
Accelerating Molecular Dynamics Simulations

With Configurable Circuits∗

Yongfeng Gu Tom VanCourt Martin C. Herbordt

Department of Electrical and Computer Engineering

Boston University; Boston, MA 02215 USA

∗This paper is a postprint of a paper submitted to and accepted for publication to IEE Proceedings on Computers

and Digital Technology and is subject to IEE copyright [URL]. The copy of record is available at [IEE Digital Libarary

URL]. This work was supported in part by the National Institues of Health through award RR020209-01 and facilitated

by donations from Xilinx Corporation.

1

Y. Gu, T. VanCourt, M.C. Herbordt / MD with FPGAs / IEE-CDT-2006 1

Abstract

Molecular Dynamics (MD) is of central importance to computational chemistry. Here we show

that MD can be implemented efficiently on a COTS FPGA board, and that speed-ups from 31× to

88× over a PC implementation can be obtained. Although the amount of speed-up depends on the

stability required, 46× can be obtained with virtually no detriment, and the upper end of the range

is apparently viable in many cases. We sketch our FPGA implementations and describe the effects

of precision on the trade-off between performance and quality of the MD simulation.

1 Introduction

Computer simulation is increasingly being used to extend the reach of experimental biology and chem-

istry; Molecular Dynamics (MD) is one of the core methods in this approach [1]. In the last few years

MD has become even more critical as it has been applied to modeling molecular interactions in drug de-

sign [2, 3], and to predicting molecule structure with applications to homeland security [4]. Particularly

significant is that there are certain disease processes where a primary method of discovery is MD-based

computer simulation. One example has been in finding the basis of amyloid diseases: MD was used to

show that the pathogenic species of the offending proteins is the aggregation of misfolded intermediates;

these are difficult to observe using experimental techniques [5, 6].

MD is an iterative technique that runs in phases: the forces on each atom (or molecule) are

computed, then applied using equations of motion. Although modern force computations have become

highly sophisticated (with 10 or more terms in some cases), the complexity generally resides in computing

the van der Waals (Lennard-Jones or LJ) and Coulombic terms. These long-range forces are O(N 2) in

the number of particles N , while the motion updates are O(N). The other forces, which only involve

bonds, are also O(N). Here we describe work in accelerating MD using FPGAs. We restrict our

attention to the motion updates and the O(N 2) force terms.

MD is a staple of high end computing with, for example, the IBM Blue Gene/L being developed,

in part, for this application [7, 8]. MD has also been accelerated with special purpose hardware. Some

well-known systems are MD-GRAPE [9], MD Engine [10] and the GRAPE-based Protein Explorer

[11]. In the related area of N-Body simulations, special purpose hardware includes various iterations of

GRAPE processors [12].

The flexibility and cost-effectiveness of FPGAs make them well suited for MD. FPGAs have always

had the advantage of adaptability to new algorithms, in contrast to the inflexibility of ASICs. This has

been used to advantage by the PRO-GRAPE [13] and PROGRAPE-3P1 [14] which are N-Body imple-

mentations with configurable forces, and the AHA-GRAPE [15] and GRAPE-RACE [16], which also

support smoothed particle hydrodynamics. Recently, FPGAs have become significantly more powerful

Y. Gu, T. VanCourt, M.C. Herbordt / MD with FPGAs / IEE-CDT-2006 2

relative to both ASICs and microprocessors. One factor is that FPGAs are currently driving, rather

than lagging, process technology [17]. Another is that high-end FPGAs are now in fact hybrid chips

with hundreds of ASIC components (especially multipliers and independently accessible memories) in

addition to the configurable circuits. The most recent work concentrating on MD using FPGAs is a

study by Azizi, et al. [18]. There, 2001-era FPGA technology was used to obtain performance similar

to that of a 2004-era PC; this was extrapolated to a 20× speed-up by assuming hardware updates. The

LJ force and a single atom type were implemented.

In this study we address the following questions.

• How competitive is current FPGA technology for a high performance application that is generally

implemented with double precision floating point?

• Can MD be implemented cost-effectively on a commercial off-the-shelf (COTS) board?

• What is the cost of implementing the Coulombic as well as the LJ force?

• What are the issues with supporting multiple atom types?

• How efficiently can the macro blocks be used?

• Since forces may not need to be generalized, is reconfigurability still an advantage for MD?

• What is the trade-off between precision and computation?

Our primary result is that FPGA-based MD acceleration is likely to be many times more effective

than previously indicated. We have obtained speed-ups of between 31× and 88× depending on the

stability required, and the model of the FPGA hardware used: 46× can be obtained with virtually

no detriment, and the upper end of the range is apparently viable in many cases. This is while using

significantly more detailed force and particle models.

The primary significance is that a speed-up of two orders of magnitude is the oft-cited minimum for

acceptance of non-standard computing technology. Also significant is that this can be achieved using a

flexible COTS board; that it is FPGA-based means that the hardware can ride the technology curve for

commodity chips and that the configured algorithms can be updated as new discoveries are made. Also

interesting is that use of configurable hardware allows the use of precision as a design-space parameter

for MD practitioners.

2 Molecular Dynamics Overview

In this section we give an overview of Molecular Dynamics simulations (MD), including the choice of

boundary conditions. Another issue critical in hardware implementation of MD, precision and sim-

ulation quality, is discussed in Section 4. MD is an iterative application of Newtonian mechanics to

ensembles of atoms and molecules. MD simulations generally proceed in phases, alternating between

Y. Gu, T. VanCourt, M.C. Herbordt / MD with FPGAs / IEE-CDT-2006 3

force computation and motion integration. For motion integration, we follow our external serial reference

code [19] in using the Verlet method (described, e.g. by Frenkel and Smit [20]).

In general, the forces depend on the physical system being simulated and may include van der

Waals (Lennard-Jones or LJ), Coulomb, hydrogen bond, and various covalent bond terms:

Ftotal = F bond + F angle + F torsion + FHBond + Fnon−bonded

Because the hydrogen bond and covalent terms (bond, angle, and torsion) affect only neighboring

atoms, computing their effect is O(N) in the number of particles N being simulated. In coprocessor-

based systems they are therefore generally computed by the host. The LJ force for particle i can be

expressed as:

FLJ
i =

∑

j 6=i

εab

σ2
ab

12

(

σab

|rji|

)14

− 6

(

σab

|rji|

)8

rji

where the εab and σab are parameters related to the types of particles, i.e. particle i is type a and

particle j is type b. The Coulombic force can be expressed as:

FC
i = qi

∑

j 6=i

(

qj
|rji|3

)

rji

We implement both Coulombic and LJ forces; we also implement multiple atom types.

The choice of boundary conditions arises because, although the LJ force quickly goes to zero with

distance, this is not the case with the Coulombic force. With periodic boundary conditions, the system

of interest is replicated an infinite number of times. The (now) infinite summations are again made

finite either by restricting the forces through a cut-off, or through the use of transform-based methods

(Ewald, PME, PPPM). With spherical (e.g. stochastic) boundary conditions, as with the various cut-off

methods, the computation is usually a direct summation of the force terms. Summations are also an

important part of each transform-based method.

We briefly describe some of the issues involved (see, e.g. [21, 22] for surveys and comparisons of

methods); this is necessary to justify the utility of our selection of the simpler method, albeit the one

with the higher asymptotic complexity. The choice of boundary condition is a tradeoff between error and

speed. Generally the quality of the choice is determined by the seriousness of the simulation artifacts

introduced, something to which both periodic and non-periodic methods are susceptible. In a recent

survey, Hansson et al. argue that although periodic methods are an elegant solution, the competing

methods are also accurate [23]. Another study indicates that cut-off, even with a small radius, can be

effective [24].

Y. Gu, T. VanCourt, M.C. Herbordt / MD with FPGAs / IEE-CDT-2006 4

The issue of boundary conditions is important in the present work because the relative computational

complexity of the methods differs when implemented on an FPGA from when implemented on a PC,

an MPP, or an ASIC-based computer (e.g. [25]). In particular, algorithms are not equally effective

across computing platforms. On a PC, transform-based techniques appear usually to be preferable;

on large MPPs, transforms involve high communication overhead, so cutoff-based simulations are often

appropriate [26]. On an FPGA, the problem size where transform-based techniques are preferable to

direct computation may be much higher or even non-existent [27].

For the current study, we examine direct application of summations only, but with periodic bound-

ary conditions. We select the direct method because it is likely to be a major part of most FPGA-based

MD simulation, including those using transform-based methods, and because of the number of issues

still to be resolved. While transform-based methods (especially PPPM) are likely eventually to be a

part of FPGA/MD, some other MD methods are less so. Multipole algorithms tend to require very high

precision. Multigrid and tree-code methods—the latter used in astronomical computations [28]—have

substantially higher overhead, and require load balancing and non-uniform data structures. Also, MD

differs substantially from the N-Body problem, so it is not surprising that different methods should be

used [29].

3 Design

Position

Memory

Force Pipeline Array

Acceleration

Memory

Verlet Pipeline Array

Velocity

Memory

Type Parameter

Memory

Control

Module

Force Parameter Memory

Particle Mass Memory

Figure 1: Block diagram of the FPGA parts of the system.

The high-level design is shown in Figure 1. As is common in MD hardware implementations, fixed

Y. Gu, T. VanCourt, M.C. Herbordt / MD with FPGAs / IEE-CDT-2006 5

point is used. Our use of fixed point, however, should not be confused with the use of the integer

data type. By appropriate initial selection of the units and by scaling the data as it flows through the

hardware, the precision of the computation remains very close to the width of the datapath.

At the highest level, the computation core (shown in Figure 1) is itself wrapped by a communication

layer to facilitate data transfer between the FPGA and the host PC via a PCI interface. Within the

computation core, the Force Pipeline Array and the Verlet Pipeline Array are responsible for computing

the forces on each particle and the motion updates, respectively. The two arrays, in turn, each contain

a number of pipelines. Because of the inherent two-phase structure of the algorithm, the arrays work

consecutively. There is therefore some sharing of hardware, especially multipliers, between the arrays.

The various memories hold data as indicated. The Force Pipeline Array contains a pair-controller which,

during each iteration, generates the addresses of the particle pairs and also accumulates the forces on

each particle. On the Verlet side, each pipeline, on each iteration, takes the position, velocity, and

acceleration data of one particle and outputs the updated motion parameters of another.

Pair-controller

sel

Force pipeline (1)

Force pipeline (2)

Force pipeline(N)

Pj(1)

Pj(2)

Pj(N)

Pi

MUX
0

MUX

MUX

Accele-

ration

Memory

Position

& Type

Memory

sel

Combination Logic

sel

sel
Pi array

Pi acceleration

array

clear

… …

0

0

Adder

Tree

Figure 2: Block diagram of the force pipeline array.

Details of the Force Pipeline Array are shown in Figure 2. We first describe how dataflow is

orchestrated and then the details of the force computation itself. The number of force pipelines N varies

with the precision of the computation and the technology (as described further below) and is currently

either 4 or 8. With N force pipelines, we can initiate computation for N pairs simultaneously, meaning

that the data of N pairs must be fetched and stored each cycle. The data fetch of the computation

Y. Gu, T. VanCourt, M.C. Herbordt / MD with FPGAs / IEE-CDT-2006 6

pairs can be viewed as a pair of nested loops with the inner loop unrolled N times and parallelized.

The inner loop particle data are fed into the Pj registers and the outer loop data into the Pi register.

The i = j case is inhibited.

The forces are computed with look-up table and linear interpolation. The look-up table is indexed

in three dimensions: Pi type, Pj type, and distance squared. Two memories are used, one for the even

index entries, one for the odd index entries. This allows both ends of the interpolation to be fetched

during a single cycle. Following the serial reference codes (described below), the table has 2K entries.

The precision of the entries matches the precision of the datapath. The resolution of the table appears

to be adequate, given the measurements shown in Figure 5.

Look-up tables for two particle types currently fit on-chip. For more particle types, tables are

swapped as needed. However, since the particle types are known and the particles can be ordered a

priori, this swapping is usually possible without requiring stalls.

Pi.Pos.y

Pj.Pos.y

Pi.Pos.z

Pj.Pos.z

Acceleration.y

Force parameter

memory

Reciprocal of

step factor

Pi.Pos.x

Pj.Pos.x

Periodic refolding

Distance

Squared

Periodic refolding

Periodic refolding

Cut-off

check

Odd Bins

Even Bins

Interpolation

Acceleration.x

Pi.Type &

Pj.TypeAcceleration.z

Figure 3: Detail of a single force pipeline.

Details of the individual force pipelines are shown in Figure 3. Each pipeline has 28 stages that

can be grouped into 8 functions:

1. Compute the displacement in each dimension.

2. Perform periodic boundary refolding if necessary.

3. Compute the square of the distance between particle pairs.

Y. Gu, T. VanCourt, M.C. Herbordt / MD with FPGAs / IEE-CDT-2006 7

4. Check the distance. If the distance squared is out of range, a special index is used for table lookup.

5. Divide the distance squared by the bin size to get the index for the force table. The division is

done by multiplying the reciprocal of the bin size.

6. Look up the force parameter based on the types of the particles and the distance squared.

7. Do linear interpolation on the force parameter.

8. Multiply the interpolated force parameter by the displacement vector of the particle to get the

force.

Acc

Vel

Pos

Typ

NewVel

Reciprocal of Mass

Memory
DiffPos

New Vel

New Pos

Figure 4: Shown is a Verlet update block.

The Verlet update pipeline is shown in Figure 4. For computational simplicity, the standard

equations are reordered into the following:

vel(t+ 1) = vel(t) + acc(t) ∗ dt

pos(t+ 1) = pos(t) + vel(t+ 1) ∗ dt

However, in the implementation, the mass is not taken into account until the update phase so in the

first equation, velocity is actually the momentum and acceleration the force. Rewriting, we obtain:

momentum(t+ 1) = momentum(t) + force(t)

dp = momentum(t+ 1) ∗ 1/mass

position(t+ 1) = position(t) + dp

Since there is no interaction between particles in this phase, the implementation is straightforward with

an eight stage pipeline.

Y. Gu, T. VanCourt, M.C. Herbordt / MD with FPGAs / IEE-CDT-2006 8

4 Precision versus Quality of MD Simulations

It is well known that for particular applications, FPGA implementations can achieve speed-ups of

1000× or more. These applications are characterized by high parallelism, which can be translated into

high circuit utilization. They are usually also characterized by low-precision data where the FPGA

implementation can trade off datapath width for an increased number of function units. Probably for

this reason, many researchers have avoided applications that are require double precision floating point,

including MD.

Total Energy Fluctuation vs Precision

-6

-5

-4

-3

-2

-1

0

25 30 35 40 45 50 55
precision in bits

lo
g

1
0
(f

lu
c
tu

a
ti

o
n

)

time-step = 1E-15 seconds

time-step = 1E-16 seconds

Ratio of Fluct's in ETotal and Ekinetic vs Precision

-6

-5

-4

-3

-2

-1

0

25 30 35 40 45 50 55
precision in bits

lo
g

1
0
(f

lu
c
tu

a
ti

o
n

 r
a
ti

o
)

time-step = 1E-15 seconds

time-step = 1E-16 seconds

Figure 5: Shown is the effect of precision on two metrics for simulation accuracy: (a) Fluctuation of

total energy and (b) the ratio of the fluctuations in total and kinetic energies. Simulations were carried

out with two different time-steps.

We believe that a central area of research in FPGA-based acceleration is analyzing applications

to see whether double precision floating point is actually needed, or whether it is simply used because

it has little marginal performance cost on contemporary microprocessors [30, 27]. A well-known study

by Amisaki, et al. [31] investigated precision required for MD; they showed that certain important

measures relevant to MD simulation quality do not suffer when precisions of various intermediate data

are reduced from 53 bits to 25, 29, and 48 bits, respectively. A more extreme observation was made by

La Penna, et al. who write that “in our very long simulations we did not see signs of instabilities nor

of any systematic drift” due to using single, rather than double precision floating point [32]. Clearly,

though, this last reference is not the consensus. Now looking at this from the point of view the user,

Rapaport states that “obtaining a high degree of accuracy in the trajectories is neither a realistic nor

a practical goal,” as “the most minute errors grow exponentially with time [33].”

The issue of exactly how much precision is required for which particular MD simulations has not

Y. Gu, T. VanCourt, M.C. Herbordt / MD with FPGAs / IEE-CDT-2006 9

been well-studied.1 This is precisely because MD implementations are nowadays almost universally run

on machines where there is little incentive to not using double precision.

For implementations on configurable circuits, however, the situation is quite different. If it is

possible to reduce the precision without appreciably changing the quality of the simulation, then it is

possible to increase the computational resources that can be applied. This in turn should result in

substantially better overall performance.

One classic check for simulation quality is to measure the fluctuation of physical quantities that

should remain invariant, such as energy. The relative rms fluctuation in total energy is defined as:

√

|〈E2〉 − 〈E〉2|

|〈E〉|

We ran a set of experiments based on two versions of serial reference code, reproducing as closely

as possible the experiments done by Amisaki et al. [31]. The first used double precision floating point,

the second tracked the hardware implementation using varying precision. When the precision of the

fixed point code was set at 50 bits, the results precisely matched that of the floating point code.

We also ran a set of experiments to find the relationship between energy fluctuation and precision.

In agreement with [31], we found that the various function units can be tuned independently to derive

the optimal FPGA circuits that retain minimal energy fluctuation. For simplicity, however, we present

results where the precision of the entire datapath is varied in unison. We use two different simulation

time scales: time steps were set to E-15 seconds and E-16 seconds, respectively. A graph showing the

results from this set of experiments is shown in the left part of Figure 5. One observation is that, in this

experiment, a 40-bit datapath results in a similarly low energy fluctuation as a full 53-bit datapath.

Fluctuation of total energy, however, is not the only check that a system is “well-behaved.” Another

is the ratio of the fluctuations between total energy and kinetic energy R = ∆Etotal/∆Ekinetic. R should

be less than .05 [35]. We plot R in the right half of Figure 5. Note that by this measure, 31 bits

are sufficient for time-steps of E-15 seconds and 30 bits are sufficient for time-steps of E-16 seconds.

Although greater precision results in “better” behavior, that better behavior may not be needed.

At this point we inject into the discussion the attributes of the target technology, a high-end

2004-era FPGA. A number of implementation factors (such as the number of block RAMs and hard

multipliers, indexing issues, etc.) lead to the observation that there are two sweet spots in the design

space: (1) 4 force pipelines with nearly full precision (51-bit), and (2) 8 force pipelines with 35-bit

precision. In the first implementation, behavior is equivalent to double precision floating point. In the

1Of course the opposite question of what to do when double precision appears to be inadequate is a fundamental issue

(see e.g. [34]). The general solution is to increase the resolution of the time steps.

Y. Gu, T. VanCourt, M.C. Herbordt / MD with FPGAs / IEE-CDT-2006 10

Table 1: Results related to various MD implementations. “VP70 AMS” refers to actual timing from the

Annapolis Microsystems Wildstar board with a Xilinx Virtex-II-Pro XC2VP70 -5 FPGA. “VP100 sim”

refers to timing derived from simulation only, assuming a Xilinx Virtex-II-Pro XC2VP100 -6 FPGA.

Speed-up is with respect to a PC with a 2.4GHz Xeon CPU.

Platform Precision Pipe-lines HW mult’s used Block RAMs used Delay Speed-up
(bits) (% of usage) (% of usage) (ns)

VP70 AMS 35 4 176(53%) 214(65%) 11.1 50.8×
VP70 AMS 40 4 264(80%) 251(77%) 12.2 46.4×
VP70 AMS 45 4 288(88%) 285(87%) 13.2 42.7×
VP70 AMS 51 4 288(88%) 317(97%) 18 31.3×
VP70 AMS 35 8 256(78%) 326(99%) 22.2 51.0×

VP100 sim 51 4 288(65%) 317(77%) 13.6 41.5×
VP100 sim 35 8 256(58%) 334(75%) 12.8 88.5×

second implementation, quality depends on the metric. The 35-bit design has from a factor of 10× to

50× more energy fluctuation than the best case, but between 100× and 500× lower R than what has

been regarded as minimal to indicate “good behavior.” It appears that this may be a case where there

is a large difference between “good enough” and “best possible.”

Until now, MD users have almost never had the choice of precision: either double precision was

good enough or it was not. If it was not, then some other quantity, such as time-step, needed to be

varied. With implementations on configurable circuits it is possible to do the reverse: trade off unneeded

precision for computing resources.

5 Implementation, Validation, and Results

The design was implemented on a WildstarII-Pro board from Annapolis Micro Systems. The board

has two Xilinx Virtex-II-Pro XC2VP70 -5 FPGAs (referred to as VP70 AMS in Table 1); however,

only one of the FPGAs was used. Some designs were also implemented in simulation-only on a Xilinx

Virtex-II-Pro XC2VP100 -6 FPGA (referred to as VP100 sim in Table 1).

The critical path originally ran through the hard multipliers but this has now been optimized. For

example, for the 40-bit multipliers, instead of using three hard multipliers with 25ns latency, we use

nine hard multipliers with 9ns pipelined latency. The fact that 35- and 51-bit datapaths are preferred

on the Virtex-II-Pro FPGAs is an artifact of the hard multiplier format (18-bit signed digit).

The VP70 implementations all hold 8K particles on chip. Larger simulations require off-chip mem-

ory access. However, the deterministic nature of the computation and the tremendous off-chip memory

bandwidth of the Virtex-II-Pros makes running these larger simulations with no slowdown straightfor-

Y. Gu, T. VanCourt, M.C. Herbordt / MD with FPGAs / IEE-CDT-2006 11

ward.

The FPGA board interacts with the host PC using DMA transfers accessed with system calls from

the Annapolis Micro Systems software support library. In this study, however, the entire computation

is performed by the FPGA board; that is, once the computation is initiated, no further interaction with

the host is necessary. If further force terms are required (e.g., the bonded forces), then these would

likely be computed on the host. In this case, motion update (also being on O(N) computation) would

be moved to the host as well. In this scenario, interactions between host and coprocessor would take

place once per iteration. The amount of data transferred would be small, however, as only N vectors

would need to be exchanged.

The critical resources on the FPGA are the hard multipliers, the registers and, in particular, the

block RAMs. All block RAMs are simultaneously read from and written to on every cycle, for an

aggregate memory bandwidth of 2Tb/s. The block RAM bandwidth bounds the number of pipelines

for a given precision, while the block RAM size limits the number of look-up tables and particles that

can be held on-chip. Harder to gauge is the relationship between slices used and design complexity. The

Synplicity synthesis tool, which we used, appears to be excellent at trading off slices for performance

as a large fraction of slices was used in every implementation.

The design was validated against three serial reference codes, an external double precision floating

point code MD2DLJ [19], and two versions our own code (fixed and float) that tracks the hardware

implementation. Validation has several parts. First, the hardware tracker matches MD2DLJ exactly

when the hardware tracker has the same floating point datapath. Second, the fixed-point hardware

tracker exactly matches the FPGA implementations. The missing link is the relationship between the

fixed-point and floating point versions of the hardware tracker. These can only be compared indirectly,

however, as is done in the previous section.

We have created several variations of these designs; three are of particular interest: 35-bit with eight

pipelines, 40-bit with four pipelines, and 51-bit with four pipelines. The reasoning is as follows. Recall

from the previous section that datapath sizes of 30 bits, 40 bits, and 51 bits are required to obtain

adequate R, best Efluct, and performance virtually indistinguishable from double precision floating

point, respectively. We replace the 30-bit datapath with a 35-bit datapath because it uses virtually

the same hard resources and substantially improves R and Efluct. On the other hand, going from a

51-bit datapath to a 53-bit datapath (to equal the precision of double precision floating point) requires

substantially more hard multipliers, but for little benefit.

Results are shown in Table 1. The 51-bit four-pipeline and the 35-bit eight-pipeline implementations

are aggressive for the VP70. They use such a high fraction of the chip resources that there is a substantial

reduction in operating frequency. We therefore also synthesized these for the VP100: the numbers shown

Y. Gu, T. VanCourt, M.C. Herbordt / MD with FPGAs / IEE-CDT-2006 12

are post place and route.

For timing reference, the serial reference codes—the double precision floating point version of the

hardware tracker and MD2DLJ, which is also double precision floating point—were compiled using the

Microsoft VC++ compiler VC6.0 with standard optimisation settings. Both floating point reference

codes ran at 9.5s per MD time-step on a PC with a 2.4GHz Xeon CPU. This is similar to the 10.8s for a

2.4GHz P4 described in [18]. Translating into force computations per cycle, the FPGA implementation

completes one per cycle per pipeline, while the PC completes roughly one per 250 cycles. The large

disparity is a reminder that most FPGA function units compute payload every cycle, while a large

fraction of CPU cycles are spent with overhead. In particular, the MD2DLJ code computes 109 floating

point operations per force computation, yielding a utilization of just over 20% of the theoretical peak

of 4.8Gflops. Neither the serial code, nor the FPGA codes, were optimised beyond taking care to follow

good design practices. However, both the serial codes do perform the force computation using a table

look-up, saving many floating point operations over a direct implementation.

Our other serial reference code, the hardware tracker that follows the FPGA implementation, is

implemented using a dedicated class library. This class implements the hybrid float/fixed arithmetic by

overloading the operators, such as +,-,*, shifts, logic, and comparisons. Since the class simulates the

hardware pipeline bit by bit, it runs orders of magnitude slower than the two double precision floating

point reference codes.

6 Discussion, Optimizations, and Extensions

In this study we have demonstrated the competitiveness of FPGAs for molecular dynamics. The signif-

icance, beyond that of the application alone, is in showing substantial acceleration in a double precision

floating point code. Other results show how simulation accuracy can be traded off for performance, and

how to deal with multiple forces and atom types.

As always when measurements are done with respect to rapidly advancing technology, all numbers

reported here are transient. As FPGAs appear to be following Amdahl’s law just as much as are

microprocessors [36, 17], these trends are likely to continue for some time. For the MD application,

this is currently to the benefit of the FPGA designs: increased resources can be immediately applied

to the computation by adding pipelines; the benefits for microprocessors have usually been less direct.

The emergence of multicore chips should give future microprocessors the same capability as FPGAs of

direct scalability, but the primary point remains unchanged.

Another axis of variation between microprocessor and FPGA implementations is design effort.

Given a few months effort by experienced FPGA designers and assembly language programmers, both

Y. Gu, T. VanCourt, M.C. Herbordt / MD with FPGAs / IEE-CDT-2006 13

FPGA and reference codes could perhaps be improved substantially. We believe, however, that this

would not change the basic fact that nearly two orders of magnitude speed-up can be obtained by using

an FPGA.

We have shown that an FPGA implementation of a basic molecular dynamics code can be acceler-

ated from 31× to 88× with respect to a PC implementation, depending on the size of the FPGA and

the simulation accuracy. These comparisons can be extended to estimate the effects of cost, parallel

processing, and more complex software.

Currently, the part costs of high-end FPGAs and microprocessors are comparable. The cost of

FPGAs packaged into plug-in boards ranges from comparable to an inexpensive server blade, to many

times higher. Total cost of ownership, however, may be much lower for an FPGA/PC combination than

a 32- or 64-node cluster once system administration, space, power, and other factors are considered.

Low-power packaging of PC clusters [37] is addressing many of these issues, but costs remain at around

$1,000/processor. On the FPGA side, low-cost multi-FPGA systems currently being developed (e.g.,

with the BEE project [38]), and may swing the balance back towards FPGAs.

With respect to parallel processors: In our comparisons, we have implicitly assumed perfect scala-

bility of the serial reference codes. Given the work, e.g. on NAMD [39], this is likely to be valid up to

at least several hundred processors.

Current MD codes are significantly more complex than what has been demonstrated here. One

typical optimisation is to simulate the O(N) forces, which have much shorter time constants than the

O(N2) forces, at a similarly higher rate. As the O(N) forces would likely be computed on the host,

using multiple time-scales would somewhat decrease the speed-up from that presented here. But with

N = 10, 000 or more, the impact of a 10× increase in the serial portion of the compute time may not

be great.

We stated earlier that MD and N-Body simulations are different enough for it to be unlikely that

the same method would be preferable for both FPGA implementations. Given the configurability of the

FPGA, there is no need to use a generalized N -Body implementation when a tuned MD configuration is

available. The converse is also true. MD implementations, where the forces are computed using look-up

tables, lend themselves to more general computations by replacing the table entries. Again, production

N-Body codes are likely to rely heavily on other methods, such as tree-codes.

The most important next task is to integrate our MD implementations into production codes. Work

using ProtoMol [40] is substantially complete; work using NAMD [29] is underway.

An obvious extension involves using completely different algorithms, in particular those based on

Ewald sums or other transform-based methods (especially PPPM): with the current work being done on

Y. Gu, T. VanCourt, M.C. Herbordt / MD with FPGAs / IEE-CDT-2006 14

FFTs for FPGAs, this might happen soon. However, as per our discussion above, it is far from certain

that this will result in improved results. Intriguing is the possibility of using the second FPGA on our

Wildstar board for this computation while retaining most of the original design on the first.

Acknowledgments

We would like to thank the anonymous reviewers for their many helpful suggestions.

References

[1] P. I. T. A. Committee, Computational Science: Ensuring America’s Competitiveness. http://www.nitrd.gov:

National Coordination Office for Information Technology Research and Development, 2005.

[2] R. Friesner and et al., “Glide: A new approach for rapid, accurate docking and scoring. 1. method and

assessment of docking strategy,” Journal of Medicinal Chemistry, vol. 47, pp. 1739–1749, 2004.

[3] M. Taufer, M. Crowley, D. Price, A. Chien, and C. B. III, “Study of a highly accurate and fast protein-

ligand docking algorithm based on molecular dynamics,” in Proceedings of the International Workshop on

High Performance Computational Biology, 2004.

[4] Lawrence Livermore National Labs, “The art of protein structure prediction,” Science and Technology Re-

view, vol. December, 2004.

[5] M. DeMarco and V. Daggett, “From conversion to aggregation: Protofibril formation of the prion protein,”

Proc. Nat. Acad. Sci., vol. 101, no. 8, pp. 2293–2298, 2004.

[6] ——, “Local environmental effects on the structure of the prion protein,” Comptes Rendus Biologies, vol.

Article in Press, 2005.

[7] F. Allen and et al., “Blue Gene: a vision for protein science using a petaflop supercomputer,” IBM Systems

Journal, vol. 40, no. 2, pp. 310–327, 2001.

[8] B. Fitch and et al., “Blue matter: Strong scaling of molecular dynamics on blue gene/l,” IBM Research

Division, Tech. Rep. RC23688 (W0508-035) Computer Science, 2005.

[9] Y. Komeiji, M. Uebayasi, R. Takata, A. Shimizu, K. Itsukashi, and M. Taiji, “Fast and accurate molecular

dynamics simulation of a protein using a special-purpose computer,” J. Comp. Chem., vol. 18, no. 12, pp.

1546–1563, 1997.

[10] S. Toyoda, H. Mihagawa, K. Kitamura, T. Amisake, E. Hashimoto, H. Ikeda, A. Kusumi, and N. Miyakawa,

“Development of md engine: High-speed accelerator with parallel processor design for molecular dynamics

simulations,” Journal of Computational Chemistry, vol. 20, no. 2, pp. 185–199, 1999.

[11] M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada, and A. Konagaya, “Protein Explorer:

A petaflops special-purpose computer system for molecular dynamics simulations,” in Supercomputing, 2003.

[12] A. Kawai, T. Fukushige, and J. Makino, “$/mflops astrophysical n-body simulation with treecode on

GRAPE-5,” in Supercomputing, 1999.

Y. Gu, T. VanCourt, M.C. Herbordt / MD with FPGAs / IEE-CDT-2006 15

[13] T. Hamada, T. Fukushige, A. Kawai, and J. Makino, “PROGRAPE-1: A programmable, multi-purpose

computer for many-body simulations,” Publ. Astronomical Society of Japan, vol. 52, pp. 943–954, 2000.

[14] T. Hamada and N. Nakasato, “Massively parallel processors generator for reconfigurable system,” Proceedings

of the Conference on Field-programmable Custom Computing Machines, 2005.

[15] T. Kuberka, A. Kugel, R. Manner, H. Singpiel, R. Spurzem, and R. Klessen, “AHA-GRAPE: Adaptive

hydrodynamic architecture – GRAvity PipE,” in Proceedings of Field Programmable Logic and Applications,

1999.

[16] R. Spurzem, J. Makino, T. Fukushige, G. Lienhart, A. Kugel, R. Manner, M. Wetzstein, A. Burkert, and

T. Naab, “Collisional stellar dynamics, gas dynamics and special purpose computing,” in Proc. Int. Symp.

on Computation Science and Engineering, 2002.

[17] N. Tredennick, “Reconfigurable systems emerge,” Keynote Talk, Int. Conf. on Field Programmable Logic

and Applications, August 2004.

[18] N. Azizi, I. Kuon, A. Egier, A. Darabiha, and P. Chow, “Reconfigurable molecular dynamics simulator,” in

Proceedings of the Conference on Field-programmable Custom Computing Machines, 2004, pp. 197–206.

[19] M. Bargiel, W. Dzwinel, J. Kitowski, and J. Moscinski, “C-language molecular dynamics program for the

simulation of Lennard-Jones particles,” Computer Physics Communication, vol. 64, pp. 193–205, 1991.

[20] D. Frenkel and B. Smit, Understanding Molecular Simulation. New York, NY: Academic Press, 2002.

[21] P. Gibbon and G. Sutmann, “Long-range interactions in many-particle simulation,” in Quantum Simulations

of Complex Many-Body Systems: From Theory to Algorithms, J. Grotenhorst, D. Marx, and A. Murmatsu,

Eds. John von Neumann Institue for Computing, NIC Series, Vol. 10, 2002.

[22] C. Sagui and T. Darden, “Molecular dynamics simulations of biomolecules: Long-range electrostatic effects,”

Annual Review of Biophysical and Biomolecular Structures, vol. 28, pp. 155–179, 1999.

[23] T. Hansson, C. Oostenbrink, and W. van Gunsteren, “Molecular dynamics simulations,” Current Opinion

in Structural Biology, vol. 12, pp. 190–196, 2002.

[24] D. Beck, R. Armen, and V. Daggett, “Cutoff size need not strongly influence molecular dynamics results for

solvated polypeptides,” Biochemistry, vol. 44, pp. 609–616, 2005.

[25] T. Fukushige, J. Makino, T. Ito, S. Okumura, T. Ebisuzaki, and D. Sugimoto, “WINE-1: Special-purpose

computer for n-body simulations with periodic boundary conditions,” Publ. Astronomical Society of Japan,

vol. 44, pp. 361–375, 1993.

[26] L. Kale and et al., “NAMD2: greater scalability for parallel molecular dynamics,” Journal of Computational

Physics, vol. 151, pp. 283–312, 1999.

[27] T. VanCourt, M. Herbordt, and R. Barton, “Microarray data analysis using an FPGA-based coprocessor,”

Microprocessors and Microsystems, vol. 28, no. 4, pp. 213–222, 2004.

[28] E. Athanassoula, A. Bosma, J.-C. Lamber, and J. Makino, “Performance and accuracy of a Grape-3 system

for collisionless n-body simulations,” Journal of VLSI Design, 1994.

Y. Gu, T. VanCourt, M.C. Herbordt / MD with FPGAs / IEE-CDT-2006 16

[29] R. Brunner, J. Phillips, and L. Kale, “Scalable molecular dynamics for large biomolecular systems,” in

Supercomputing, 2000.

[30] T. VanCourt, M. Herbordt, and R. Barton, “Case study of a functional genomics application for an FPGA-

based coprocessor,” in Proceedings of Field Programmable Logic and Applications, 2003, pp. 365–374.

[31] T. Amisaki, T. Fujiwara, A. Kusumi, H. Miyagawa, and K. Kitamura, “Error evaluation in the design of a

special-purpose processor that calculates nonbonded forces in molecular dynamics simulations,” Journal of

Computational Chemistry, vol. 16, no. 9, pp. 1120–1130, 1995.

[32] G. L. Penna, S. Letardi, V. Minicozzi, S. Morante, G. Rossi, and G. Salina, “Parallel computing and molecular

dynamics of biological membranes,” ArXiv Physics eprints, vol. Physics/99709024, 1997.

[33] D. Rapaport, The Art of Molecular Dynamics Simulation. Cambridge University Press, 2004.

[34] J. Haile, Molecular Dynamics Simulation. New York, NY: Wiley, 1997.

[35] D. van der Spoel, “Gromacs exercises,” CSC Course, Espo, Finland, February 2004.

[36] M. Butts, “Molecular electronics: All chips will be reconfigurable,” Tutorial, 13th Int. Conf. on Field Pro-

grammable Logic and Applications, September 2003.

[37] BioServer, Fujitsu Computer Systems, www.fujitsu.com, 2005.

[38] C. Chang, K. Kuusilinna, B. Richards, and R. Broderson, “Implementation of BEE: A real-time large-scale

hardware emulation engine,” in Proc. FPGA, 2003.

[39] J. C. Phillips and et al., “Scalable molecular dynamics with namd,” Journal of Computational Chemistry,

vol. 26, pp. 1781–1802, 2005.

[40] T. Matthey, “ProtoMol, an object-oriented framework for prototyping novel algorithms for molecular dy-

namics,” ACM Transactions on Mathematical Software, vol. 30, no. 3, pp. 237–265, 2004.

