
Computing Models for FPGA-Based Accelerators
with Case Studies in Molecular Modeling ��

Martin C. Herbordt Yongfeng Gu� Tom VanCourt�

Josh Model� Bharat Sukhwani Matt Chiu

Computer Architecture and Automated Design Lab
Department of Electrical and Computer Engineering

Boston University; Boston, MA 02215

Abstract: Field Programmable Gate Arrays (FPGAs)
are widely being considered as accelerators for com-
pute intensive applications – and not just as add-on
components as been possible for many years, but also
tightly integrated with the main processor. This inter-
est has been motivated, in part, by reported speed-
ups of ����. This performance, however, have some-
times failed to translate to production applications.
Moreover, the unique issues in programming FPGAs
has left some application writers waiting for better tools
before giving them serious consideration. In our work
we have found that a critical phase of FPGA applica-
tion development is finding, and mapping to, the ap-
propriate computing model. This leads to the central
point of this article: that there are several such models,
and that they differ significantly from models generally
used in programming. For example, whereas parallel
computing models are often based on thread execu-
tion and interaction, FPGA computing can take advan-
tage of additional degrees of freedom than available
in software. This enables models based on the fun-
damental characteristics from which FPGAs get their
capability, including highly flexible fine-grained paral-
lelism and associative operations such as broadcast
and collective response. After a review of FPGA archi-
tecture, systems, and constructs, we present five such
models. The final part of the paper illustrates their use
in applications involving molecular modeling.

�A version of this work has been accepted for publication in Com-
puting in Science and Engineering.

�This work was supported in part by the NIH through awards
#R21-RR020209-01 and and #R01-RR023168-01A1, and facilitated
by donations from XtremeData, Inc., SGI, and Xilinx Corporation.
Web: http://www.bu.edu/caadlab. EMail: herbordt@bu.edu.

�Currently with The MathWorks, Inc.
�Currently with Altera, Inc.
�Currently with MIT Lincoln Laboratory

1 Introduction

For many years computational scientists could de-
pend on continual access to ever faster computers.
In the last few years, however, power concerns have
caused microprocessor operating frequencies to stag-
nate. Moreover, while advances in process technol-
ogy continue to provide ever more features per chip,
these are no longer used primarily to augment individ-
ual microprocessors; rather they are commonly used
to replicate the CPUs. Production chips with hundreds
of CPU cores are projected to be delivered in the next
several years. At the same time, however, it has be-
come clear that replicating cores is only one of several
viable strategies for developing next generation high-
performance computing architectures.

Some promising alternatives are based on Field
Programmable Gate Arrays (FPGAs) [16]. FPGAs are
commodity integrated circuits (ICs) whose logic can
be determined, or programmed, in the field. This is in
contrast to other classes of ICs (e.g., Application Spe-
cific Integrated Circuits or ASICs) whose logic is fixed
at fabrication time. The tradeoff is that FPGAs are less
dense and fast than ASICs; often, however, the flexi-
bility more than makes up for these drawbacks. Appli-
cations accelerated with FPGAs have often delivered
100-fold speed-ups per node over microprocessor-
based systems. This, combined with the current fer-
ment in computer architecture activity, has resulted in
such systems moving towards the mainstream.

These architectural developments have been ac-
companied by a similar level of activity in hardware
and software integration. On the hardware side, e.g.,
FPGA cards from XtremeData [36] and DRC [10, 29]
plug directly into the processor sockets on the PC (or
server) mother board making them co-equals with the
processor chips in accessing main memory, I/O, and

1

the other processors. On the software side, e.g., Intel
has developed QuickAssist to be “a common software
framework that exposes a unified accelerator interface
on top of FPGA accelerator modules.[20]” This inte-
gration support is perhaps the crucial factor in differ-
entiating this from previous generations of accelera-
tors [7].

Even so, few developers of high performance
computing (HPC) applications have thus far “test-
driven” FPGA-based systems. One reason, besides
the newness of their viability, is that FPGAs are com-
monly viewed as hardware devices and thus require
use of alien development tools. Another is that new
users may disregard the hardware altogether by trans-
lating serial codes directly into FPGA configurations
(using one of many available tools; see, e.g., [19] for
a survey). While this results in rapid development, it
may also result in unacceptable loss of performance
when key features are not used to their capability.

We have found that successful development
of FPGA-based HPC applications (i.e., High Perfor-
mance Reconfigurable Computing or HPRC) requires
a middle path: that the developer must avoid getting
caught up in logic details, but at the same time should
keep in mind an appropriate FPGA-oriented comput-
ing model. This leads to the central point of this paper:
that there are several such models for HPRC, and that
they differ significantly from models generally used in
HPC programming. For example, whereas parallel
computing models are often based on thread execu-
tion and interaction, FPGA computing can take advan-
tage of additional degrees of freedom than available
in software. This enables models based on the fun-
damental characteristics from which FPGAs get their
capability, including highly flexible fine-grained paral-
lelism and associative operations such as broadcast
and collective response (see DeHon, et al., for a per-
spective of these issues from the point of view of de-
sign patterns [11]).

To make their presentation concrete, we give ex-
amples from our own work in molecular modeling.
Methods for simulating molecules are critical: they lie
at the core of computational chemistry and are cen-
tral to computational biology. Applications of molecular
modeling range from the practical, e.g., drug design, to
basic research in understanding disease processes.

Molecular modeling is compute bound. While
studies conducted with a few minutes of PC time are
often useful, the reality is that the computational de-
mand is virtually insatiable: almost any molecular sim-

ulation will be improved by simulating a larger phys-
ical system for longer physical time with a more de-
tailed model. Large-scale computational experiments
run for months at a time. Even so, the gap between the
largest published simulations and cell-level processes
is at least ten orders of magnitude, making their accel-
eration all the more critical. Our case studies are as
follows:

Molecular Dynamics (MD)
MD is an iterative application of Newtonian mechan-
ics to ensembles of atoms and molecules. Time-steps
alternate between force computation and motion inte-
gration. The short-range and long-range components
of the non-bonded force computation dominate exe-
cution. As they have very different character, espe-
cially when mapped to FPGAs, we consider them sep-
arately. The short-range force part, especially, has
been well-studied for FPGA-based systems (see, e.g.,
[2, 5, 18, 22, 32, 40]).

Discrete Molecular Dynamics (DMD)
Increasingly popular is MD with simplified models,
such as the approximation of forces with step-wise po-
tentials (see, e.g., [30]). This approximation results in
simulations that advance by discrete event rather than
time-step.

Modeling Molecular Interactions (Docking)
Finally, we examine part of the vast field of docking,
viz., computations that approximate molecules as rigid
structures mapped to grids (see, e.g., [23] for a dock-
ing survey).

These applications differ from one another in
performance benefit, with acceleration of production
codes over a single processor ranging from up to ���

for MD [18], to ��� for Rigid Molecule Docking [34], to
over ���� for DMD [28]. The applications also differ
in central data type, data structure, and algorithm, and
so provide a good view of the richness of the space of
effective FPGA computational models.

The rest of this paper is organized as follows. Af-
ter a brief introduction to computing models and FP-
GAs, we present five effective FPGA computing mod-
els. In the succeeding section, we illustrate their use
in the applications just described. Our goal is to show
applications where HPRC is likely to work, and how to
recognize this. Finally, we hope that these illustrations
will help new HPRC developers get started in thinking
about how to map their applications to FPGAs.

2 FPGA Computation Models

2.1 Computing Models

Models are vital to many areas of computer science
and engineering and range from formal models used
in complexity theory and simulation to intuitive mod-
els sometimes used in computer architecture and soft-
ware engineering. Here we consider the latter: by
computing model we mean an abstraction of a target
machine used to facilitate application development.
This abstraction allows the developer to separate the
design of an application, including the algorithms, from
its coding and compilation. Put another way, a comput-
ing model lets us put into a black box the hardware ca-
pabilities and software support common to the class of
target machines, and thus to concentrate on what we
do not yet know how to do. Computing models in this
sense are sometimes similar to programming models,
which can mean “the conceptualization of the machine
that the programmer uses [9].”

With complex applications there is often a trade-
off between programmer effort, program portabil-
ity/reuseability, and program performance. The more
degrees of freedom in the target architecture, the more
variable the algorithm selection, and the less likely that
a single computing model will allow all three to be
achieved simultaneously.

A common computing model for single threaded
computers is the RAM [1]. There the target machine
is abstracted into a few components: input and out-
put streams (I/O), sequential program execution, and
a uniform random access memory (RAM). While the
RAM model has often been criticized as being unnec-
essarily restrictive (see, e.g., Backus’s famous paper
advocating functional programming [6]), it is also the
way many programmers often conceptualize single-
threaded programs. Using this model simply means
assuming that computing tasks are carried out in se-
quence, and that data are all referenced with equal
cost. Programs so designed, when combined with
software libraries, compilers, and good programming
skills, often run efficiently and portably on most ma-
chines in this class. For high performance, more ma-
chine details, especially in the memory hierarchy, may
need to be considered.

For multithreaded machines, with their additional
degrees of freedom, selecting a computing model is
more complex. What features can we abstract and still
achieve performance and portability goals? Is a single
model feasible? Under what application and hardware

restrictions? The issue is utility: does the computing
model enable good application design? Does the best
algorithm emerge? The problem is as follows. There
are a number of classes of parallel machines—shared
memory, networks of PCs, networks of shared mem-
ory processors, multicore—and the preferred mapping
of a complex application may vary significantly among
the classes.

While an active topic of research, three comput-
ing models (and their combinations) span much of the
space of multithreaded architecture. Following Culler,
et al. [9], these are (i) shared address, (ii) mes-
sage passing, and (iii) data parallel. Each is based
on the threaded model. In shared address, multi-
ple threads communicate by accessing shared loca-
tions. In message passing, multiple threads commu-
nicate by explicitly sending and receiving messages.
Data parallel retains the single thread, but now op-
erations can manipulate larger structures in possibly
complex ways. The programmer’s choice of comput-
ing model depends on the application and the target
hardware. For example, the appropriate model for
a large computer system comprised of a network of
shared memory processors might be message pass-
ing among multiple shared address spaces.

2.2 Low Level FPGA Models

Historically, the computing model for FPGAs was a
“bag of gates” that could be configured into logic de-
signs. In the last few years, high-end FPGAs have
come to be dominated by embedded components
such as multipliers, independently addressable mem-
ories (Block RAMs or BRAMs), and high-speed I/O
links. Aligned with these changes, a new low level
computing model has emerged: FPGAs as a “bag of
computer parts.” A designer using this model would
likely consider the following FPGA features when de-
signing an application:

� Reconfigurable in milliseconds;
� Hundreds of hardwired memories and arithmetic

units.
� Millions of gate-equivalents;
� Millions of communication paths, both local and

global;
� Hundreds of gigabit I/O ports and tens of multi-

gigabit I/O ports;
� Libraries of existing designs analogous to the var-

ious system and application libraries commonly
used by programmers.

AcceleratorAccelerator

PCIPCI

SIO

Add insAdd ins

Add insAdd ins

LPCLPC

AcceleratorAccelerator

Gb
Ethernet*

Gb
Ethernet*

AcceleratorAccelerator

I/O
hub
I/O
hub

Memory
Hub

Memory
Hub

Figure 1: Left panel shows the the Annapolis Microsystems Wildstar-II coprocessor board [4]. Right panel shows
an Intel view of accelerator integration into a multi-processor system [7].

As with microprocessors, making FPGAs appro-
priate for HPC requires added hardware support and
this too is part of the low level model. A sample sys-
tem is the Wildstar board from Annapolis Microsys-
tems shown in the left panel of Figure 1. Although now
dated, we found this design to be particularly well bal-
anced. Critical are the seven independently address-
able memory banks per FPGA (SRAMs and SDRAM).
Since memory is managed explicitly in HPRC appli-
cations, there is no hardware caching support. Com-
munication with the host is over an I/O bus (PCI).
In the last few years, the trend with HPRC systems
is towards tighter integration of the FPGA board into
the host system, e.g., by making FPGA boards plug-
compatible with Intel Front Side Bus slots (see right
panel of Figure 1). The effect is to give FPGAs access
capability to main memory (and other system compo-
nents) equal to that of the microprocessors.

2.3 Why FPGAs for HPC?

A first step in defining higher level FPGA-base com-
puting models is to consider how FPGAs get their per-
formance for HPC. Microprocessors owe much of their
tremendous success to their flexibility. This generality
has a cost, however, as there is a several order-of-
magnitude gap between microprocessor performance
and the computational potential of the underlying sub-
strate [31]. While fabrication costs are limiting ASICs
mostly to high volume applications, FPGAs offer a

compromise: they are often able to achieve much of
the performance of an ASIC but are available “off the
shelf.”

Practically, the enormous potential performance
derivable with FPGAs comes from two sources: par-
allelism – ��� ���� is possible for low precision com-
putations, and payload per computation – since most
control is configured into the logic itself, overhead in-
structions (such as array indexing and loop computa-
tions) do not need to be emulated. On the other hand,
there are significant, inherent, challenges. One is the
low operating frequency, usually less than 1/10th that
of a high-end microprocessor. Another is Amdahl’s law
[3]: to achieve the speed-up factors required for user
acceptance of a new technology (preferably ��� [8]),
close to 99% of the target application must lend itself
to substantial acceleration. As a result, performance
of HPC applications accelerated with FPGA coproces-
sors is unusually sensitive to the quality of the imple-
mentation.

2.4 FPGA Computation Basics

IThe next step in defining higher level FPGA-based
computing models is to examine FPGA attributes in
more detail and see how these translate into the ca-
pability just described. If FPGAs can be viewed in
the first order as a configurable bag of computer parts,
these parts must still be laid out in two dimensions and
in finite space. This puts a premium on (i) connecting

computational blocks with short paths, (ii) taking ad-
vantage of long paths with high fan out, viz., broad-
cast, and (iii) low precision computation.

Another issue, as with microprocessors, is sup-
port for various working set sizes and the bandwidth
available to swap those working sets. There are typ-
ically several distinct levels in the HPRC memory hi-
erarchy. Most have analogs in a conventional PC, but
with somewhat different properties, especially to sup-
port fine-grained parallelism.

1. On-chip registers and look-up tables (LUTs).
The FPGA substrate consists of registers and look-up
tables through which logic is generated. These com-
ponents can be configured into either computational
logic or storage, with most designs having some mix.
While all register contents can potentially be accessed
every cycle, LUTs can only be accessed one or two
bits at a time. For example, the Xilinx Virtex-5 LX330T
has 26KB of registers and 427KB of LUT RAM; the
aggregate potential bandwidth at 200MHz is 12TB/s.

2. On-chip BRAMs. High-end FPGAs have sev-
eral hundred independently addressable multi-ported
BRAMs. For example, the Xilinx Virtex-5 LX330T has
324 BRAMs with 1.5MB total storage and each acces-
sible with a word size of up to 72 bits; the aggregate
potential bandwidth at 200MHz is 1.2TB/s

3. On-board SRAM. High-end FPGAs have hundreds
of signal pins that can be used for off-chip memory.
Typical boards, however, have between two and six
32-bit independent SRAM banks, with recent boards,
such as the SGI RASC having close to 100MB. As
with the on-chip BRAMs, off-chip access is completely
random and per cycle. The maximum possible such
bandwidth for the Xilinx Virtex-5 LX330T is 49GB/s,
but a figure between 1.6GB/s and 5GB/s is more com-
mon.

4. On-board DRAM. Many boards either also have
DRAM, or replace SRAM completely with DRAM. Re-
cent boards support multiple GB of DRAM. The band-
width numbers are similar to those with SRAM, but
with higher access latency.

5. Host memory. Several recent boards support high-
speed access to host memory through, e.g., SGI’s
NumaLink, Intel’s Front Side Bus, and Hypertrans-
port used by AMD systems. Bandwidth of these links
ranges from 5GB/s to 20GB/s or more.

6. High-speed I/O links. FPGA applications com-
monly involve high-speed communication. High-end

Xilinx FPGAs have up to 24 3GB/s ports.

The actual performance naturally depends on the
existence of configurations that can use this band-
width. In our own work, we frequently use the entire
available BRAM bandwidth, and almost as often use
most of the available off-chip bandwidth as well. In
fact, we interpret this achievement for any particular
application as an indication that we are on target with
our mapping.

Putting these ideas together, a good FPGA com-
puting model is one that lets us create mappings that
make maximal use of one or more levels of the FPGA
memory hierarchy. These mappings commonly con-
tain large amounts of fine-grained parallelism. The
processing elements (PEs) are often connected as ei-
ther a few long pipelines (sometimes with 50 stages
or more), or broadside with up to a few hundred very
short pipelines.

Another critical factor in finding a good FPGA
model is that code size translates into FPGA area.
The best performance is, of course, achieved if the en-
tire FPGA is used continuously, usually through fine-
grained parallelism as just described. Conversely, if a
single pipeline does not fit on the chip, performance
may be poor. Poor performance can also occur with
applications that have many conditional computations.
For example, consider a molecular simulation where
determining the potential between pairs of particles
is the main computation. Moreover, let the choice of
function to compute the potential depend on the parti-
cles’ separation. For a microprocessor, invoking each
different function probably involves little overhead. For
an FPGA, however, this can be problematic: each
function takes up part of the chip, whether it is being
used or not. In the worst case, only a fraction of the
FPGA is ever in use. Note that all may not be lost:
it may still be possible to maintain high utilization by
scheduling tasks among the functions and reconfigur-
ing the FPGA as needed.

2.5 FPGA computational models

Concepts such as “high utilization” and “deep
pipelines” are certainly valid, but not as useful as
higher level models. We continue our discussion of
knowing when you’ve got a good mapping, but this
time from a top-down perspective. In particular, we
have found that we’ve got a good mapping if we can fit
our application into one of the following computational
models. Please note that they overlap and are far from

exhaustive (see, e.g., work by DeHon et al. [11]).

Model 1. Streaming
The streaming model is well-known across computer
science and engineering and is characterized, as its
name suggests, by streams of data passing through
arithmetic units. Streams can source/sink at any level
of the memory hierarchy. The FPGA streaming model
differs from that in serial computers in the number
and complexity of streams supported, and also in the
seamless concatenation of computation with the I/O
ports. Streaming is basic to the most popular HPRC
domains: signal, image, and communication process-
ing. It is supported explicitly by numerous FPGA lan-
guages such as Streams C [15], ASC [27], SCORE
[12], and many others; by IP libraries; as well by higher
level tools such as Sysgen for DSP from Xilinx.

The use of streams is obvious in the one dimen-
sional case, for example with a signal passing through
a series of filters and transforms. But with FPGAs it
can also be effective to consider streaming geomet-
rically, i.e.,, by considering the dimensionality of the
substrate. For example, a one dimensional stream
can be made long by snaking computational elements
boustrophedonically through the chip. Other ways
involve changing the aspect ratio, e.g., with broad-
side sourcing/sinking through the hundreds of BRAMs;
or through stream replication, which is analogous to
mapping to parallel vector units. Less obvious, but still
well-known, is the two dimensional streaming array
used for matrix multiplication. In our own work, we use
two dimensional streams for performing ungapped se-
quence alignment: the first dimension is used to per-
form initial scoring at streaming rate, while the second
dimension reduces each alignment to a single maxi-
mal local score.

Model 2. Associative computing
Associative (or content addressable) computing is
characterized by its basic operations: broadcast, par-
allel tag checking, tag-dependent conditional comput-
ing, collective response, and reduction of responses
[25]. This model is basic to computing with massively
parallel SIMD arrays and with neural networks. It is
also used in CPU internals such as reorder buffers and
translation look-aside buffers, and in router switches.
While analogous software operations are ubiquitous,
they do not approach the inherent performance offered
by an FPGA’s support of hardware broadcast. Rather
than accessing data structures through ������	 op-
erations or complex hashing functions, in FPGAs they
can often be processed in a single cycle.

Model 3. Highly parallel, possibly complex, mem-
ory access
Already mentioned is that if you can use the full band-
width at any level of the memory hierarchy, the appli-
cation is likely to be highly efficient. Added here is
that on an FPGA, complex parallel memory access
patterns can be configured. This problem was the
object of much study in the early days of array pro-
cessors (see, e.g., [26]): the objective was to enable
parallel conflict-free access to slices of data, such as
array rows or columns, followed by alignment of that
data with the correct processing elements. With the
FPGA, the programmable connections allow this ca-
pability to be tailored to the application-specific refer-
ence patterns. In [38], e.g., we route combinations of
vectors in a Steiner System.

Model 4. Standard hardware structures
In a way this method is trivial – use components
(sometimes as IP blocks) that have already been cre-
ated. The value added here is not with there existence,
but with their use: Standard data structures such as
FIFOs, stacks, and priority queues are standard in
software, but may have much higher relative efficien-
cies in hardware. The power of the model is two-fold:
to use such structures when called for, and to steer
the mapping towards those structures with the high-
est relative efficiency. One such hardware structure is
perhaps the most commonly used in all of HPRC: the
systolic array used for convolutions and correlations
[35].

Model 5. Functional parallelism
While having function units lying idle is the bane
of HPRC, functional parallelism can also be one its
strengths. Again, the opportunity has to do with FPGA
chip area versus compute time: functions that take a
long time in software, but relatively little space in hard-
ware are the best. For example, a simulator may re-
quire frequent generation of high-quality random num-
bers. Such a function takes relatively little space on
an FPGA, can be fully pipelined, and can thus provide
random numbers with latency completely hidden.

3 Case Studies in Molecular Mod-
eling

3.1 Molecular Dynamics

MD forces may include van der Waals attraction
and Pauli repulsion (approximated together as the
Lennard-Jones, or LJ, force), Coulomb, hydrogen

bond, and various covalent bond terms:

�
�����
 � ������ ����	�� ��
��������������������	�

(1)
Because the hydrogen bond and covalent terms
(bond, angle, and torsion) affect only neighboring
atoms, computing their effect is ���	 in the number
of particles � being simulated. The motion integration
computation is also ���	. Although some of these
���	 terms are easily computed on an FPGA, their
low complexity makes them likely candidates for host
processing, which is what we assume here. The LJ
force for particle � can be expressed as:

�
��
�

�
� ���

���

����

�
��

�
���

�����

���
� �

�
���

�����

���
��� (2)

where the ��� and ��� are parameters related to the
types of particles, i.e., particle � is type 	 and particle

 is type �. The Coulombic force can be expressed as:

�
�
�
 ��

�
� ���

�
��

������

�
��� (3)

In general, the forces between all particle pairs
must be computed leading to an undesirable ����	

complexity. The common solution is to split the non-
bonded forces into two parts: a fast converging short-
range part, which consists of the LJ force and the
nearby component of the Coulombic, and the remain-
ing long-range part of the Coulombic (which is de-
scribed in the next subsection). The complexity of
the short-range force computation is then reduced to
���	 by subdividing the simulated space into cells,
and for each particle, processing only forces between
it and other particles in its neighborhood.

The short-range compute kernel is illustrated in
Figure 2. The streaming computing model is used
[18]. Particle positions and types are the input, the ac-
celerations the output. Streams source and sink in the
BRAMs. The number of streams is a function of FPGA
hardware resources and the computation parameters,
with the usual range being from two to eight.

The wrapper around this kernel is also imple-
mented in the FPGA: it ensures that particles in neigh-
borhoods are available together in the BRAMs; these
are swapped in the background as the computation
progresses. The force computation has three parts, as
shown in blue, purple, and orange, respectively. The
first part checks for validity, adjusts for boundary con-
ditions, and computes ��. The second part computes

r-14,
r-8,
r-3

pos

r2

r2

Force Pipeline Array

Pos, Type
Memory

Acceleration
Memory

POS, Type
Cache

Acceleration
Cache

BUS

Host Memory

Boundary
Condition

Check

Cutoff
Check

Distance
Squared

Extract format, a, (x-a)

((C3*(x-a)+C2)*(x-a)+C1)*(x-a)+C0

r-14,
r-8,
r-3,
r2

Lennard-Jones
force

Short-range
part of CL force

Pseudo
force

Figure 2: Pipeline for short-range force computation.

the exponentials in �. As is often done even in se-
rial MD codes, these terms are not computed directly,
but rather with table look-up followed by interpolation.
Third order is shown in Figure 2. The final part com-
bines the ��� terms with the particle type coefficients
to generate the force.

We find most current high-end FPGAs to be well-
balanced with respect to this computation: designs
simultaneously use the entire BRAM bandwidth and
most of the computation fabric. If the balance is dis-
turbed it is possible to restore it by adjusting the in-
terpolation: this allows for a trade-off of BRAM (table
size) versus computational fabric (interpolation order).

3.2 Using Multigrid for Long-Range
Force Computation

Numerous methods reduce the complexity of the long-
range force computation from ����	 to ��� ����	,
often by using the Fast Fourier Transform (FFT). As
these have so far proven difficult to map efficiently to
FPGAs, however, the multigrid method may be prefer-
able [17] (see, e.g., [33] for its application to electro-
statics).

The difficulty with the Coulombic force is that it
converges too slowly to restrict computation solely to
proximate particle pairs. The solution begins by split-
ting the force into two components, a fast converging
part that can be solved locally without loss of accu-

racy, and the remainder. This splitting appears to cre-
ate an even more difficult problem: the remainder con-
verges more slowly than the original. The key idea is
to continue this process of splitting, each time pass-
ing the remainder on to the next coarser level, where
it is again split. This continues until a level is reached
where the problem size (i.e., �) is small enough for
the direct all-to-all solution to be efficient.

Apply particles to grid

Anterpolating Grid

Anterpolating Grid
Direct Solution

Correction

Correction

Interpolating Grid

Interpolating Grid

Apply grid to particles

short range force

w/ cell lists

Figure 3: Schematic of the multigrid method for the
Coulomb force.

The overall multigrid algorithm is shown schemat-
ically in Figure 3. Starting at the upper left, the per-
particle potentials are partitioned into short and long
range components. The short range is computed
directly as shown in the previous subsection, while
the long range component is applied to the finest
grid. Here the force is split again, with the high-
frequency component solved directly and the low-
frequency passed on to the next coarser grid. This
continues until the coarsest level where the problem
is solved directly. This direct solution is then suc-
cessively combined with the previously computed finer
solutions (corrections) until the finest grid is reached.
Here the forces are applied directly to the particles.

When mapping to an FPGA, we partition the com-
putation into three functions: (i) applying the charges
to a 3D grid, (ii) performing multigrid to convert the 3D
charge density grid to a 3D potential energy grid, and
(iii) applying the 3D potential to the particles to com-
pute the forces. The two particle-grid functions are
similar enough to be considered together, as are the
various phases of the grid-grid computations.

The particle-grid computations in our implemen-
tation involve one real-space point and its 64 grid
neighbors. For the HPRC mapping we use the third
computing model: highly parallel, possibly complex,

X

Y

03020100

13121110

23222120

33323130

03020100

13121110

23222120

33323130

03020100

13121110

23222120

33323130

03020100

13121110

23222120

33323130
03020100

13121110

23222120

33323130

03 020100

13 121110

23 222120

33 323130

03020100

13121110

23222120

33323130
a) b)

Figure 4: Shown is an example of a 2D interleaved
memory reference. a) Shows the grid points (shaded)
to be recovered. b) Shows the two rotations needed to
get the shaded points into correct position.

memory access. We begin with judicious selection
of coordinates: the real-space position can then al-
most immediately be converted into the BRAM indices
and addresses of each of the 64 grid points. A stan-
dard initial distribution of grid points guarantees that
the BRAMs will be disjoint for every position in real
space. There follows the remarkable result that an en-
tire tri-cubic interpolation can be computed in just a
few cycles: data are fetched in parallel and then re-
duced to a single value.

In practice, getting the fetched grid points to their
correct PEs requires additional routing as shown in 2D
in Figure 4. There, 16 memory banks are indicated
by index, each with four elements. Any 4x4 square
overlaying the grid will map to independent memory
banks, allowing fully parallel access, but is likely to be
misaligned. For example, the green overlay would be
fetched in the position shown at the beginning of 4b),
and then require two rotations to get into correct align-
ment. The 3D routing is analogous.

For the 3D grid-grid convolutions we use the
fourth computational model: use of a standard hard-
ware structure. Here the structure is the well-known
systolic array [35]. Its iterative application to build up
two and three dimensional convolvers is shown in Fig-
ure 5.

For MD performance (with short-range and long-
range force computations), measurements were made
for a medium sized simulation (77K particles, 93 Å�

box). The long-range force was computed every four
cycles. Technology for both processor and accelera-
tor were current in 8/2007. The reference code was
NAMD with NAMD performance being obtained from
the group web site. Depending on configuration, per-
formance increase ranged from �� to ���.

bijk

S

FIFO

FIFO

FIFO

aij3

aij2

aij1

aij0

bij

a22a23 a21 a20

a12a13 a11 a10

a02a03 a01 a00

FIFO

FIFO

FIFO

S

a32a33 a31 a30

... …

... … C[k]

A[L]

B[i]

0

A[L-1] A[0]A[L-2]

PE

A[k]

Init_A

a)

b) c)

Figure 5: Shown are a) a one dimensional systolic co-
volver array, and its extension to b) two, and to c) three
dimensions.

3.3 Discrete Event Based Molecular Dy-
namics (DMD)

The foundation of DMD is intuitive, hypothesis-driven,
modeling based on tailoring simplified models to the
physical systems of interest [13]. Using intuitive mod-
els, simulation length and time scales can exceed
those of time-step driven MD by eight or more or-
ders of magnitude [14]. Even so, not only is DMD still
compute bound, causality concerns make it difficult to
scale to a significant number of processors.

Discrete event simulation (DES) is sketched in
the left panel of Figure 6: the primary components
are the event queue, event processor, event predictor
(which can also cancel previously predicted events),
and system state. Parallelization of DES has generally
taken one of two approaches: (i) conservative, which
guarantees causal order, or (ii) optimistic, which allows
some speculative violation of causality and corrects vi-
olations with rollback. Neither approach has worked
well for DMD. The conservative approach, which re-
lies on there being a “safe” window, falters because in
DMD there is none. Processed events invalidate pre-
dicted events anywhere in the event queue with equal
probability, and potentially anywhere in the simulated
space. For similar reasons, the optimistic approach
has frequent rollbacks, resulting in poor scaling.

We take a different approach based primarily on
the second computational model: associative comput-
ing [28]. We process the entire simulation a single long
pipeline (see right panel of Figure 6). While dozens

of events are processed simultaneously, at most one
event is committed per cycle. To achieve maximum
throughput, the following must be done within a sin-
gle cycle: (i) update the system state, (ii) process
all causal event cancellations and (iii) new event in-
sertions, and (iv) advance the event priority queue.
This, in turn, uses the associative primitives of broad-
cast, tag check, and conditional execution. When an
event is committed, the IDs of the particles it involves
are broadcast to the events in the priority queue. If
there is an ID match, the predicted event is cancelled.
Similarly, when events are predicted, their time-stamp
is broadcast throughout the priority queue. Existing
events compare their time-stamps to that of the new
event and it is inserted accordingly.

For simple force models and simulations of 10-
20,000 particles in a �� box, we have achieved
throughputs of 50M events per second, while inde-
pendent reference codes run at up to 200K events per
second [28].

3.4 Docking Rigid Molecules

Non-covalent bonding between molecules is basic to
the processes of life and to the effectiveness of phar-
maceuticals. While detailed chemical models are
sometimes used, such techniques are computationally
exorbitant and infeasible for answering the fundamen-
tal question: at what approximate offsets and orienta-
tions could the molecules possibly interact at all? Less
costly techniques are used for initial estimates of the
docked pose, the relative offset and rotation that give
the strongest interaction. Many applications assume
rigid structure as a simplifying approximation: 3D voxel
grids represent the interacting molecules and 3D cor-
relation is used for determining the best fit [21]. This
is the specific application we address here.

Our approach is based on a combination of meth-
ods four and five: using standard hardware structures,
in particular the systolic convolution array, and latency
hiding with functional parallelism. This results in the
following three stage algorithm [39].

1. (Virtual) molecule rotation. The molecules must
be tested against one another in rotated orientations.
FFT versions rotate molecules explicitly. Direct cor-
relation, however, allows us to implement the rota-
tions by accessing elements of one of the molecules
through a “rotated” indexing sequence. If these indices
were stored explicitly, however, they would require ex-
orbitant memory – we therefore generate them on-the-

Time-Ordered
Event Queue

arbitrary insertions
and deletions

Event
Processor

Event
Predictor

(& Remover)

System
State

events

new state
infostate

info events &
invalidations

Commit

BufferEvent Processor

Event

Predictor

Units

Particle Tags

= = = =

Invalidation Broadcast

Bead

Memory Banks

E
v
e
n
t P

rio
rity

Q
u
e
u
e

W
rite

B
a
c
k

Event

Insertion

=

Figure 6: Shown are block diagrams of a) a generic Discrete Event Simulation and b) an FPGA mapping of
Discrete Molecular Dynamics.

fly. The index generation logic (an 18 parameter func-
tion) supplies the indices just-in-time; the latency of
the rotation is therefore entirely hidden. This is also a
good example of how function-level parallelism can be
easily implemented on an FPGA.

2. Generalized correlation. The correlation array
is based on the structure used in the multigrid exam-
ple (see Figure 5) generalized with respect to arbitrary
scoring functions.

3. Data reduction filter. The correlation can gen-
erate millions of scores, but only a few are likely to
be interesting. The challenge is to return at least a
few scores from every significant local maximum (po-
tential binding), rather than just the highest scores.
We address multiple maxima by partitioning the result
grid into subblocks and collecting the highest scores
reported in each.

For Docking, we obtained performance with re-
spect to the PIPER docking code [24, 34]. Here, for
typical small molecule docking (���� receptor, ��� lig-
and), the correlation, rotation, and filtering steps take
97% of the execution time while the initial charge as-
signment to the grids, which has not yet been accel-
erated, takes 3%. The total speed-up over a single-
threaded version of the code is currently ���. This
could increase substantially when the charge assign-
ment is mapped to the FPGA, using, e.g., a method
similar to that used for multigrid.

4 Discussion

The goal of FPGA-based computing is to achieve sub-
stantial per-processor speed-ups. This is (necessarily)
accomplished by using the inherent capability of the
underlying silicon, tempered by overhead required to
enable configurability. In this paper we have described
methods that we believe to be generally useful in this
endeavor, together with examples of how we have ap-
plied them to problems in modeling molecules.

One question is how computing models relate to
programmer effort. A more basic question is which
tools support which models. In our lab we use a hard-
ware description language (VHDL) together with our
own LAMP tool suite [37] which supports reusabil-
ity across variations in application and target hard-
ware. The latter unfortunately is not yet publically
available. Otherwise, we believe that important char-
acteristics are as follows: support for streams, which
many HPRC languages have; support for embedding
IP, again, supported by most HPRC languages; sup-
port for object-level parameterization, which often is
not supported fully; and access to essential FPGA
components as virtual objects, which is also not usu-
ally fully supported. Although it is trivially true that
characteristics of a computational model can only be
used if they can be accessed, this does not mean
that good results cannot be obtained with higher level
tools. Paradoxically, the more general the develop-
ment tools, the more care may be needed because
their effects with respect to the underlying substrate
are harder to predict.

Returning to programmer effort, in our own ex-
perience, we rarely spend more than a few months
before getting working systems, although more time
is usually needed for test, validation, and system inte-
gration. The advantage of having a good computing
model is not therefore not so much in saving effort, but
rather in increasing the quality of the design. In this
respect we believe the benefit is similar to that with
using appropriate parallel computing models. It may
not take any longer to get a working system using an
inappropriate model, but achieving good performance
may prove impossible.

Acknowledgments. We thank the anonymous refer-
ees for their many helpful comments and suggestions,
particularly that the computing model discussion be
extended and be based on available degrees of free-
dom.

References

[1] Aho, A., Hopcroft, J., and Ullman, J. The Design
and Analysis of Computer Algorithms. Addison-Wesley,
Reading, MA, 1974.

[2] Alam, S., Agarwal, P., Smith, M., Vetter, J., and Caliga,
D. Using FPGA devices to accelerate biomolecular sim-
ulations. Computer 40, 3 (2007), 66–73.

[3] Amdahl, G. Validity of the single processor approach to
achieving large-scale computing capabilities. In AFIPS
Conference Proceedings (1967), pp. 483–485.

[4] Annapolis Micro Systems, Inc. WILDSTAR II PRO for
PCI. Annapolis, MD, 2006.

[5] Azizi, N., Kuon, I., Egier, A., Darabiha, A., and
Chow, P. Reconfigurable molecular dynamics simula-
tor. In Proceedings of the IEEE Symposium on Field
Programmable Custom Computing Machines (2004),
pp. 197–206.

[6] Backus, J. Can programming be liberated from the von
Neumann style? a functional style and its algebra of
programs. Communications of the ACM 21, 8 (1978),
613–641.

[7] Bhatt, A. Accelerating with many-cores and special
purpose hardware. Keynote Talk, Field Programmable
Logic and Applications, 2007.

[8] Buell, D. Reconfigurable systems. Keynote Talk, Re-
configurable Systems Summer Institute, July 2006.

[9] Culler, D., Singh, J., and Gupta, A. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan-
Kaufmann, San Francisco, CA, 1999.

[10] D’Amour, M. Reconfigurable computing for accelera-
tion in hpc. FPGA and Structured ASIC Journal (2008).

[11] DeHon, A., Adams, J., DeLorimier, M., Kapre, N., Mat-
suda, Y., Naeimi, H., Vanier, M., and Wrighton, M. De-
sign patterns for reconfigurable computing. In Proceed-

ings of the IEEE Symposium on Field Programmable
Custom Computing Machines (2004).

[12] DeHon, A., Markovsky, Y., Caspi, E., Chu, M., Huang,
R., Perissakis, S., Pozzi, L., Yeh, J., and Wawrzynek, J.
Stream computations organized for reconfigurable exe-
cution. Microprocessors and Microsystems 30 (2006),
334–354.

[13] Ding, F., and Dokholyan, N. Simple but predictive pro-
tein models. Trends in Biotechnology 3, 9 (2005), 450–
455.

[14] Dokholyan, N. Studies of folding and misfolding using
simplified models. Current Opinion in Structural Biology
16 (2006), 79–85.

[15] Frigo, J., Gokhale, M., and Lavenier, D. Evaluation of
the Streams-C C-to-FPGA compiler: An applications
perspective. In Proceedings of the ACM Symposium
on Field Programmable Gate Arrays (2001).

[16] Gokhale, M., Rickett, C., Tripp, J., Hsu, C., and Scro-
fano, R. Promises and pitfalls of reconfigurable super-
computing. In Proceedings of the 2006 Conference on
the Engineering of Reconfigurable Systems and Algo-
rithms (2006), pp. 11–20.

[17] Gu, Y., and Herbordt, M. FPGA-based multigrid compu-
tations for molecular dynamics simulations. In Proceed-
ings of the IEEE Symposium on Field Programmable
Custom Computing Machines (2007), pp. 117–126.

[18] Gu, Y., VanCourt, T., and Herbordt, M. Explicit design of
FPGA-based coprocessors for short-range force com-
putation in molecular dynamics simulations. Parallel
Computing 34, 4-5 (2008), 261–271.

[19] Holland, B., Vacas, M., Aggarwal, V., DeVille, R., Troxel,
I., and George, A. Survey of C-based application map-
ping tools for reconfigurable computing. In Proceed-
ings of the 8th International Conference on Military and
Aerospace Programmable Logic Devices (2005).

[20] Intel Corporation. Platform-Level Services for Accelera-
tors: Intel QuickAssist Technology Accelerator Abstrac-
tion Layer (AAL), 2007.

[21] Katchalski-Katzir, E., Shariv, I., Eisenstein, M.,
Friesem, A., Aflalo, C., and Vakser, I. Molecular sur-
face recognition: Determination of geometric fit be-
tween proteins and their ligands by correlation tech-
niques. Proc. Nat. Acad. Sci. 89 (1992), 2195–2199.

[22] Kindratenko, V., and Pointer, D. A case study in porting
a production scientific supercomputing application to a
reconfigurable computer. In Proceedings of the IEEE
Symposium on Field Programmable Custom Comput-
ing Machines (2006).

[23] Kitchen, D., Decornez, H., Furr, J., and Bajorath, J.
Docking and scoring in virtual screening for drug dis-
covery: Methods and applications. Nature Reviews -
Drug Discovery 3 (2004), 935–949.

[24] Kozakov, D., Brenke, R., Comeau, S., and Vajda, S.
PIPER: an FFT-based protein docking program with
pairwise potentials. Proteins: Structure, Function, and
Genetics 65 (2006), 392–406.

[25] Krikelis, A., and Weems, C., Eds. Associative Process-
ing and Processors. IEEE Computer Society Press,
1997.

[26] Lawrie, D. H. Access and alignment of data in an array
processor. IEEE Transactions on Computers C-24, 12
(1975), 1145–1155.

[27] Mencer, O. ASC: a stream compiler for computing with
FPGAs. IEEE Transactions on Computer Aided Design
of Integrated Circuits and Systems 15, 9 (2006), 1603–
1617.

[28] Model, J., and Herbordt, M. Discrete event simula-
tion of molecular dynamics with configurable logic. In
Proceedings of the IEEE Conference on Field Pro-
grammable Logic and Applications (2007), pp. 151–
158.

[29] Morris, K. COTS Supercomputing. FPGA and Struc-
tured ASIC Journal (2007).

[30] Rapaport, D. The Art of Molecular Dynamics Simula-
tion. Cambridge University Press, 2004.

[31] Roza, E. Systems-on-chip: What are the limits? Elec-
tronics and Communication Engineering Journal 12, 2
(2001), 249–255.

[32] Scrofano, R., Gokhale, M., Trouw, F., and Prasanna,
V. A hardware/software approach to molecular dynam-
ics on reconfigurable computers. In Proceedings of
the IEEE Symposium on Field Programmable Custom
Computing Machines (2006).

[33] Skeel, R., Tezcan, I., and Hardy, D. Multiple grid meth-
ods for classical molecular dynamics. Journal of Com-
putational Chemistry 23 (2002), 673–684.

[34] Sukhwani, B., and Herbordt, M. Acceleration of a pro-
duction rigid molecule docking code. In Proceedings
of the IEEE Conference on Field Programmable Logic
and Applications (2008), p. TBD.

[35] Swartzlander, E. Systolic Signal Processing Systems.
Marcel Dekker, Inc., 1987.

[36] Urban, K. In-socket accelerators: When to
use them. HPC Wire June 5, 2008 (2008),
http://www.hpcwire.com.

[37] VanCourt, T. LAMP: Tools for Creating Application-
Specific FPGA Coprocessors. PhD thesis, Department
of Electrical and Computer Engineering, Boston Uni-
versity, 2006.

[38] VanCourt, T., and Herbordt, M. Application-dependent
memory interleaving enables high performance in
FPGA-based grid computations. In Proceedings of the
IEEE Conference on Field Programmable Logic and
Applications (2006), pp. 395–401.

[39] VanCourt, T., and Herbordt, M. Rigid molecule docking:
FPGA reconfiguration for alternative force laws. Journal
on Applied Signal Processing v2006 (2006), 1–10.

[40] Villareal, J., Cortes, J., and Najjar, W. Compiled code
acceleration of NAMD on FPGAs. In Proceedings of
the Reconfigurable Systems Summer Institute (2007).

