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Why Molecular Dynamics Simulation 
is so important …

• Core of Computational Chemistry
• Central to Computational Biology, with applications to 

Drug design
Understanding disease processes …

From DeMarco & Dagett:  PNAS 2/24/04

Shows conversion of PrP protein from 
healthy to harmful isoform.  Aggregation 
of misfolded intermediates appears to be 
the pathogenic species in amyloid (e.g. 
“mad cow” & Alzheimer’s) diseases.

Note:  this could only have been 
discovered with simulation!



RSSI 2007High Performance MD with FPGAs

MD simulations are
often “heroic”
100 days on 500 nodes …

Why Acceleration of MD Simulations is 
so important …

P.L. Freddolino, et al.
Structure, 2006
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P. Ding & N. Dokholyan
Trends in Biotechnology,2005
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*Heroic ≡ > one month elapsed time

Heroic* MD with a 
large MPP

Heroic*  MD 
with a PC

Area of demandArea of demand

One second MD 
with a PC

Length scale (m) of modeled reality
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The State of High Performance 
Computing Node Architecture

• High performance computing (HPC) requires ever 
more computing power 
But, while
– Transistor density continues to increase with Moore’s Law,
– Microprocessor operating frequency hasn’t increased since 2003

• due to the problems with power density
– New microprocessors have multiple CPU cores

• Much harder to use efficiently than traditional microprocessors
• Questions whether scalable performance will ever be achieved

• Alternative architectures are being explored:
– Specialized multicore (Cell), GPUs, SIMD (Clearspeed), FPGAs
– Idea:  Match appropriate accelerator to appropriate domain
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FPGAs Are Promising Because …
Large amount of logic (sea of configurable gates)
Large number of computer parts (sea of microcores)

– Hundreds of DSP computation units (MACs)
– Hundreds of independently accessible memories (Block RAMs, BRAMs)

Configurable into various architectural styles
– Very deep pipelines (hundreds of stages)
– Pipeline replication (hundreds of small pipelines)
– Complex data reference patterns (flexible supercomputing-style interleaving)
– Associative computing (broadcast, matching, query processing, reduction)

Tremendous computing capability
– Massive parallelism (100 ~ 1000+ PEs)
– Flexible memory interface and enormous bandwidth (> 1 TB/sec)
– Payload on every cycle (control in hardware, not software)

Commodity parts
– Leverage markets for communication switches and DSP
– High-end always uses latest VLSI processes (65nm)
– Well balanced among performance, generalization, and development effort.

Many vendors, support from dominant companies
– Offerings from SGI, Cray, SRC, and many smaller companies
– Intel supporting accelerators including FPGAs at all levels including front side
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FPGAs Are Not Completely General Purpose

• Low operating frequency (~ 1/10x)
– Freedom is not free.

• Sharp learning curve
– Few application experts are good at FPGA design.

Therefore – Performance of HPC using 
FPGAs is unusually sensitive to the quality 
of the implementation.
Overhead must be scrupulously avoided in 

implementation, both in tools and in 
architectures.
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The Problem We Address is …

… how to bring to researchers in computational 

science substantially more cost-effective MD 

capability.

We address this problem by enabling the use 

for MD of   a new generation of computers based 

on reconfigurable logic devices:  Field 

Programmable Gate Arrays or FPGAs.



RSSI 2007High Performance MD with FPGAs

Haven’t we seen enough MD talks?

Groups working on accelerating 
MD with FPGAs:  sample 
recent publications

Alam Computer 2007
Azizi FCCM 2004
Gu               FPL 2006
Kindratenko  FCCM 2006
Komeiji J. Comp. Chem 1997
Scrofano     FCCM 2006

Axes in Design Space

• Precision
• Arithmetic mode
• Base MD code
• Target hardware
• Design flow
• Scope of MD 

acceleration
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The Challenge
Although FPGAs have achieved 100x speed-ups, these 

applications have often had the following characteristics:
– Low precision
– Integer arithmetic
– Small, regular computational kernels
– Simple data access patterns

MD codes have:
– Floating point (some integer in some codes)
– Double precision (some single precision in some codes)
– Several small-medium kernels, and much other code
– Moderately complex data access patterns
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Our Approach

FPGA-aware redesign of almost every aspect 
of Molecular Dynamics (MD):

• Overall design

• Algorithm selection/restructuring

• New arithmetic mode

• Experimentally determined interpolation

• Experimentally determined precision

• Partitioning, integration into MD production code

• Micro-architectures for several major components
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Summary of Contributions

• Substantial speedup over production MD codes, e.g. NAMD
– By far the best reported performance of FPGA acceleration.

• FPGA-aware mappings of MD algorithms
– Short-range forces
– Long-range force using multigrid

• so far the only published FPGA solution for long-range force computation

– Cell-list
– Non-bonded force exclusion

• Complete MD system
– Coprocessor micro-architectures
– Production code integration

• Novel numerical computation approach
– Semi floating point arithmetic mode
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What is Molecular Dynamics?

MD  – An iterative application of Newtonian mechanics to 
ensembles of atoms and molecules

Runs in phases: 

Many forces typically computed,

but complexity lies in the non-bonded, spatially extended forces:          
van der Waals (LJ) and Coulombic (C)

Force 
update

Motion
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Reducing the O(N2) Complexity …

LJ force gets small quickly …

… while the Coulombic force does not ...
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Make LJ O(N) with Cell Lists

Observation:
• Typical volume to be simulated  =  100Å3

• Typical LJ cut-off radius  =  10Å
Therefore, for all-to-all O(N2) computation,     

most work is wasted

Solution:
Partition space into “cells,” each roughly the size 

of the cut-off
Compute forces on  P only w.r.t. particles in 

adjacent cells.
– Issue shape of cell – spherical would be more efficient, 

but cubic is easier to control
– Issue size of cell – smaller cells mean less useless force 

computations, but more difficult control.  Limit is where the 
cell is the atom itself.

P
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Make Coulombic O(N) with Cut-Off

The Coulombic force can be approximated with a “cut-off”
function, and computed with cell lists along with the LJ …, 

… but this is often insufficiently accurate

Cut-off approximation
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Make long-range force o(N2) with transforms

Various clever methods to reduce complexity:
• Ewald Sums  

– O(N3/2)

• (Smooth) Particle Mesh Ewald 
– O(N log N)

• Fast Fourier Poisson
– O(N log N)

Standard HPC Implementation, cont.
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Many software packages: 
NAMD, AMBER, CHARMM, GROMACS, LAMMPS, ProtoMol, …, 

and more coming.

Standard HPC Implementation, cont.
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Short-Range Force Computation

Problem:
– Compute force equations such as 

Difficulty:
– It requires expensive division operations for r -x.

Method: Use table look-up with interpolation, but on individual terms (r-4, r-7)

Also used for short-range component of Coulombic
three tables are needed, plus further computation
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Vary section size Length of each is double that of previous

Advantages:
– Concentrates intervals in region of highest curvature
– Allows simple extension to large cut-off radii

An Optimization

section

interval
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Polynomial Interpolation

• Equation:

• Two Issues:
– Order (M) and interval resolution (N)

• Depending on the accuracy/performance trade-off

– Coefficients {Ci} – what type of interpolation?
• Depending on the required properties of the approximating 

curves

)()(...)()()()( 3
3

2
210

MM
M xoaxCaxCaxCaxCCxf +−++−+−+−+=
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Interpolation Order & Interval Resolution

3.76e-67.31e-712048
6.04e-51.17e-51512
2.66e-73.32e-82512
1.73e-52.17e-62128
2.55e-72.26e-83128
4.19e-63.74e-7364
1.08e-77.35e-9464
3.67e-62.55e-7432

Maximum Relative ErrorAverage Relative ErrorMN

• Problem:
– Minimize approximation error with given HW resources. 

• Solution:
– Trade-off between interpolation order (M) and interval size (N) for r -x term.
– Note: M and N affect different resource types (multipliers versus BRAMs).
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Coefficients: 
Polynomial Interpolation Comparison

• Some candidates: Taylor, Hermite, Orthogonal
• Relative root mean squared error with logarithmic size intervals
• Target function: f(r)=r -7 on (2 - 4,27).
• N: number of intervals per section; M: interpolation order

Orthogonal Polynomial Interpolation Taylor Polynomial Interpolation
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Polynomial Interpolation Comparison, cont.
• 3 order interpolation with 

variant interval numbers
• 128 intervals per section with 

variant interpolation order

• Orthogonal polynomial interpolation has the least squared error under 
same combination of interpolation order and interval numbers 

• Zero approximation bias, i.e. 

Hermite

Taylor

Orthogonal

Hermite

Taylor

Orthogonal

0))()(( =−∫
b

a ab dxxPxF
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Arithmetic Mode – Semi Floating Point

Interpolation needs accurate arithmetic mode.
• Floating point number

– Problem: too expensive on FPGAs 
• Fixed point number

– Problem: the magnitude of interpolation coefficients varies 
tremendously

• Our solution:  SemiSemi--FPFP
– Fixed point numbers of different, but limited formats among 

sections; same format within one section; same data width for all 
sections.

70 / 1316 / 7Semi-FP
692 / 12
Adder

540 / 8
Multiplier

DP

# of slices / Delay

r2

r -x Section

xxxx.xx xx.xxxx

Format ≡ position of binary point



RSSI 2007High Performance MD with FPGAs

Interpolation Pipeline with Semi-FP

• r-x interpolation Pipeline 
• ‘a’ is the starting point of an interval

00001111001100

Offset (x-a)Section (format)

Interval (a)

r2

Find most significant 1 to:
•get format
•extract a
•extract (x-a)
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Hardware for Semi-FP Operations

• Semi-FP Adder and Multiplier

OP1

…

Adder OP1

Switch

OP2

…

Adder OP2

Switch

Adder Result

Switch

Result

Format

Format

OP1 OP2

Multiplier Result

Switch

Result
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Benefits of Semi-FP

4622--Combined Semi-FP, 
integer – 35 bits

-30718Integer – 35 bits

-31670Semi-FP – 35 bits

6998139329LogicCore single 
precision FP – 24 bits

19566540692LogicCore double 
precision FP – 53 bits

Complete Force 
PipelineMultiplierAdderFormat

• Slices per force pipeline
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Non-bonded Force Exclusion

• Problem:
– Non-bonded forces only exists between particles without covalent 

bonds.

• Solutions:
– Check bonds on-the-fly during computing non-bonded forces 

• Expensive to check bond information on-the-fly
– Build a pair-list for non-bonded particle pairs 

• Random access for particles needed
– Compute force blindly first, and subtract the complementary force later 

• Loss of precision caused by fake forces (underflow) or pure fixed-point 
arithmetic required (overflow)

Picture sources: http://ithacasciencezone.com/chemzone/lessons/03bonding/mleebonding/van_der_waals_forces.htm

http://ibchem.com/IB/ibnotes/full/bon_htm/4.2.htm
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Non-bonded Force Exclusion
• Optimization:

– Alternative extend from the last solution
• Close-range cut-off prevents huge fake forces.
• Calculate the cut-off with                                                  .
• Multiple cut-offs according to particle types are required.

rangedynamicrF short _)( 2 <

Dynamic_range

Exclusion cut-off

Short-range force cut-off

Lennard-Jones Force
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Cell-list, No Longer a List

Software:
• Link lists of indices

No particle moving in the particle 
memory during cell-list 
construction.

Particle Memory

7
3
2

5

Cell-list 
Memory

FPGA:
• Index table and segmentation

Particles grouped by cells in the 
particle memory.

P
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Handling Large Simulations
• Problem:

– On-chip BRAMs are limited for large simulations, so use off-chip 
memories.

• Difficulties:
– Off-chip interface is different among platforms.
– Off-chip access may reduce on-chip processing efficiency because of 

bandwidth and latency.
• Solution, part 1:

– Abstract memory interface is defined to minimize platform dependency.
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Particle Data Access Characters

• Observations:
– Spatial Locality:

Anytime, only a small piece of simulation 
model is processed.

– Temporal Locality:
Once a piece of simulation model (N 
particles) is swapped on-chip,  O(N2) 
computation are to be conducted.

– Cache Line Conflict:
Particle memory access pattern is 
deterministic, no miss or congestion.

Position

Acceleration

00

0

POS SRAM

ACC SRAM

POS $ 0

ACC $ 0

POS $ 1

Short-Range Force Pipelines

ACC $ 1
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Explicitly Managed Cache

00

POS $ 0

ACC $ 0

POS $ 1

Short-Range Force Pipelines

ACC $ 1

Solution, Part 2:
–Explicitly Managed Cache

POS SRAM ACC SRAM
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Large Simulation with Off-chip Memory

• Benefits:
– Support more particles.
– Save BRAMs for more pipelines.

– Abstract memory interface is defined with relaxing 
bandwidth requirement

• Dual-port SRAM interface
• ~100 bits per cycle

4256Kw/ off-chip mem
2

# of pipelines
8K

# of particles
w/o off-chip mem
Chip: VP70



RSSI 2007High Performance MD with FPGAs

Summary –
Short-Range Force Computation

• Force pipeline
– Orthogonal polynomial interpolation for r -x

– Semi-FP arithmetic mode

– Exclusion with short distance cut-off checking

• Cell-list algorithm

• Explicitly managed cache and off-chip memory 
interface
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Long-Range Force Computation

2.  Apply Potential Field to 
particles to derive forces.  

Picture source: http://core.ecu.edu/phys/flurchickk/AtomicMolecularSystems/octaneReplacement/octaneReplacement.html

∑
≠

=
ij ji

jCL
i r

q
V

1.  Sum charge contributions to 
get Potential Field VCL

.

• Problem:

• Difficulties:
– Summing the charges is again an all-to-all operation.
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Goal:  Make Coulomb Force o(N2)
Common HPC Solution – Use a Transform

• Various clever methods to reduce complexity:
– Ewald Sum        O(N3/2)
– (Smooth) Particle Mesh Ewald    O(N log N)
– Fast Fourier Poisson   O(N log N)

• Previous work w/ FPGAs
– S. Lee (MS Thesis 2005) 
– Others either ignore or do in SW

• Difficulty requires 3D FFTs

Let’s try something that FPGAs are really good at ...



RSSI 2007High Performance MD with FPGAs

Compute Coulomb Force
with 3D grids

Good news:  Applying force from 3D grid to particles is O(N)!

Bad news:  … as the grid size goes to ∞ !!    
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Computing the Coulomb Force
w/ 3D Grids – Intuition

1. Apply charges (arbitrarily distributed in 3-space) to a 3D grid
– To apply each charge to the entire grid is impractical, but required by 

finite spacing, so …
– apply to as many points as practical initially, and then correct in step 2.

• E.g., to surrounding 8 grid points in circumscribing cube, to surrounding 64 
grid points for larger cube, …

2. Convert  charge density grid to  potential energy grid
– Solve Poisson’s equation …

3. Convert potential on 3D grid to forces on particles   
(arbitrarily distributed in 3-space)

2 ρ∇ Φ =
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Particle-Grid (1) & Grid-Particle (3)
Map Really Well to FPGAs …

Example:  Trilinear InterpolationExample:  Trilinear Interpolation
• SW style: Sequential RAM access

• HW style: App-specific interleaving

(x,y,z)

(x,y,z)

From VanCourt, et al. FPL06
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• Operations on grid are mostly convolutions.
• MAC can be replaced with arbitrary operations
1D Convolution Systolic Array (well1D Convolution Systolic Array (well--known structure)known structure)

... …

... … C[k]

A[L]

B[i]

0

A[L-1] A[0]A[L-2]

PE

A[k]

Init_
A

Replaceable

3D Grid-Grid (2)
also Maps Really Well to FPGAs …
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Example:  3D CorrelationExample:  3D Correlation

• Serial processor: Fourier transform F
– A ⊗ B = F -1( F(A) x F(B) )

• FPGA: Direct summation
– RAM FIFO

FIFO
F(a,b)

3D Grid-Grid (2)
also Maps Really Well to FPGAs …
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Multigrid Method

• Basic Ideas
– Computation in discrete grid space is 

easier than in continuous space
– Solution at each frequency can be found 

in a small number of steps per grid point
– Successively lower frequency 

components require geometrically fewer 
computations

• V-Cycle
– The down and up traversal of the grid 

hierarchy is called a V-cycle Direct
Solution

Time steps

G
rid

 si
ze Relaxation
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Multigrid for Coulomb Force
Difficulties with Coulomb force:
• converges too slowly to use cell lists
• cut-off is not highly accurate

Idea:
• split force into two components 

– fast converging part that can be solved locally
– the rest, a.k.a. “the softened part”

doesn’t this just put off the problem?

Another Idea:
• pass “the rest” to the next (coarser) level  (!)
• keep doing this until the grid is coarse enough to solve directly (!!)

Cut-off approximation

“softened” 1/r
1/r – (“softened” 1/r)
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Multigrid for Coulomb Force

• Potential is split into two parts with a smoothing function ga(r) :

• Only the long-range part ga(r) is computed with Multigrid Method

• ga(r) is recursively approximated with another smoothing function g2a(r) :

• ga(r) - g2a(r), the correction, is calculated on the current level grid,

• g2a(r) is approximated on coarser grids.

• If the grid is small enough, ga(r) is computed directly

∑
≠

=
ij ji

jCL
i r

q
V )())(1(1 rgrg

rr aa +−=

)())()(()( 22 rgrgrgrg aaaa +−=
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Multigrid for Coulomb Force

Apply particles to grid

Anterpolating Grid

Anterpolating Grid
Direct Solution 

Correction 

Correction 

Interpolating Grid

Interpolating Grid

Apply grid to particles

Short-range force
w/ cell lists
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Multigrid for Coulomb Force

T

T

TP1: Assign charge from 
particles to the finest grid.

Start

AG: Assign charges from a fine 
grid to the next coarse grid.

COR: Compute local 
correction on grid.

Move to the next 
coarse grid and check 

if it is the coarsest one?

DIR: Compute all grid 
point pair-wires 

interaction.

IG: Interpolate potential from a 
coarse grid to the next fine grid

Move to the next fine 
grid and check if it is 

the finest one?

TP2: Differentiate potential on the 
finest grid, interpolate them to 

particles and multiply them with 
particle charge.

End

F

T

F

T
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Multigrid for Coulomb Force

• Two types of operations
– Particle-Grid Conversions

• TP1 and TP2
• One particle                 P3 neighboring grid points

– Grid-Grid Convolution
• AG, IG, COR, and DIR
• Grid * Pre-computed Operators                  Grid

Note – no relaxation steps necessary in Coulombic multigrid
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Grid-Particle/Particle-Grid Computation

Step 1:  We scale our coordinates to match the finest grid.
In one dimension …

particle position = gi | oi gi = grid point
oi = distance from grid point

Step 2:  We use oi to compute the contributions of q to the 
neighboring gi



RSSI 2007High Performance MD with FPGAs

Grid-Particle/Particle-Grid Computation
Approximate with appropriately chosen basis functions

– 3rd order, see  [Skeel, et al. 2002] for analysis

oi oi2oi3 

oi

Φ0(w) or dΦ0(w)

Φ1(w) or dΦ1(w)
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switch 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥

≤≤−−−

≤−+−

=

2,0

21),2)(1(
2
1

1),
2
31)(1(

)( 2

2

w

www

wwww

wφ

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−=

++−=

+−=

−+−=

23
3

23
2

23
1

23
0

2
1

2
1)(

2
12

2
3)(

1
2
5

2
3)(

2
1

2
1)(

oioioi

oioioioi

oioioi

oioioioi

φ

φ

φ

φ

Ф0 Ф1 Ф2 Ф3

oi
1 - oi

gi-1 gi gi+1 gi+2



RSSI 2007High Performance MD with FPGAs

Particle-Grid Converter

• Particle-Grid Converter
– For Pth order basis functions, one particle charge is assigned to 

P3 neighboring grid points through a tree structured datapath.
– One level per dimension – P points per level



RSSI 2007High Performance MD with FPGAs

Grid-Grid Details

• For the models studied, the following configuration has 
good accuracy:
– 2 Grids:   Fine 28 x 28 x 28

Coarse 17 x 17 x 17

– Grids convolved with  10 x 10 x 10  kernels for correction

– Coarse grid solved directly, i.e. grid charges are integrated to
obtain grid potentials (all-to-all)

Why no more grids?
Next coarser grid would be 12 x 12 x 12 and smaller than convolution 

kernel
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Handling Large Convolutions 

Problem:  only 64 convolution units fit on chip (4 x 4 x 4)

So, the convolution must be cut into pieces and 
assembled…

*
BA0 A1

A2 A3

A0*B A1*B

A2*B A3*B
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Summary –
Long-Range Force Computation

• Multigrid method

• Particle-Grid conversion
– Interleaved memory

– Tree-structure pipeline

• Grid-Grid convolution
– Systolic array convolver

– Large convolution extension
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Agenda

• Motivation

• Background

• Algorithm-level designs

• Implementation and results

• Future directions
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Implementation
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Implementation
• FPGA Platform

– Annapolis Microsystems 
Wildstar II Pro PCI Board

– Xilinx Virtex-II Pro VP70 -5 
FPGA

– FPGA clocks at 75MHz

• Design Flow
– VHDL using Xilinx, Synplicity, 

and ModelSim design tools

– Microsoft Visual C++ .Net

– Annapolis PCI driver

• Host Platform
– 2.8 GHz Xeon Dell PC running 

Windows XP

– ProtoMol 2.03

• System Specification
– Capable of 256K particles of 32 

atom types
– Cell-lists for short-range force 

computation
– Multigrid for long-range force 

computation

– 2 levels of grids and the finest 
grid up to 323

– 35-bit precision semi floating 
point
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Short-Range Force CP Architecture

• Please see thesis for details

Pair-controller

sel

Force pipeline (1)

Force pipeline (2)

Force pipeline (N)

Pj(1)

Pj(2)

Pj(N)

Pi

MUX0

MUX0

MUX0

Accele-
ration

Memory

Position 
& Type
Memory

sel

Combination Logic

sel

selPi
array

Adder
Tree

Pi acceleration
array

clear

… …

Cell-list memory
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Multigrid CP Architecture

Dual-port Q 
memory

Grid-Grid 
Convolver

Dual-port V 
memory

Particle-Grid 
Converter

Interleaved 
Q memory

Interleaved 
V memory +Type-

Param
memory

Particle 
Coordinates

Particle 
Type

Particle 
Address

Acceleration

Particle 
Address

1

Control Logic

• Please see thesis for details
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Validation Methods
What many serial codes do (but not GROMACS) :

– Use DP floating point and forget about it unless something screws up
• Monitor a physical invariant (e.g. energy) – a common measure:   

Example:  Relative rms fluctuation of total energy [Amisaki 1995]

Example:  ratio of fluctuations between Etotal and Ekinetic R < .05
[van der Spoel 2004]

• Monitor the error between different methods
– Measure the error of force and energy between the direct computation and 

the alternative methods [Skeel, et al. 2002]

05.<ΔΔ≡ kinetictotal EER

||
|| 22

〉〈
〉〈−〉〈

≡
E

EE
EMinimize fluct

∑
∑
−

− −
=

i
ii

i
iii

avg FmN

FFmN
F

)(

)~(

2/11

2/11

U
UUU pot

−
=

~



RSSI 2007High Performance MD with FPGAs

Validation Methods

Validated against two serial reference codes:
1. ProtoMol 2.03
2. Our own bit accurate Hardware Tracker code (multiple versions)

Validation, part1: ProtoMol matches HardwareTracker when 
HardwareTracker has a floating point datapath

Validation, part2: HardwareTracker matches FPGA 
implementations for all semi fp datapath sizes

The missing link: Floating point can only be compared 
indirectly with lower precision datapaths (see previous)
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Arithmetic – Precision

• Measuring energy fluctuation under different precision
– 35-bit precision is a sweet spot for both numerical accuracy and 

FPGA resource mapping.
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Results – Validation

Both SW only and accelerated codes were evaluated …
– SW only:  double precision floating point (53 bit precision)
– Accelerated:  35-bit precision semi floating point

• Model:
– 14,000 particles

• bovine pancreatic trypsin inhibitor in water
– 10,000 time steps

(similar results with larger model)

• Energy Fluctuation:
– Both versions have relative rms energy fluctuations  ~3.5*10-4

E

EE 22 −
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Results – Validation

Potentail Energy Error
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•Average force error and potential energy error:
–The difference between DP multigrid and 35-bit semi-FP multigrid is 
~10-4 of the difference between DP direct computation and DP or 35-
bit semi-FP multigrid method.
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Results – MD Performance
77,000 particle model running 1,000 steps

Importin Beta bound to the IBB domain of Importin Alpha
The PDB “Molecule of the Month” for January, 2007 !

93Å x 93Å x 93Å box
Short-range force speed-up

11.1x  over software version of original ProtoMol
Multigrid speed-up

3.8x  over software version of multigrid in original ProtoMol
2.9x  over software version of PME in NAMD

Total speed-up
9.8x  over original ProtoMol
8.6x  over NAMD

3726177.3
(PME)

NAMD
• PME every cycle

415712.9021.521.6234.1
(Multigrid)

3867.8Original ProtoMol
• Multigrid every cycle

9.2

Init. & 
misc.

42525.620.821.561.3
(Multigrid)

348.3FPGA Accelerated 
ProtoMol (2 VP70s)
• Multigrid every cycle

TOTAL Comm. & 
overhead 

Motion
Integration 

Bonded 
Forces 

Long 
Range 
Forces

Short 
Range 
Forces 

se
ria

l
FP

G
A
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Extended Results – MD Performance

6.5x

11x
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Can we get better performance?
1. FPGAs (VP70) are two generations old

– Going to top of line (VP100) helps
– V4 and V5 are much faster, but don’t help much 

with critical component counts … (they are also 
much cheaper?!)

2. 35-bit precision is expensive
(even with semi FP; full FP would be much worse)
– Hard FP cores would help

3. Improved design
– We’ve done little optimization
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Extended Discussion – MD on FPGAs

What’s a factor of 5x (or 10x) worth?
• it’s not a factor of 50x  [Buell RSSI2006]
• What do you expect running at 75MHz on a three 

year old FPGA without hard FP units???
• 1/5th of 100 days is 20 days !!  [Pointer 2006]
• NAMD has been seriously optimized

– although perhaps not as much as GROMACS …

• Power savings is good, should be advantageous 
in total cost of ownership …

• MD is really important …
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Questions?


