol. 29, pp. 116–125,
2010.

[8] S. Alam, P. Agarwal, M. Smith, J. Vetter, and D. Caliga, “Us-
ing FPGA devices to accelerate biomolecular simulations,”
Computer, vol. 40, no. 3, pp. 66–73, 2007.

[9] M. Chiu and M. Herbordt, “Molecular dynamics simulations
on high performance reconfigurable computing systems,”
ACM Transactions on Reconfigurable Technology and Sys-
tems, vol. 3, no. 4, pp. 1–37, 2010.

[10] D. Shaw, R. Dror, J. Salmon, J. Grossman, K. Mackenzie,
J. Bank, C. Young, M. Deneroff, B. B. K.J., E. Chow,
M. Eastwood, D. Ierardi, J. Klepeis, J. Kuskin, R. Larson,
K. Lindorff-Larsen, P. Maragakis, M. Moraes, S. Piana,
Y. Shan, and B. Towles, “Millisecond-scale molecular dy-
namics simulations on Anton,” in SC ’09: Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis, 2009, pp. 1–11.

[11] A. Vladimirov, “Arithmetics on Intel’s Sandy
Bridge and Westmere CPUs: not all FLOPs are
created equal,” Colfax International, Tech. Rep.
http://research.colfaxinternational.com/, 2012.

[12] J. Phillips, J. Stone, and K. Schulten, “Adapting a message-
driven parallel application to GPU-accelerated clusters,” in
Proc. ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis –
Supercomputing, 2008.

[13] G. Shainer, A. Ayoub, P.Lui, and T.Liu, “Raising the Speed
Limit: New GPU-GPU Communications Model Increases
Cluster Efficiency,” Scientific Computing: Information Tech-
nology For Science, 2011.

[14] GROMACS Group, www.gromacs.org/ Downloads/ Installa-
tion Instructions/ GPUs.

[15] W. J. Dally and et al., “The Message-Driven Processor: A
multicomputer processing node with efficient mechanisms,”
IEEE Micro, vol. 12, no. 2, pp. 194–205, 1994.

[16] D. Henry and C. Joerg, “A tightly coupled processor network
interface,” in Proc. International Conference on Architectural
Support for Programming Languages and Operating Systems,
1992, pp. 111–122.

[17] D. Patterson, “The Top 10 Innovations in the
New NVIDIA Fermi Architecture, and the Top 3
Next Challenges,” Fermi White Paper, available at
http://www.nvidia.com/ content/PDF/ fermi white papers/
D.Patterson Top10InnovationsInNVIDIAFermi.pdf, 2009.

[18] W. Dally, “Throughput computing,” Keynote Talk, Interna-
tional Conference on Supercomputing, May 2010.

[19] Intel, “Programming Models for Intel Xeon processors and
Intel Xeon Phi Coprocessors,” Intel Sponsor Talk, Symposium
on Application Accelerators for High Performance Comput-
ing, July 10 2012.

[20] BEEcube web site, BEEcube, Inc., www.beecube.com, Ac-
cessed 5/2012.

[21] SciEngines web site, SciEngines Massively Parallel Comput-
ing, www.sciengines.com, Accessed 5/2012.

[22] A. George, H. Lam, and G. Stitt, “Novo-G: At the Forefront of
Scalable Reconfigurable Computing,” Computing in Science
and Engineering, vol. 13, no. 1, 2011.

[23] J. Bolaria and J. Byrne, A Guide to FPGAs for Communica-
tions. The Linley Group, 2009.

[24] Cisco Systems, Inc., http://www.cisco.com, accessed 5/2012.

[25] Z. Baker, T. Bhattacharya, P. Graham, R. Gupta, J. Inman,
A. Klein, G. Kunde, A. McPherson, M. Stettler, and J. Tripp,
“The PetaFlops Router: Harnessing FPGAs and Accelerators
for High Performance Computing,” in Proc. High Perfor-
mance Embedded Computing, 2009.

[26] S. Rinke and W. Homberg, “QPACE: energy-efficient high
performance computing,” in PRACE Workshop: New Lan-
guages and Future Prototypes, 2007.

[27] T. Darden, D. York, and L. Pedersen, “Particle Mesh Ewald:
an N log(N) method for Ewald sums in large systems,” J. of
Chemical Physics, vol. 98, pp. 10 089–10 092, 1993.

[28] PROCDeveloper’s Kit: PROCMutiPort DRAM
Controller, Gidel Reconfigurable Computing,
http://www.gidel.com/ProcDev.htm, 2012.

[29] 7 Series FPGAs Overview, Xilinx, Inc., 2012.

[30] Altera Product Catalog: Version 12.0, Altera Corporation,
2010.

[31] PROCStar III, Gidel Reconfigurable Computing,
http://www.gidel.com/PROCStar

[32] Y. Gu and M. Herbordt, “FPGA-based multigrid computations
for molecular dynamics simulations,” in Proc. IEEE Symp. on
Field Programmable Custom Computing Machines, 2007, pp.
117–126.

[33] T. VanCourt and M. Herbordt, “Application-dependent mem-
ory interleaving enables high performance in FPGA-based
grid computations,” in Proc. IEEE Conference on Field Pro-
grammable Logic and Applications, 2006, pp. 395–401.

[34] NAMD web site, Theoretical and Computational Bio-
physics Group, University of Illinois at Urbana-Champaign,
http://www.ks.uiuc.edu/Research/namd, Accessed 5/2012.

[35] M. Herbordt and P. Swarztrauber, “Towards scalable mul-
ticomputer communication through offline routing,” Depart-
ment of Electrical and Computer Engineering, Boston Uni-
versity, Tech. Rep. TR2003-01, 2003.

[36] C. Young, J. Bank, R. Dror, J. Grossman, J. Salmon, and
D. Shaw, “A 32x32x32, spatially distributed 3D FFT in
four microseconds on Anton,” in SC ’09: Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis, 2009, pp. 1–11.

