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ABSTRACT 
Energy minimization is an important step in molecular 
modeling, with applications in molecular docking and in 
mapping binding sites. Minimization involves repeated 
evaluation of various bonded and non-bonded energies of a 
protein complex.  It is a computationally expensive 
process, with runtimes typically being many hours on a 
desktop system. In the current article, we present 
acceleration of the energy evaluation phase of minimization 
using Field Programmable Gate Arrays.  We project a 
multiple orders-of-magnitude speed-up over a single CPU 
core and a factor of 8 speed-up over our previous 
acceleration using an NVIDIA Tesla 1060 GPU. 

1. INTRODUCTION 
Molecular docking refers to the computational prediction 
of the least energy pose between two interacting proteins. 
This is a computationally demanding process, often 
requiring many hours to days of CPU runtime.  Due to the 
computational complexity of the problem, most docking 
systems adopt a two step process.  The first step docks the 
two proteins to find the best fit, often assuming the proteins 
to be rigid.  It scores up to billions of poses between the 
two proteins and a few thousand top scoring poses are 
preserved for further evaluation.  

The second step performs minimization of the 
total potential energy of the high-scoring docked 
complexes generated by the first step.  Often, this is 
referred to as minimization of the CHARMM potential (or 
force-fields) or simply as energy minimization.  During 
energy minimization, the larger molecule is generally held 
fixed whereas the side chain atoms of the smaller molecule 
(the ligand) are free to move.  This accounts for the 
flexibility in the molecule.  During each minimization 

iteration, the total potential energy of the complex is 
computed and a move to a neighboring point is made using 
a standard optimization technique.  This is typically 
Newton-Raphson or quasi-Newtonian (L-BFGS).  The 
minimization process is repeated until the energy 
converges to within a given threshold.  Often up to a 
thousand iterations need to be performed per conformation, 
resulting in runtimes of about 30 seconds per conformation 
[1].  

With many thousands of conformations to be 
minimized per protein-ligand pair, the total time for the 
minimization phase runs can be many hours.  Moreover, 
drug discovery involves the docking-based screening of 
millions of candidate ligands for a given protein.  
Acceleration of energy minimization is thus highly 
desirable, as it would lead to faster molecular docking and 
quicker turn-around times in drug discovery. Some of the 
docking programs that use energy minimization include 
DOCK [2], DARWIN [3], RDOCK [4] and EADock [5]. 

In addition to docking, energy minimization is 
also used in other molecular modeling applications.  One of 
these is mapping, which aims at determining the likely 
binding sites on a given protein [1][6][7][8]. Mapping 
involves docking a set of small-molecule probes using rigid 
docking, and performing energy minimization for each 
protein-probe complex.  The idea arises from the 
observation that certain regions on protein binding sites, 
called hot spots, are major contributors to the binding 
energy and that they bind a large variety of small 
molecules.  Thus, regions that bind a large number of 
probes can be indicative of sites that are likely to bind 
inhibitors with high affinity [9].  FTMap [1], one of these 
mapping algorithms, docks 16 different probes to a given 
protein.  For each probe, it retains the 2000 top scoring 
conformations from rigid docking step; these are then  
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further minimized using the CHARMM potential [10]. 

While energy minimization can potentially benefit 
from acceleration, and while this computation is 
superficially similar to the well-studied molecular 
dynamics, little or no work has been done in this area.  The 
difficulty is perhaps that there is comparatively little 
computation to be performed per iteration and that a 
substantial fraction of it is apparently serial.  On the FPGA, 
however, these computations can be performed using deep 
pipelines, thus effectively performing many computations 
in parallel. 

The focus of the current paper is accelerating the 
energy evaluation step of the FTMap algorithm using 
reconfigurable hardware.  The potential energy terms that 
FTMap employs are the Analytic Continuum Electrostatics 
(ACE) and solvation energies [11], in addition to other 
CHARMM energy terms such as the van der Waals and 
bonded energies.  Of these, the ACE electrostatics, 
solvation, and van der Waals terms represent the non-
bonded (external) interactions and constitute most of the 
computation. 

In the current paper, we present a design for 
mapping the evaluation of ACE electrostatics and solvation 
terms onto an FPGA, with an estimated speedup of two 
orders of magnitude on computations that constitute more 
than 90% of total runtime. This represents a 14x overall 
speedup of the FTMap program. The overall speedup is 
limited due to the van der Waals term being evaluated on 
the host.  Acceleration of the van der Waals evaluation 
using an FPGA would result in higher overall speedup and 
is part of the future work. 

 

2. ENERGY MINIMIZATION 
Energy minimization is an iterative process which aims at 
computing the configuration of the atoms in a complex that 
corresponds to the minimum potential energy [13].  In 
order to evaluate the potential energy of the system rapidly, 
it is often represented using force-fields. A force-field 
represents each atom in a molecular system as a point 
charge and the total potential energy of the system as a sum 
of various two, three or four-particle interactions [14]. 
Various force fields have been developed, with the more 
popular ones being CHARMM [10] and AMBER [15].  
Due to the popularity of the CHARMM force fields, energy 
minimization is often referred to as minimization of the 
CHARMM potential or simply as CHARMM minimization. 

Minimization involves computing the potential 
energy of the complex at a point, updating the forces acting 
on the atoms, and adjusting the atom-coordinates according 
to the total forces acting on them. Forces acting on the 
atoms are obtained by differentiating the potential energy 

function with respect to the atom coordinates.  This process 
of energy evaluation and of force and position updates is 
repeated for many iterations, until the energy of the system 
converges to within a threshold.  During minimization, the 
move to the next iteration can be made using one of many 
optimization approaches such as steepest descent, 
conjugate gradient, quasi-Newtonian, or Newton-Raphson. 
Depending on the method chosen, minimization requires 
computing the first and, in some cases, the second 
derivatives of the energy functions.  The choice of iteration 
method also affects the rate at which the energy of the 
system converges. 

Though the underlying computation of energy 
minimization is superficially similar to molecular dynamics 
(MD), it differs from MD simulations in various ways.  
First, unlike molecular dynamics where the movement of 
the atoms is based on Newtonian dynamic laws and 
produces a trajectory based on kinetic energy, minimization 
simply adjusts the atom coordinates so as to lower the total 
energy of the system [10][13].  Minimization does not 
include the effect of temperature, and the final state of the 
system corresponds to the atom configurations when the 
temperature is approximately zero [13].  For the above 
reasons, the final state achieved after minimization does not 
depend on the initial state chosen at the start of the 
minimization process.  Second, unlike MD where the 
system typically consists of millions of particles, energy 
minimization is often performed on a local region of the 
complex, resulting in only a few thousand atoms begin 
simulated and requiring only up to a few tens of thousands 
of atom-pair evaluations per iteration.  Finally, even though 
the energy terms computed in minimization are similar to 
those in molecular dynamics, the actual energy expressions 
evaluated during minimization are quite different. For 
example, unlike molecular dynamics where the van der 
Waals term is evaluated using a 12-6 Lennard-Jones 
function, a minimization routine often approximates it with 
a sum of two or four Gaussians [16]. 

In energy minimization, the system to be 
simulated consists of a number of atoms; the total energy of 
the system is a sum of bonded and non-bonded energies of 
all the atoms.  Of these, the non-bonded energy evaluation 
step is the most computationally intensive, requiring more 
than 95% of total runtime.  Here, the energy of each atom 
is a sum of the contributions due to neighboring atoms 
within a cutoff distance.  This computation is often 
arranged in a neighbor lists format, where each atom has an 
associated list of neighbors that contribute to its energy. 

Equation 1 shows the total potential energy of a 
complex as a function of various bonded and non-bonded 
terms: 
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Figure 1: Profiling of Serial FTMap program 
 

Energy minimization involves the repeated 
evaluation of this expression, once during each 
minimization iteration.  As stated earlier, moving to the 
next iteration requires moving the atoms in the direction of 
the least energy conformation.  Thus at each iteration, the 
total force acting on each atom is also computed and the 
atoms are moved in the direction of those forces.  Figure 1 
shows the profiling result for the FTMap program.  As 
shown in Figure 1a, we see that more than 98% of the 
minimization runtime is spent in evaluating the total 
energy. Of this, almost 95% is spent computing the 
electrostatic energy (Figure 1b).  This also includes the 
time to compute the total forces acting on the atoms.  The 
focus of the current article is the acceleration of these 
computations using an FPGA. 

The electrostatic energy of a solute with N charges 
can be decomposed into two components.  The first 
component is a sum of N self-energy terms, each 
proportional to the square of the corresponding charge 
value.  The self energy of a charge represents the 
electrostatic potential energy at the point where the charge 
is located, due to the charge itself.  This effectively 
represents the energy required to assemble the charge.  For 
a point charge, this energy is infinite [17][18].  Computing 
the self-energy, thus, requires the charge to be represented 
as a distributed charge.  This is often done by distributing 
the charge uniformly over a small sphere [11][19]. 

The second term is the sum of the N(N-1)/2 pair-
wise interaction terms, each proportional to the product of 
the two charges involved in the pair.  Both the self-energy 
and the pair-wise interaction energy terms depend on the 
geometry of the solute [11].  The total electrostatic energy 
of a solute is thus given as a sum of all the self-

energies, self
iE , and the pair-wise interaction energies, 

int
ijE  [11] (see Equation 2). 

 



i ji

ij
self
i

elec EEE int

  (2) 

For the ACE component, the self-energy of an 
atom is represented as a sum of its Born self-energy in the 

solvent plus the sum of effective pairwise interactions, 
self
ikE , due to all the other solute atoms (see Equation 3) 

[11]. 
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To compute the pair-wise interaction portion of the self 
energy, ACE defines atom charges as Gaussian 

distributions.  self
ikE can then be computed by integrating 

the energy density of the electric field.  For efficient 
computation, this is approximated as the sum of a short-
range term that approximates the Gaussian and a long 
range term (first and second terms in Equation 4 
respectively).  
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Here iq  represents the charge on atom ‘i’, ikr  is the 

distance between atoms ‘i’ and ‘k’, kV
~

 is the size of the 

solute volume associated with atom ‘k’, ik  and ik  

determine the height and width of the Gaussian that 

approximates self
ikE  and ik  is an atom-atom parameter. 

The pair-wise interaction energy is given by the 
generalized Born (GB) equation, which is the sum of 
Coulomb’s law in a dielectric and the Born equation [20]: 
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where i  and j  represent the Born radius for atoms ‘i’ 

and ‘j’, respectively. These in turn depend on the self-
energy of the atom. 

Equations (4) and (5) represent the main 
computations that need to be performed for all atom-atom 
pairs to evaluate the total electrostatic energy of a given 
conformation.  In addition, the energy gradients need to be 
computed to determine the forces acting on the atoms and 
update the atom coordinates. 
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3. ENERGY COMPUTATION:  DATA 
STRUCTURES 
In the original ACE computation, atoms are arranged in 
neighbor lists.  Each “first atom” ‘i’ in the array of 
neighbor lists has a list of “second atoms” ‘k’ that 
contribute to its self-energy and the total interaction energy 
(see Figure 2). 

 

 
Figure 2. Array of neighbor lists 

 
As the positions of the atoms change, the neighbor 

lists are updated.  To compute the self-energies of the 
atoms, the original FTMap program cycles through the list 
of first atoms.  For each first atom, it traverses the list of 
second atoms, updating the self-energies of both the first 
atom as well as the second atom.  After the self-energies of 
all the atoms have been computed, they are accumulated 
and the total self-energy of the system is obtained. 
Similarly, the neighbor list array is again traversed to 
compute the pair-wise interaction energies using the 
generalized Born equation.  Note that the neighbor lists 
must be traversed twice since the evaluation of pair-wise 
interaction energy requires that the individual total self-
energy of each atom be known.  The final step involves 
computing the gradients for each atom and updating the 
forces acting on the atoms. 

The above computations can be divided into two 
FPGA pipelines, one for computing self-energies and the 
other for computing pair-wise interactions. These pipelines 
can process atom-pairs in streaming fashion, generating 
and updating two energy values per cycle.  

 
Figure 3. Atom-pairs list 

 

We now examine the basic data structure and 
show how it is modified for the FPGA.  As shown in 
Figure 2, a neighbor list essentially represents a pointer to a 
list of atoms.  To better map this data structure to the 
FPGA’s block RAMs, we replace the two dimensional 
structure of  the neighbor lists with a one dimensional pairs 
list (see Figure 3).  The pairs list, as the name suggests, is a 
list of atom-pairs, containing the indices of the two atoms 
involved in the pair and the corresponding atom types.  On 
the FPGA, a fetch unit reads a pair of indices in each cycle 
and fetches the coordinates of the atoms involved.  It also 
reads the atom types and fetches the corresponding 
parameters. 

 

4. ELECTROSTATIC ENERGY 
EVALUATION ON THE FPGA 

4.1 Basic Design 
As stated earlier, we divide the evaluation of electrostatics 
energy into two FPGA pipelines – one for computing self-
energies of the atoms (the Eself pipeline) and a second for 
computing the pair-wise interactions (the GB pipeline). 
Since the evaluation of pair-wise interactions requires the 
individual total self-energy of each atom, the self-energy 
computations must be finished before evaluation of pair-
wise interactions can begin.  This leads to two possible 
solutions.  The first is to utilize the entire FPGA for self-
energy pipelines and then reconfigure the FPGA into pair-
wise interaction pipelines.  The second scheme involves 
having both the pipelines present on the FPGA at the same 
time, but starting the pair-wise interaction pipeline only 
after the self-energy pipeline has finished evaluating 
energies of all the atoms. This results, however, in part of 
the FPGA resources remaining idle at all times.  

Though the first scheme yields better utilization of 
FPGA resources and allows for more replication of 
pipeline instances for parallel evaluations, it is not likely to 
be the preferred solution.  Since the time per iteration for 
the energy evaluation is relatively small (a few 
milliseconds on serial computer and a few microseconds on 
an FPGA), the time required for reconfiguring the FPGA 
for each iteration will dominate the overall compute time 
and nullify any performance benefits obtained by better 
utilization of resources. Moreover, having multiple 
pipelines in parallel would add to the complexity of the 
data path and require replication of various block RAMs 
for independent accesses by different pipelines. This in turn 
would require broadcasting to multiple BRAMs as well as 
combining the partial values from those BRAMs, further 
adding to the complexity of the system. 

Thus in the current design both pipelines are 
present on the FPGA throughout the computation.  The GB 
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pipeline starts only after the Eself pipeline has finished 
processing all the atoms. 

4.2 The Self-energy Pipeline 
Figure 4 shows the FPGA design for computing the self-
energies of the atoms.  The self-energy pipeline computes 
the atom self-energies along with some other quantities for 
updating the forces acting on the atoms.  

 

 
Figure 4. Self-energy Pipeline 

 
The self-energy of an atom is the sum of the 

contributions due to all the neighboring atoms within a 
cutoff.  At the head of the pipeline, a cut-off filter unit 
checks to see if the two atoms are within a cut-off distance.  
If so, it notifies the parameter fetch unit so that it can fetch 
the remaining parameters for the two atoms and pass them 
to the pipeline.  

In each cycle, the pipeline accepts one pair of 
atoms and computes two sets of quantities:  pair-wise 
values and atom-wise values (see Figure 4).  Pair-wise 
values are those which are for a particular atom-pair and 
include a switching function [10] and its derivative (sw and 
dsw), and pair-wise force functions along each of the three 
axes (xsf, ysf and zsf).  The switching function is used to 
represent the effect of distance dependent dielectric in the 
electrostatic energy expression.  If the distance between the 
two atoms is larger than the cutoff, the switching function 
takes a value of 0, reducing the electrostatic energy 
between the atom-pair to zero.  Similarly, the pair-wise 
force function along an axis depends on the switching 
function and its derivative as well as the difference of the 
atom-coordinates along that axis.  The resulting forces 
acting on the two atoms along that axis are equal in 
magnitude and opposite in direction.  The expressions for 
these various pair-wise quantities and their derivations are 
shown in Equations 6 – 14. 

Atom-wise values are for each atom in the pair 

and include partial self-energy of the atom ( self
ikE in 

Equation 3) and partial force-functions along the three axes 
(xf, yf, and zf) used to update the forces acting on the atom.  
The expressions for these atom-wise quantities, as 
evaluated by the self-energy pipeline, are shown in 
Equations 11 and 14. These partial values must be 
accumulated to obtain the total value for each atom.  As 
shown in Figure 4, the self-energies and the force functions 
of the two atoms computed by the Eself pipeline are 
accumulated by the accumulators.  The accumulated values 
are stored in block RAMs for use by the GB pipeline.  Pair-
wise quantities such as switching functions and force 
functions are also stored in block RAMs and used by the 
GB pipeline.  The block RAM requirements for the design 
are discussed in Section 5. 
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The computation of the electrostatic energy is generally 
performed with double precision floating point.  On our 
FPGA Eself pipeline, we currently use single precision 
floating point arithmetic, with apparently little loss in 
accuracy when used in FTMap (see Section 6.2).  The 
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floating point operations of the pipeline are optimized 
using the Floating Point Compiler from Altera [21].  It 
generates a 105 stage pipeline running at 185 MHz. 

4.3 The Generalized Born Pipeline 
The Generalized Born pipeline is used to compute the pair-
wise interactions between atom-pairs and to update the 
forces acting on them.  As in the case of the self-energy 
pipeline, only those pairs whose distance is less than the 
cutoff need to be processed. 

The Generalized Born pipeline uses atom self-
energies generated by the Eself pipeline to compute the 
Born radius and its derivative associated with each atom 
(Equations 15 and 16). These in turn are used to compute 
the pair-wise interaction energies (Born and Coulomb 
energies) of the atoms (EBorn and ECoul in Figure 5).  The 
expressions for ECoul and EBorn are given by the first and 
the second terms of the GB equation (Equation 5). The 
Born and Coulomb electrostatic energies of different atoms 
are then accumulated to generate the total electrostatic 
energy of the complex.  Note that unlike self-energies, we 
do not need the individual total Born and Coulomb 
energies of each atom.  Thus, the partial energy values 
generated by the GB pipeline are accumulated into a single 
total value. 
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(b0 and k are constants) 

The GB pipeline also computes partial forces 
acting on each atom. These are computed using the pair-
wise and atom-wise force functions generated by the self-
energy pipeline.  These partial forces must be accumulated 
to compute the total forces acting on each atom, which are 
then used to update the atom coordinates.  To update the 
positions of the atoms, we need the individual forces acting 
on each atom; the accumulator thus stores the individual 
values into force block RAMs.  The total force values, 
along with the energy gradients, are then used to determine 
the new atom positions in the complex for the next 
minimization iteration. 

Like the Eself pipeline, the GB pipeline also uses 
single precision floating point arithmetic and is generated 
using the Altera Floating Point Compiler. The compiler 
generates a 125 stage pipeline running at 190 MHz.   It 
requires about 18% of the resources of a high end Stratix 
III FPGA (SE110). 

 

5. INTEGRATING THE PIPELINES 
Since the evaluations of different atom-pairs are 
independent of each other, having multiple pipelines that 
process different pairs in parallel would yield better 
performance.  Synthesis results indicate that we can fit two 
instances each of the Eself and GB pipelines on a Stratix III 
SE110 FPGA, allowing four energy updates per cycle.  
Having multiple pipelines, however, results in some added 
complexity in block RAM accesses and data storage. 

 

 

Figure 5. Generalied Born Pipeline 

 

Before addressing the issues associated with block 
RAM accesses, we briefly discuss the issue of feeding one 
“valid” atom-pair to each of the pipeline instances.  As 
stated earlier, only those atom pairs that pass the cutoff 
distance test need to be processed by the Eself and GB 
pipelines. Thus, in order to provide the pipelines with one 
valid atom-pair per cycle, we need multiple cutoff filter 
units for each energy pipeline.  This results in two 
complications.  First, each cutoff filter requires two sets of 
atom-coordinates per cycle.  These can be read from a 
single dual-ported block RAM.  For multiple filters, we 
thus need to replicate the BRAMs, one for each filter.  
Second, there are multiple filters and each filter can 
potentially output a valid atom-pair each cycle.  Since the 
energy pipeline can only process one of those per cycle, we 
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need to add a mechanism for storing the rest in FIFOs and 
possibly stalling the pipeline if the FIFOs get filled up. 

In order to avoid these pipeline complications, one 
possible solution is to process all of the atom-pairs present 
in the list without filtering with respect to the cutoff 

distance.  Note that during the initial creation of the 
neighbor-lists on the host, a cut-off test is performed. Only 
those atom-pairs which are within a cutoff are added to the 
list.  A second cutoff test is required on the FPGA to check 
for atoms that might have moved out of the cutoff radius 
due to position updates during

 
minimization iterations, and to check for short-range 
cutoff. 

 The change in position during minimization steps, 
however, is not radical [10].  Due to this, most of the atoms 
will likely pass the cutoff test on the FPGA.  We noticed 
that, on average, only about 7-8% of total pairs fail the test.  
Moreover, since the total number of atom-pairs to be 
processed is only a few thousand (unlike molecular 
dynamics where millions of pairs are screened) 
unconditionally processing all the atoms does not lead to a 
significant performance loss.  Thus we decided to 
unconditionally process every atom-pair.  A cut-off filter is 
still needed at the head of the energy pipeline to invalidate 
the energy and force updates at the end of the pipeline if 
the atom-atom distance is larger than the cutoff.  This can 
be viewed as inserting a bubble into the pipeline whenever 
the distance is larger than the cutoff. 

Figure 6 shows the complete electrostatic energy 
pipeline with two instances each of the self-energy and 
pair-wise interaction pipelines.  Also shown are the 

different block RAMs required in the design (dark green 
boxes). Two atom pairs are fetched from the pairs-list (of 
Figure 2) in each cycle and one pair is fed into each of the 
pipeline instances.  As shown, the block RAMs for the 
atom coordinates and the other atom-wise and pair-wise 
parameters (atom charge, solvation volume, ω, μ, σ) are 
replicated to feed the two pipelines. The pair-wise 
parameters (ω, μ, σ) are not symmetric and hence two sets 
of these are required per cycle.  This is done by utilizing 
the dual-ported capability of the block RAMs.  Similarly, 
atom charges and coordinates are replicated into two sets of 
dual-ported block RAMs, one for independently feeding 
each of the Eself pipelines. 

Each of the Eself pipeline generates and stores 
self-energy and force function values (Eself, Xf, Yf, Zf) 
into its own set of block RAMs.  An independent set of 
BRAMs is required for each pipeline since each pipeline 
performs two updates per cycle and FPGA block RAMs 
provide only two read/write ports.  Thus the values in the 
block RAMs of the two pipelines are partial and must be 
combined before being fed into the GB pipeline.  As shown 
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Figure 6. Complete Electrostatic pipeline with two Eself and GB pipelines 



in Figure 6, this can be done on the fly.  Partial values from 
the two BRAMs are fetched and added and the sum is then 
fed into the GB pipeline. 

Each GB pipeline requires two atom-wise 
quantities (Eself, Xf, Yf, Zf) per cycle, each of which is a 
sum of values from the two sets of BRAMs.  Thus, each 
GB pipeline needs to access two locations in each BRAM.  
This results in 4 reads per cycle for each of the BRAMs (as 
shown in Figure 6). Since four read ports are not supported 
by FPGA block RAMs, we implement this by further 
replicating each of the block RAMs into two banks (see 
Figure 7).  Each RAM requiring four read ports is 
implemented by instantiating two banks of dual ported 
RAMs.  Writes are broadcast to both the banks and two 
reads are provided by each of the banks. 

 

 
Figure 7. 4-port  RAM using 2-port banks 

 

For the pair-wise quantities generated by the two 
Eself pipelines (sw, dsw, xsf, ysf, zsf), we could use a 
unified BRAM since each pipeline updates only one set of 
values per cycle.  As shown in Figure 6, we still utilize 
independent sets of BRAMs for each pipeline.  This is done 
due to two reasons.  First, this allows the use of simple 
dual-ported block RAMs.  Second, even though the pair-
wise quantities are stored by the two pipelines in separate 
BRAMs, they need not be combined before being fed to the 
GB pipeline.  This is because these values are specific to a 
particular atom-pair and the distribution of pairs among the 
pipelines is the same in both the Eself and GB pipelines.  
That is, if a particular pair is processed by the first Eself 
pipeline, it will always be processed by the first GB 
pipeline.  Finally, the total forces generated by the GB 
pipeline are stored in dual-ported block RAMs.  Again, 
each GB pipeline has its own set of independent force 
BRAMs and updates two force values per cycle.  These 
two sets of BRAMs are then combined to generate the total 
forces which are used to update atom positions for the next 
iteration. 

 

6. RESULTS 

6.1 Performance Results 
Table 1 shows the resource utilizations for the self-energy 
and pair-wise interaction pipelines.  As shown, utilization 

for both of the pipelines is dominated by the block 
multipliers.  On the Stratix III SE110 FPGA, we can fit two 
instances of each of the pipelines, operating at 185 MHz 
with single precision floating point precision. 

Table 2 shows the estimated speedup on FPGA for 
evaluation of one iteration of electrostatic energy for a 
protein-probe complex.  The complex contains 2260 atoms 
and requires 9780 atom-atom evaluations per iteration.  
Also shown are results from our earlier work on energy 
minimization on GPUs [22].  As shown, the FPGA 
implementation results in an estimated speedup of two 
orders of magnitude over a single core of a quad core Intel 
Xeon processor (2.00 GHz).  This represents an 8x 
improvement over our previous work on acceleration of 
energy minimization using NVIDIA Tesla C1060 GPU 
(with 240 processor cores and running at 1.3GHz). 

 

Table 1. Resource Utilizations on Stratix III SE110 

Resource 
Self-energy 

Pipeline 

Pair-wise 
Interaction 

Pipeline 

Total with two 
of each  

pipelines 

Combinational 
ALUTs 

13,927 (17%) 8,913 (11%) 45,680 (54%)

Memory ALUTs 1543 (4%) 1126 (3%) 5338 (13%) 

Register Bits 19,161 (22%) 12,157 (14%) 62,636 (73%)

Block Multipliers 264 (29%) 162 (18%) 852 (95%) 

M9K BRAMs 104 (16%) 

M144K BRAMs 14 (88%) 

 

Table 2. Estimated FPGA Speedups 

Computation
Serial 
Time 

FPGA 
Time 

GPU 
Time 

Speedup 
over 

Serial 

Speedup 
over GPU

Self-energy 6.15 ms 0.027 ms 0.22 ms 225x 8x 

Pair-wise 
Interaction 

2.75 ms 0.027 ms 0.23 ms 100x 8.5x 

 

6.2 Error Analysis 
As stated earlier, the original FTMap program uses double 
precision floating point to represent the energy and force 
values.  In our FPGA design, we currently use single 
precision floating point arithmetic.  To study the effects of 
the reduced precision on convergence, we performed a 
preliminary experiment on a protein-probe complex.  We 
performed minimization using both single and double 
precision and compared the final coordinates of the atoms 
in the complex after minimization.  Note that the goal of 
the FTMap program is to obtain the probe orientation in the 
protein that results in the least energy conformation.  By 
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comparing the coordinates of the atoms, we effectively 
compare the final orientation of the probe in the protein. 
The atom coordinates in FTMap are represented with a 
resolution of 1/1000th of an Angstrom.  This is the same as 
required for the atom-coordinates in the Protein Data Bank 
(pdb) file format [23].  Our experiment indicates that out of 
2260 atoms in the complex, the coordinates of 2256 atoms 
match precisely between the single and double precision.  
Of the remaining 4, the coordinates of 3 of the atoms match 
within 1/100th of an Angstrom, with the fourth one 
matching within 1/10th of an Angstrom. 

 Though this experiment is preliminary, it gives an 
indication that single precision floating point may suffice 
for computations in energy minimization, at least as used in 
mapping.  We are currently performing more experiments 
for precision and error analysis using both single precision 
as well as mixed and other hybrid precision schemes. 

 

7. CONCLUSION 
We have presented FPGA pipelines for the electrostatic 
energy computation as used in energy minimization 
applications.  The design achieves a two order-of- 
magnitude speedup over a single CPU core for 
computations that constitute more than 90% of total serial 
runtime.  The overall speedup, however, is much modest 
and is currently limited to 14x.  This is because the 
evaluation of the van der Waals energy constitutes around 
5.5% of total runtime on host and has not yet been 
accelerated.  Computations involved in evaluating the van 
der Waals energy are similar to those for evaluating the 
electrostatics energy and can benefit from FPGA 
acceleration.  Acceleration of van der Waals evaluation 
would result in higher overall speedup and is now in 
progress. 

We compared our results with our previous work 
of mapping the energy computation to GPUs and showed 
that FPGA implementation achieves an 8x improvement 
over the GPU version.  In spite of the huge floating point 
capabilities of modern GPUs, the speedup on GPU is 
comparatively modest.  This is mainly due to the 
limitations associated with its fixed architecture.  In 
contrast, FPGAs provide immense flexibility both with 
respect to selection of the computational cores and the data 
communication among them.  In addition, modern FPGAs 
boast of high floating point capabilities, with latest chips 
achieving up to  200 GFLOPs peak for single precision 
floating point.  These features, combined with deeply 
pipelined designs and high utilization, result in very high 
performance. 

We also performed preliminary error analysis by 
comparing the coordinates of the atoms in a protein-probe 
complex after minimization, using double and single 

precision floating point arithmetic.  Our experiment shows 
that the final atom-coordinates obtained using single 
precision are in good agreement with the results obtained 
using original FTMap program that uses double precision 
floating point arithmetic. 
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