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Molecular docking is one of the primary computational methods used by pharmaceutical companies to try to reduce the cost of
drug discovery. A common docking technique, used for low-resolution screening or as an intermediate step, performs a three-
dimensional correlation between two molecules to test for favorable interactions between them. We extend our previous work
on FPGA-based docking accelerators, using reconfigurability for customization of the physical laws and geometric models that
describe molecule interaction. Our approach, based on direct summation, allows straightforward combination of multiple forces
and enables nonlinear force models; the latter, in particular, are incompatible with the transform-based techniques typically used.
Our approach has the further advantage of supporting spatially oriented values in molecule models, as well as the detection
of multiple positions representing favorable interactions. We report performance measurements on several different models of
chemical behavior and show speedups of from 130× to 1100× over a PC.
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1. INTRODUCTION

Noncovalent bonding between molecules is basic to the pro-
cesses of life and to the effectiveness of pharmaceuticals.
Chemical experiments are not always practical for measur-
ing binding strength, and may be prohibitively expensive
for screening 100,000 or more drug candidates against one
molecule of medical importance. Instead, a number of com-
putational approaches have been developed. The most pre-
cise computational models are based on quantum mechan-
ics, or on approximations such as density functional theory.
These techniques are computationally exorbitant, however,
and infeasible for answering the first question: at what ap-
proximate offsets and orientations could the molecules pos-
sibly interact at all?

Less costly techniques are used for initial estimates of
the docked pose, the relative offset and rotation that give
the strongest interaction. Although most large biomolecules
(substrates) and small-molecule drug candidates (ligands)
can flex or rotate around chemical bonds, many applications
[1–5] assume rigid structure as a simplifying approxima-
tion. This still allows the modeling of many different rules or
force laws governing interaction between molecules, includ-
ing electrostatic, geometric, atomic contact potential, solvent
effect, and many others.

Since its introduction, 3D correlation [3] has become
a standard technique for determining the best fit between

digitized representations of rigid molecule approximations.
The technique is based on 3D voxel grids representing the
substrate and ligand. It uses correlation to detect strong sim-
ilarity between the 3D structure of the ligand and the 3D
shape of the active “pocket” within the substrate molecule.
Spatial correlation determines only the relative offset at
which docking occurs, so it must be repeated at many three-
axis rotations, over 104 of them for 10◦ sampling intervals.
The standard PC implementations use transform techniques
that reduce the polynomial complexity of the correlation, but
still take hours of computation to test each drug candidate
against a biomolecule—and must be repeated for each of the
103–105 drug candidates in a pharmacological screen.

Contributions of this report are based on the reconfig-
urability of FPGAs. We demonstrate an entire family of dock-
ing accelerators, each specific to a different force law, but
based on a common family architecture. Chemistry mod-
els are generalized to arbitrary tuple data types, allowing
combinations of phenomena and even vector-valued phe-
nomena in the force laws. Scoring functions are also gen-
eralized to allow nonlinear expressions, which are impossi-
ble for transform-based correlation techniques. System per-
formance measurements are presented, based on a Xilinx
Virtex-II Pro implementation. We examine the tradeoff of
complexity in the chemistry model versus accelerator perfor-
mance, showing how reconfigurability makes the best use of
the FPGA resources for each specific calculation.
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The significance of the hundred-fold to thousand-fold
speed increases at modest cost reported here is that this could
enable new kinds of screening: more drug candidates per dol-
lar of computing budget, increased accuracy in chemistry
models yielding drug leads of better quality, testing of alter-
native conformations in ligands and substrates, and testing
of more substrates for medical effect or side effects.

2. BACKGROUND AND METHOD

Docking is a central problem in computational biochemistry
with a long history and a vast literature; some recent surveys
are [6–8]. Relatively recently, correlation techniques have be-
come popular as a step in docking problems in computa-
tional chemistry. There, the goal is to find out where and how
well a potential drug molecule interacts with a medically sig-
nificant protein. Researchers treat each drug candidate as a
3D template and search the protein’s “image” for regions that
match the drug [1–4]. Collisions, where the drug candidate
and protein would occupy the same volume, are penalized.
Good matching or “docking” represents strong chemical in-
teraction, indicating that the molecule may have desirable
drug-like effects on that protein.

Standard PC-based applications [2, 4] for correlation-
based docking use 3D Fourier transforms for perform-
ing correlation, sometimes complex transforms [3]. Experi-
ments show that, on a serial processor, the improved asymp-
totic complexity of transform-based correlation gives bet-
ter performance for problems of common sizes. The appli-
cations are found to have two important features in com-
mon, however: initial problem statements in terms of sim-
ple data types, and simple scoring functions. Recognizing the
highly regular structure of the computation, correlation by
direct summation can be implemented using hundreds or
thousands of parallel processing elements in today’s FPGAs.
The FPGA implementation also eliminates the overhead of
the inner loops (because of dedicated control hardware) and
load/store costs (because of pipelining). We show here that
when using direct summation, FPGA-based accelerators of-
fer dramatic acceleration of the correlation, for typical prob-
lems.

Our family of accelerators does the following: it accel-
erates the correlation form of docking, integrates 3D rota-
tion with correlation, handles rotation of vector-valued vox-
els, and uses hardware filtering to reduce the volume of data
transferred from the accelerator to the host. We also observe
that correlation hardware typically specifies a particular size
of computation array as one of the design inputs. As will
be seen in Section 6, exact array size is not a constraint on
these computation arrays. Our approach also differs in using
the largest array size possible, sized according to the FPGA
resources available and the complexity of a given computa-
tion.

3. RELATED WORK

Correlation is well known as a staple of object recognition.
Two-dimensional correlation and convolution have been so

important in image processing that efficient structures for
hardware acceleration have a long literature [9, 10]. Some of
those authors presented 3D computation structures, or 2D
structures that can readily be extended to higher dimensions.
Older literature proposed application-specific integrated cir-
cuits (ASICs) for correlations. More recent authors use FP-
GAs to create accelerators that can implement complicated,
possibly nonlinear two-dimensional filters [11, 12].

Object matching typically requires rotation of the voxel
image. Special 3D memory structures have been proposed
[13], designed to reduce conflicts when accessing multiple
memory locations. Other authors have concentrated on con-
verting 2D computation coordinates directly to memory lo-
cations in untransformed coordinates [1]. These 2D access
transformations have straightforward extensions to three di-
mensions.

Docking computations have long been carried out on
serial computers. Lately there have also been parallel im-
plementations [14, 15], including one on a SIMD proces-
sor [16]. We believe that this work is the first study of us-
ing FPGAs to accelerate this application. Please note that
docking has little resemblance—either in problem being ad-
dressed or in method used—to many of bio-related applica-
tions that have previously been implemented on FPGAs, in-
cluding homology modeling, microarray data analysis, reac-
tion modeling, mass spectrometry, sequence assembly, phy-
logenetic analysis, and sequence analysis. Molecular dynam-
ics has lately also been implemented on FPGAs and is some-
times used as a late stage of complex docking applications,
but also is unrelated to current work in that it addresses a dif-
ferent part of the docking problem and uses different meth-
ods.

4. THE TARGET SYSTEM

When formulating the system, our target was a generic high-
end 2004-era FPGA. One such chip, the Xilinx Virtex-II Pro
XC2VP70 has 74,448 configurable logic cells, 328 hardwired
multipliers, 328 block RAMs totaling 5.9 Mbits, and up to
992 pins for memory interfaces and I/O connections. We also
targeted a generic PCI-based FPGA development board, with
host interface and ancillary memory. We implemented our
designs using a standard tool flow.

When prototyping our system for proof-of-concept and
timing experiments, we used a commercially available FPGA
accelerator board, the Annapolis Microsystems Wildstar-
II. This board plugs into the PCI bus of a standard PC,
as shown in Figure 1. Our Wildstar board contains two
XC2VP70-5 FPGAs, only one of which is used in the current
study.

The docking application is partitioned so that the acceler-
ator performs the correlation operation and summarizes the
results. The host PC is responsible for loading the molecule
models from disk (e.g., in PDB format), downloading mod-
els to the accelerator board, and setting accelerator control
parameters. It is also responsible for collecting correlation
results computed at each three-axis rotation, and aggregat-
ing results from all rotations into a final result.
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Figure 1: PC and FPGA accelerator configuration.
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Figure 2: FPGA computation pipeline for 3D correlation.

5. THE CONFIGURABLE ACCELERATOR:
ALGORITHMS AND DESIGN

5.1. Configurable pipeline overview

Figure 2 illustrates the basic structure of the accelerator’s
computation pipeline. In left-to-right order, system compo-
nents are the following.

(i) Rotated image traversal. The two molecules must be
tested against each other in rotated orientations that cover
the range of possibilities in adequate detail. The standard ap-
proach would be to take the original molecule image, create
a rotated version of it in a new buffer, and process the ro-
tated image. Instead, this structure eliminates rotation as a
separate step by accessing the image in a rotated indexing se-
quence, without the need for a separate processing step or
memory allocation.

(ii) Substrate voxel memory. The substrate molecule’s
voxels are stored in the FPGA’s on-chip memory. This is
a RAM of conventional structure, with indexing logic for
the three-dimensional grid containing the molecule image.
This holds the larger of the molecule grids, typically up to
100× 100× 100, depending on resource availability.

(iii) Optional voxel rotation. Some models of chemical
interaction involve spatially oriented vector values. Examples
include normal vectors for checking that molecule surfaces
are roughly parallel, or values representing the directional
specificity of hydrogen bond donors and receptors.

(iv) Systolic 3D correlation array. This consists of a three-
dimensional array or processing elements (PEs) padded with
synchronous FIFOs for matching the sizes of input and re-
sult data. The array serves two purposes: each processing el-
ement store one voxel value for one of the molecules, and
it performs the scoring and summation arithmetic. Because
FPGA logic can hold fewer voxels than the block RAMs can,
this array stores the smaller of the two molecule grids.

(v) Data reduction filter. The correlation result may con-
sists of 10 6 or more individual scores, but only the highest-
scoring positions in the correlation result are of interest.
Since the docking calculations are only approximate, it is re-
alized that the correct docked pose may not be assigned the
highest of all scores. Instead, some set of high-scoring poses
are recorded, with the expectation that the docked pose will

be among those with the highest scores. This filter collects a
set of locally maximal scores, providing multiple results with-
out requiring that the host process the entire correlation re-
sult.

The remainder of this section discusses each component
and its configurable features in more detail. The next section
discusses operation of the array as a whole.

5.2. Rotated image traversal

Template matching applications based on two-dimensional
correlation often precompute images at fixed rotations, then
use the rotated images to look for matches of rotated ob-
jects. When rotations are sampled at 10◦ intervals, that tech-
nique requires storage of 36 rotated images. In general, that
implies O(N) images when the 360◦ circle is divided into
N parts. There are O(N3) three-axis rotations, however.
Equal 10◦ intervals in latitude, longitude, and roll angles give
around 23,000 rotations. Icosahedral decomposition gives
the same angular resolution with fewer samples, but still re-
quires about 13,000 rotations. Each rotated image is typi-
cally around 1003 voxels, plus padding, so precomputation
and transfer of every rotated image would require process-
ing and transferring over 1010 voxels. This is clearly imprac-
tical.

A straightforward implementation might rotate the
smaller molecule as a separate step, then perform the cor-
relation operation on the rotated image. In this implemen-
tation, however, the smaller molecule is stored in the limited
resources of the computation array, where it is undesirable
to waste space on padding. It is also undesirable to reload the
voxel values at the start of each correlation operation.

Instead, this implementation rotates the larger of the
molecules by accessing the voxel memory in rotated order,
as suggested in Figure 3. Since the rotation and padding logic
is part of the address computation pipeline that fetches vox-
els from the molecule memory, it does not affect throughput
rates at all. Logic for rotating the fetch order consumes very
little of the FPGA resources, so it has modest logic cost as
well.

A linear transformation converts the (i, j, k) traversal in-
dices into (x, y, z) subscripts for the 3D array of voxels. The
transform coefficients represent the three-axis rotation of
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Figure 3: Indexing and padding in rotated order.

the molecule, and an initial offset keeps the indexing vec-
tors within the array of voxels. After rotation and offset, the
(x, y, z) values are mapped from 3D array subscripts to linear
memory addresses as usual. The logic implementation incor-
porates the following observations.

(i) Maximum ranges of traversal indices (i, j, k) and voxel
indices (x, y, z) are known in advance. That informa-
tion yields the precision needed for fixed-point com-
putations across the whole (i, j, k) range to maintain
±1/2 unit accuracy in the (x, y, z) domain, using the
minimal number of bits.

(ii) The (i, j, k) indices may cover a wider range than
the (x, y, z) values, because the molecule needs to be
padded to the larger bounding box of the rotated im-
age. Simple inequality tests on the (x, y, z) values from
the following linear transformation of array indices
determine whether the (i, j, k) index is outside of the
(x, y, z) range, that is, whether it represents padding
or not.
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⎥⎦

(1)

(iii) In our application, (i, j, k) indices are traversed se-
quentially. Standard strength reduction techniques
convert all multiplications in (1) into additions, and
those additions can be performed in parallel. This
makes good use of the FPGA’s logic resources, without
claiming limited and potentially slow hardware multi-
pliers. Regular traversal order also allows the time for
address computation to be concealed by pipelining, so
index transformation has little or no impact on perfor-
mance.

(iv) The B rotation matrix and X0 offset vector are com-
puted in the host and downloaded to the accelerator
now for each correlation at a new three-axis rotation.
As a result, the accelerator itself need not worry about
how the coefficients are computed.

The result is that, for each correlation in a rotated orienta-
tion, 18 index rotation parameters need to be set by the host,
and possibly a few more for voxel rotation (Section 5.4). This
is a significant improvement over reloading a rotated image
of 106 voxels or more. The molecule images are loaded once

and reused across all rotations. As a result, the load time,
when amortized over 104 or more correlations at different
three-axis rotations, is negligible.

Configurability

This logic depends on the data types of the voxel values, if
only indirectly. When large voxel values require that FPGA
RAM be configured into wider words but fewer of them
(i.e., fewer address bits), the indexing coefficients need fewer
bits of precision to maintain ±1/2 unit address accuracy.
Since coefficient widths are deduced from memory sizes us-
ing closed-form expressions, this is a minor concern.

5.3. Substrate voxel memory

The memory for holding the substrate molecule’s voxel val-
ues is a linear RAM of conventional structure. Addressing
logic converts 3D (x, y, z) index values into linear addresses.
For efficient implementation, it is assumed that the 3D mem-
ory has fixed upper limits in each axis, and molecules may be
of any size (in each axis) up to that size. When the fixed up-
per limits are of the form 2J (for a positive integer J), index
to address mapping is just concatenation of the three index
values to form the linear address.

Configurability

Word width is the number of bits needed to hold one voxel
value. As a result, the fixed amount of RAM available on
the FPGA may need to be configured into fewer words for
larger voxel values, or more words for narrower values. Since
the array is currently implemented as a cube, and since it
should have edge dimension 2J for efficiency reasons de-
scribed above, the total number of words is always 23J . Since
FPGA RAMs offer different tradeoffs of number of words
versus word width, the current implementations use 1283 or
643, 2 M or 256 K values according to the number of bits per
voxel.

The second dependency on application details comes
from the implementation of the rotated addressing logic.
When the address computation unit determines that the ro-
tated image needs to be padded, an empty voxel value is sub-
stituted for RAM output. The bit pattern representing an
empty voxel is, at least in principle, different for each specific
application.

5.4. Optional voxel rotation

Simple force laws deal only with a molecule’s interior and
surface regions. If the molecule as a whole is subject to a rigid
rotation, the positions but not the meanings of the interior
and surface regions are unchanged. Many other force laws,
such as those involving electrostatic field strength or shape
complementarity, also involve scalar values with meanings
unchanged by rotation. Force laws may, however, describe
molecules using vector values with inherent spatial orienta-
tion. Examples include hydrogen bonding, which depends on
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the angle between the donor and acceptor [7], and effects due
to ring orientation [11]. Rotating a grid containing oriented
voxel values requires not just a rigid rotation of voxels relative
to each other, but also rotation of the voxel vector quantities
themselves.

Configurability

Rotation of voxel values fits conveniently into the computa-
tion pipeline in Figure 2, when required by the application.
The simplest cases do not have oriented voxel data. In that
case, the voxel rotation unit is present, for architectural con-
sistency, but passes voxel input to output unchanged—an
identity operation. If the voxel value includes one or more
oriented values, they must be transformed. A linear trans-
formation on one (x, y, z) vector would require nine multi-
pliers, assuming maximum parallelism, that is, less than 3%
of a Xilinx XC2VP70’s multipliers, a modest allocation of re-
sources. If azimuth and elevation angles suffice to describe
an oriented phenomenon, rotation requires even fewer re-
sources. When more than one cycle is needed for rotation,
delay matching may be required for the unrotated parts of
the voxel.

5.5. Systolic 3D correlation array

The high-level structure of the correlation array is based
on the McWhirther-McCanny structure [10], generalized to
three dimensions (shown in Figures 4 and 5), and to scor-
ing functions that are different for each force law. The im-
portant feature of this array is that it performs direct, not
transform-based correlation, using massive fine-grained par-
allelism. Voxels of molecule B, the ligand, are stored in in-
dividual cells of Figure 4’s 1D correlation arrays. Substrate
molecule A is stored in on-chip RAM. Molecule A is rotated
on the fly and padded as described above, then presented to
the correlation array at one voxel per cycle. The array gener-
ates one correlation value per clock cycle. FIFOs extend the
computation array to the size of the correlation result. We
have generalized Figure 4’s 1D correlation to handle not just
the standard sum-of-products correlation, but any “correla-
tion” score S of the form shown in the following equation:

Sxyz =
∑

i, j,k
F
(

ax+i,y+ j,z+k, bi jk
)

(generalized correlation).

(2)

Configurability

Three parts of this array are configurable. The most impor-
tant configurable element is the basic computation cell in
the 1D correlation, F(a, b). Each accelerator in this applica-
tion family uses a different function F, customized to rep-
resent the force laws in the chemistry model of interest. Be-
cause F may be nonlinear, this array can handle functions
like F(a, b) = |a−b| or solid angle complementarity that are
impossible for transform-based correlation. The array size
must be configured as part of the resource tradeoff: elaborate
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· · ·

Figure 4: 2D correlation arrays built from 1D arrays and RAM-
based FIFOs.
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· · ·

Figure 5: 3D correlation array built from stacked planes.

scoring functions require more logic resources, so fewer
instances of them can be implemented in the fixed resources
of any particular FPGA.

The second configurable feature is the voxel data type.
This configures the communication pathways between Fig-
ure 2’s substrate voxel memory and the correlation array. It
also defines the voxel values stored in each of the scoring cells
within Figure 4’s 1D correlation block. Voxel values use tuple
data types to represent multiple phenomena, as in the model
that handles both van der Waals collisions and surface in-
teractions [3]. Part of the voxel tuple can also represent an
oriented value, such as a surface normal vector [17]. Some
models (e.g., [2]) use different representations for the voxels
in the two molecules. Since the substrate and ligand voxels
are stored in different parts of the computation structure, it
is easy to use two different voxel data types, possibly with dif-
ferent bit widths, to represent the two molecules.

The third configurable feature is the score data type, used
to set the sizes of the communication paths and synchronous,
RAM-based FIFOs in Figures 4 and 5. We currently use a
fixed-point value for scoring, with positive and negative over-
flow detection. This provides the same net effect as saturated
arithmetic, but with somewhat less logic.

Cross-correlation of the A and B molecules of sizes
(Ax,Ay ,Az) and (Bx,By ,Bz) gives a result of size (Ax + Bx −
1,Ay + By − 1,Az + Bz − 1). This means that the stream of
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data from the substrate voxel memory must be padded in the
x and y dimensions (z padding is not needed) up to the size
of the result array. The rotated image traversal logic already
injects the padding shown in Figure 3, so additional padding
for size matching is a matter of parameter values rather than
new logic.

5.6. Data reduction filter

Cross-correlation of two 3D grids gives a result of size (Ax +
Bx − 1,Ay + By − 1,Az + Bz − 1). In one form of our initial
implementation, the A grid is a cube 100 units on a side, up
to 100 × √3 = 173 units on a side after worst-case rotation
and padding. The B grid, the one held fixed, is 14 units on a
side. The result, then, may be up to (173 + 14)3 or 6.4 M vox-
els. If this volume of data had to be transferred to the host
and processed for each rotation, the benefit of the FPGA ac-
celerator would be largely negated. Instead, we implement a
post-processing step for “peak filtering,” to select the highest
correlation scores. As noted above, multiple maxima must
be reported, because of mathematical approximations and
because there may be more than one interaction site on the
protein.

One complicating factor is that groups of high scores
often cluster around a broad local maximum [2]. Simple
schemes tend to report that one maximum redundantly, be-
cause of the many high-scoring neighbors, but might not re-
port other local maxima. We address multiple maxima by di-
viding the result grid into subblocks and collecting the high-
est score reported in each subblock, as shown in Figure 6.
Our implementation uses subblock numbers based on the
most significant bits of the (xc, yc, zc) address of the score
within the correlation result, for example, (xc/8, yc/8, zc/8).
This reduces the volume of result data by a factor of (1/8)3, or
1/512. Instead of 6.4 M result values, the host handles at most
12.6 K. If subblocks were cubes 16 units along each edge, the
host would process no more than 1.6 K scores for each ro-
tation. We double buffer the RAM used to collect maxima,
so uploading and processing these few selected values to the
host normally overlap computation of results at the next ro-
tation.

The subblock scheme may miss multiple local maxima
that all occur within one subblock. The number of omitted
maxima can be reduced by increasing the number of sub-
blocks, however. Figure 6 also shows examples where this
scheme may report individual maxima redundantly, in cases
of broad peaks that cross subblock boundaries. Such situa-
tions can be detected by later processing on the host pro-
cessor. Despite these potential problems, collecting one lo-
cal maximum per subblock offers the advantages of simple
implementation, handling of multiple maxima, data collec-
tion at the computation clock rate, and modest hardware re-
quirements. In particular, we note dramatic reduction in the
RAM resources committed to result storage even with double
buffering of storage for the local maxima.

Inputs to the result collector are the current score, the
subblock number, and a tag value that represents the ex-
act (x, y, z) address of the score. When enabled (i.e., when

Local maximum

Wide local maximum crosses subblock boundaries

Figure 6: Peak filtering, collecting multiple local maxima.

the (x, y, z) index does not represent padding), the collector
compares the new score to the previous best for that sub-
block. If the collector’s record for that subblock is cleared or
if the new score is better than the old one, the new score and
its tag value are saved for that subblock.

Configurability

Data elements stored in the array are pairs: a score and a
tag value indicating the exact position within the subblock
at which the score occurred. Both the filter RAM length and
the tag size depend on two factors: the maximum correla-
tion size possible and the size of a subblock. Memory length
versus width tradeoffs can be implemented directly in FPGA
RAMs, because of the many configuration options in those
RAMs.

The “maximum” function is used to summarize all the
scores in a given subblock, but that summarizing function is
swappable. Under some assumptions about molecule behav-
ior, broad scoring peaks may be preferable to higher but very
narrow maxima. We are not aware of functions that quan-
tify the desirability of broad peaks, but have demonstrated
other summary functions as proof of the architectural prin-
cipal. Since there is only one instance of the summary logic in
the entire system, any credible summary function would con-
sume only tiny amounts of the FPGA’s computing resources.

6. SYSTEM CONFIGURATION AND OPERATION

Once synthesized, an accelerator can be reused with many
molecule pairs. Resynthesis for changes in the force law is
basically a recompilation step, ensuring the largest possible
number of processing elements in the correlation array and
the highest throughput.
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Table 1: System components affected by configuration choices.

System component
Configuration features

Voxel data type Score data type Scoring function Array sizes

Rotated image traversal Address bit allocation

Molecule memory Memory width Memory length

Voxel rotation (optional) Rotation function, if any

3D correlation array
Communication paths,

Correlation computation FIFO lengths
FIFO widths

Data reduction filter
Summary function,

Memory length
memory width

Each different force model is represented by modify-
ing the configurable elements of the correlation accelerator
and synthesizing an accelerator for that force law. Synthe-
sis, placement, and routing were performed using Synplic-
ity’s Synplify 7.7.1 tool set, without hand tuning except to set
the sizes of the correlation and memory arrays. The system
as a whole consists of more than 60 VHDL source code files,
but changes to force laws affect only the five files defining the
following features:

(i) voxel data type and optional rotation function,
(ii) score data type and inequality test,

(iii) scoring function in each “correlation” cell,
(iv) sizes of the computation array and molecule memory,

dependent on the amounts of logic and RAM required
for the voxel and score data types.

Scores may be simple fixed-point numbers, values in satu-
rated arithmetic, or any convenient representation. Most of
the test cases share a common score data type and only one
test case uses voxel rotation, so fewer than the maximum
number of source files need to change for each force law.
Those few inputs affect the following system components as
shown in Table 1.

Our initial implementation uses only on-chip resources
for computation. Other than an IO periphery for setting
up and for collecting results, there are no dependencies on
the accelerator board in which the FPGA is mounted. Also,
since the computation core is written in VHDL, it is readily
portable to larger members of the Xilinx Virtex-II Pro family,
where larger amounts of resources increase the sizes of prob-
lems that can be addressed. For the same reason, the appli-
cation can readily be ported to different FPGA fabrics with
comparable computing resources, such as Altera’s Stratix-II
family.

Once the application-specific accelerator is built and
loaded into the FPGA hardware, the host interacts with it in
the following steps.

(1) Load the large molecule’s image into the substrate voxel
memory.

(2) Load the small molecule’s image into the systolic 3D
correlation array.

(3) For each of the three-axis rotations.

(3.1) Load rotation parameters into the rotated image
traversal.

(3.2) If necessary, load rotation parameters into the
optional voxel rotation logic.

(3.3) Start correlation and wait for completion.
(3.4) Fetch results from the data reduction filter and

clear the filter memory.

The molecule images are loaded only once, and reused until
different molecules are desired. Only a few dozen control val-
ues need to be set up for each three-axis rotation, and setup
can be overlapped with the previous correlation’s execution.
Also, there are relatively few results to fetch from the data
reduction filter. Because of hardware double buffering, setup
and result collection can be overlapped with the next correla-
tion’s operation. Given the small number of data transfers at
the start and end of each correlation, these factors combine to
make possible back-to-back correlations with very little dead
time in the accelerator hardware.

7. PERFORMANCE RESULTS

Table 2 lists performance results for docking calculations
based on various force laws. Each force law’s voxel represen-
tation requires different numbers of bits, and the scoring cal-
culations require different amounts of logic. As a result, the
largest correlation array possible on a given FPGA is differ-
ent for each force law, and the array sizes are shown. Each
force law was also implemented using direct summation on
a 3 GHz PC using normal good coding style but without ag-
gressive optimization. Relative to direct summation on a PC,
the FPGA implementation gave speedups of 130× to 1100×.

Performance results are based on the Xilinx Virtex-II Pro
XC2VP70-5, in a Wildstar-II coprocessor board from An-
napolis Microsystems. Performance is measured in billions of
cell sums per second (CS/s), evaluations and additions of the
function F in (2). These are directly analogous to multiply-
accumulates (MACs) in a standard correlation.

The results clearly show the benefit of reconfiguration
for handling the different possible force laws. Suppose that,
instead of configurations specific to each force law, a single
type of PE could have been used, programmable so as to
handle any of the force laws reported in Table 2 [2]. Assume
that the programmable PE took the same logic resources and
clock rate as the ACP force law. Then, all of the simpler force
laws would have been forced to run with that smaller num-
ber of PEs and lower clock rate—up to 86% performance



8 EURASIP Journal on Applied Signal Processing

Table 2: Performance results by force law.

Force law Bits per voxel Correlation array size Clock MHz
FPGA performance

109 CS/s

PC correlation Speedup6

performance over PC,

109 CS/s incl. IO

KK1 2 143 = 2744 98.9 271.4 0.212 1024.1

PSC2 7 123 = 1728 88.3 152.6 0.232 526.2

GSC2 2 103 = 1000 59.8 59.8 0.221 216.4

ACP3 5 83 = 512 72.6 37.2 0.221 134.6

ES4 6 103 = 1000 72.8 72.8 0.121 481.3

SNORM5 7 113 = 1331 90.4 120.3 0.084 1145.7

(1) Similar to Katchalski-Katzir [3]. (2) Described in [2]. (3) Simplified desolvation energies, adapted from [18]. (4) Electrostatic force and
collision detection. (5) Surface normals and collision detection [17]. (6) FPGA computation time is derated by 20% to allow last results to
shift out of FIFO buffers into the data reduction filter.

degradation due to generality. It is the FPGA’s reconfigura-
bility that allows the PE for each force law to use different
amounts of resources, resulting in different numbers of PEs
and computations per clock cycle.

Timing values in Table 2 assume the −5 (slowest) speed
grade for the FPGA. If the −7 (fastest) speed grade was used
instead, clock rates would improve significantly. The larger
VP100 chips are available in the same FPGA family, with 33%
more logic and 44% more RAM, but were not used in these
performance measurements. This table is based on stan-
dard synthesis, placement, and routing, without hand tun-
ing. Careful optimization would have improved performance
yet more. These implementation constraints allow us to fo-
cus on system architecture rather than technology details—
further performance improvements are clearly within reach.

Our PC implementations of correlation-based docking
use 3 GHz Xeon processors and direct summation, for a 503

substrate and ligand of the largest size supported by the cor-
relation array. PC performance does not include rotation or
result filtering, only correlation. Typical PC implementations
use 3D FFTs for correlation, but direct summation was found
to be faster for these problem sizes and was thus used for
comparison. It is worth noting that the ACP force law is non-
linear and cannot be implemented using FFTs, and that the
SNORM force law would require four FFTs at each rotated
orientation. Actual FPGA performance is less than the raw
performance figure, because of the additional cycles needed
to shift final results from the computation array into the data
reduction filter.

The FPGA accelerator is a commodity PCI board. It can
easily be used in cluster configurations, where each PC in
the cluster has its own accelerator board. Scoring of multi-
ple ligands, multiple substrates, and thousands of three-axis
rotations per substrate/ligand pair is an embarrassingly par-
allel problem. As a result, we anticipate near-linear speedup
in performance as accelerators are added to the cluster.

8. CONCLUSIONS AND FUTURE DIRECTIONS

Correlation-based molecule docking has great scientific and
commercial importance, but even the “fast” screening algo-
rithms take hours on standard PC. Current FPGAs have been

shown to be cost-effective tools for accelerating docking cal-
culations by factors of hundreds to a thousand or more. Ev-
ery different model of chemical interaction represents a dif-
ferent version of the correlation problem, and the nonlin-
ear models simply cannot be handled using transform tech-
niques. As a result, the FPGA’s configurability is well suited
to the idea of docking as a family of applications.

We present a computation pipeline that has fixed struc-
ture, but variable data types and scoring functions that are
configured to each application. FPGA-based reconfiguration
allows handling of a wide range of physical phenomena, in-
cluding spatially oriented vector quantities. Since every in-
stance of the accelerator is specific to one chemistry model,
we achieve high resource utilization and avoid wasted logic
due to over-generality of the individual processing elements.
Using only standard synthesis, placement, and routing tools,
without hand tuning, we achieve computation rates of 1010–
1011 correlation cell sums per second. Because every acceler-
ator is specific to one force law, models with faster computa-
tions are not constrained to run at the speed of slower com-
putations, or with as few PEs as more complex computations.
Likewise, complex models are not cramped by fixed datap-
ath or PE sizes. This family-based design goes a long way
towards resolving the conflict between application-specific
tuning and wide reusability in a computation accelerator.

We are working towards many improvements in de-
signing accelerator families. The essentially one-dimensional
data path through the computing array allows larger arrays
to be built when larger FPGAs are used, with near linear
speedup. We also look forward to creating larger correlation
arrays distributed across multiple FPGAs—again, possible
because of the array’s one-dimensional data path. To date, we
have used only the RAM available within the FPGA for stor-
ing molecule images and correlation results. We are currently
working on extensions that will allow larger molecule mod-
els to be split into parts, staged in on-board memory near the
FPGA, and reassembled into larger results. Other extensions,
including more complex families of scoring, will enable even
larger families of force laws.

In the larger sense, families of configurable accelera-
tors seem applicable to many application domains outside
of molecule interactions. The basic concept presents an
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optimized computation array of fixed structure but param-
eterized size. That fixed array is built around application-
specific data types and processing elements that vary between
family members. We have applied this concept not only to
docking problems, but also to families of approximate string
matching problems that occur in bioinformatics and in nat-
ural language processing. Our current research generalizes
the concept even farther into creation of tools that support
FPGA-based accelerators for many different families of ap-
plications.
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