
FPGA-based Acceleration of CHARMM-potential
Minimization*†

Bharat Sukhwani Martin C. Herbordt

Computer Architecture and Automated Design Laboratory

Department of Electrical and Computer Engineering

Boston University, Boston, MA 02215

ABSTRACT
Energy minimization is an important step in molecular
modeling, with applications in molecular docking and in
mapping binding sites. Minimization involves repeated
evaluation of various bonded and non-bonded energies of a
protein complex. It is a computationally expensive
process, with runtimes typically being many hours on a
desktop system. In the current article, we present
acceleration of the energy evaluation phase of minimization
using Field Programmable Gate Arrays. We project a
multiple orders-of-magnitude speed-up over a single CPU
core and a factor of 8 speed-up over our previous
acceleration using an NVIDIA Tesla 1060 GPU.

1. INTRODUCTION
Molecular docking refers to the computational prediction
of the least energy pose between two interacting proteins.
This is a computationally demanding process, often
requiring many hours to days of CPU runtime. Due to the
computational complexity of the problem, most docking
systems adopt a two step process. The first step docks the
two proteins to find the best fit, often assuming the proteins
to be rigid. It scores up to billions of poses between the
two proteins and a few thousand top scoring poses are
preserved for further evaluation.

The second step performs minimization of the
total potential energy of the high-scoring docked
complexes generated by the first step. Often, this is
referred to as minimization of the CHARMM potential (or
force-fields) or simply as energy minimization. During
energy minimization, the larger molecule is generally held
fixed whereas the side chain atoms of the smaller molecule
(the ligand) are free to move. This accounts for the
flexibility in the molecule. During each minimization

iteration, the total potential energy of the complex is
computed and a move to a neighboring point is made using
a standard optimization technique. This is typically
Newton-Raphson or quasi-Newtonian (L-BFGS). The
minimization process is repeated until the energy
converges to within a given threshold. Often up to a
thousand iterations need to be performed per conformation,
resulting in runtimes of about 30 seconds per conformation
[1].

With many thousands of conformations to be
minimized per protein-ligand pair, the total time for the
minimization phase runs can be many hours. Moreover,
drug discovery involves the docking-based screening of
millions of candidate ligands for a given protein.
Acceleration of energy minimization is thus highly
desirable, as it would lead to faster molecular docking and
quicker turn-around times in drug discovery. Some of the
docking programs that use energy minimization include
DOCK [2], DARWIN [3], RDOCK [4] and EADock [5].

In addition to docking, energy minimization is
also used in other molecular modeling applications. One of
these is mapping, which aims at determining the likely
binding sites on a given protein [1][6][7][8]. Mapping
involves docking a set of small-molecule probes using rigid
docking, and performing energy minimization for each
protein-probe complex. The idea arises from the
observation that certain regions on protein binding sites,
called hot spots, are major contributors to the binding
energy and that they bind a large variety of small
molecules. Thus, regions that bind a large number of
probes can be indicative of sites that are likely to bind
inhibitors with high affinity [9]. FTMap [1], one of these
mapping algorithms, docks 16 different probes to a given
protein. For each probe, it retains the 2000 top scoring
conformations from rigid docking step; these are then

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HPRCTA’09, November 15, 2009, Portland, Oregon, USA.
Copyright 2009 ACM978-1-60558-721-9/09/11... $10.00.

* This work was supported in part by the NIH through award #R01-
RR023168-01A1, and facilitated by donations from XtremeData, Inc.,
SGI, and Xilinx Corporation.
† 8 St. Mary’s St., Boston, MA – 02215. 1-617-353-2850.
Web: www.bu.edu/caadlab. Email: {herbordt|bharats} @bu.edu

further minimized using the CHARMM potential [10].

While energy minimization can potentially benefit
from acceleration, and while this computation is
superficially similar to the well-studied molecular
dynamics, little or no work has been done in this area. The
difficulty is perhaps that there is comparatively little
computation to be performed per iteration and that a
substantial fraction of it is apparently serial. On the FPGA,
however, these computations can be performed using deep
pipelines, thus effectively performing many computations
in parallel.

The focus of the current paper is accelerating the
energy evaluation step of the FTMap algorithm using
reconfigurable hardware. The potential energy terms that
FTMap employs are the Analytic Continuum Electrostatics
(ACE) and solvation energies [11], in addition to other
CHARMM energy terms such as the van der Waals and
bonded energies. Of these, the ACE electrostatics,
solvation, and van der Waals terms represent the non-
bonded (external) interactions and constitute most of the
computation.

In the current paper, we present a design for
mapping the evaluation of ACE electrostatics and solvation
terms onto an FPGA, with an estimated speedup of two
orders of magnitude on computations that constitute more
than 90% of total runtime. This represents a 14x overall
speedup of the FTMap program. The overall speedup is
limited due to the van der Waals term being evaluated on
the host. Acceleration of the van der Waals evaluation
using an FPGA would result in higher overall speedup and
is part of the future work.

2. ENERGY MINIMIZATION
Energy minimization is an iterative process which aims at
computing the configuration of the atoms in a complex that
corresponds to the minimum potential energy [13]. In
order to evaluate the potential energy of the system rapidly,
it is often represented using force-fields. A force-field
represents each atom in a molecular system as a point
charge and the total potential energy of the system as a sum
of various two, three or four-particle interactions [14].
Various force fields have been developed, with the more
popular ones being CHARMM [10] and AMBER [15].
Due to the popularity of the CHARMM force fields, energy
minimization is often referred to as minimization of the
CHARMM potential or simply as CHARMM minimization.

Minimization involves computing the potential
energy of the complex at a point, updating the forces acting
on the atoms, and adjusting the atom-coordinates according
to the total forces acting on them. Forces acting on the
atoms are obtained by differentiating the potential energy

function with respect to the atom coordinates. This process
of energy evaluation and of force and position updates is
repeated for many iterations, until the energy of the system
converges to within a threshold. During minimization, the
move to the next iteration can be made using one of many
optimization approaches such as steepest descent,
conjugate gradient, quasi-Newtonian, or Newton-Raphson.
Depending on the method chosen, minimization requires
computing the first and, in some cases, the second
derivatives of the energy functions. The choice of iteration
method also affects the rate at which the energy of the
system converges.

Though the underlying computation of energy
minimization is superficially similar to molecular dynamics
(MD), it differs from MD simulations in various ways.
First, unlike molecular dynamics where the movement of
the atoms is based on Newtonian dynamic laws and
produces a trajectory based on kinetic energy, minimization
simply adjusts the atom coordinates so as to lower the total
energy of the system [10][13]. Minimization does not
include the effect of temperature, and the final state of the
system corresponds to the atom configurations when the
temperature is approximately zero [13]. For the above
reasons, the final state achieved after minimization does not
depend on the initial state chosen at the start of the
minimization process. Second, unlike MD where the
system typically consists of millions of particles, energy
minimization is often performed on a local region of the
complex, resulting in only a few thousand atoms begin
simulated and requiring only up to a few tens of thousands
of atom-pair evaluations per iteration. Finally, even though
the energy terms computed in minimization are similar to
those in molecular dynamics, the actual energy expressions
evaluated during minimization are quite different. For
example, unlike molecular dynamics where the van der
Waals term is evaluated using a 12-6 Lennard-Jones
function, a minimization routine often approximates it with
a sum of two or four Gaussians [16].

In energy minimization, the system to be
simulated consists of a number of atoms; the total energy of
the system is a sum of bonded and non-bonded energies of
all the atoms. Of these, the non-bonded energy evaluation
step is the most computationally intensive, requiring more
than 95% of total runtime. Here, the energy of each atom
is a sum of the contributions due to neighboring atoms
within a cutoff distance. This computation is often
arranged in a neighbor lists format, where each atom has an
associated list of neighbors that contribute to its energy.

Equation 1 shows the total potential energy of a
complex as a function of various bonded and non-bonded
terms:

  
bonded

impropertorsionanglebond

bondednon

elecvdwtotal EEEEEEE 


 (1)

Figure 1: Profiling of Serial FTMap program

Energy minimization involves the repeated
evaluation of this expression, once during each
minimization iteration. As stated earlier, moving to the
next iteration requires moving the atoms in the direction of
the least energy conformation. Thus at each iteration, the
total force acting on each atom is also computed and the
atoms are moved in the direction of those forces. Figure 1
shows the profiling result for the FTMap program. As
shown in Figure 1a, we see that more than 98% of the
minimization runtime is spent in evaluating the total
energy. Of this, almost 95% is spent computing the
electrostatic energy (Figure 1b). This also includes the
time to compute the total forces acting on the atoms. The
focus of the current article is the acceleration of these
computations using an FPGA.

The electrostatic energy of a solute with N charges
can be decomposed into two components. The first
component is a sum of N self-energy terms, each
proportional to the square of the corresponding charge
value. The self energy of a charge represents the
electrostatic potential energy at the point where the charge
is located, due to the charge itself. This effectively
represents the energy required to assemble the charge. For
a point charge, this energy is infinite [17][18]. Computing
the self-energy, thus, requires the charge to be represented
as a distributed charge. This is often done by distributing
the charge uniformly over a small sphere [11][19].

The second term is the sum of the N(N-1)/2 pair-
wise interaction terms, each proportional to the product of
the two charges involved in the pair. Both the self-energy
and the pair-wise interaction energy terms depend on the
geometry of the solute [11]. The total electrostatic energy
of a solute is thus given as a sum of all the self-

energies, self
iE , and the pair-wise interaction energies,

int
ijE [11] (see Equation 2).

 



i ji

ij
self
i

elec EEE int

 (2)

For the ACE component, the self-energy of an
atom is represented as a sum of its Born self-energy in the

solvent plus the sum of effective pairwise interactions,
self
ikE , due to all the other solute atoms (see Equation 3)

[11].





ik

self
ik

is

iself
i E

R

q
E

2

2

 (3)

To compute the pair-wise interaction portion of the self
energy, ACE defines atom charges as Gaussian

distributions. self
ikE can then be computed by integrating

the energy density of the electric field. For efficient
computation, this is approximated as the sum of a short-
range term that approximates the Gaussian and a long
range term (first and second terms in Equation 4
respectively).

4

44

322

8

~
2

2

























ikik

ikki

r

ik

iself
ik

r

rVq
e

q
E ik

ik





 

 (4)

Here iq represents the charge on atom ‘i’, ikr is the

distance between atoms ‘i’ and ‘k’, kV
~

 is the size of the

solute volume associated with atom ‘k’, ik and ik

determine the height and width of the Gaussian that

approximates self
ikE and ik is an atom-atom parameter.

The pair-wise interaction energy is given by the
generalized Born (GB) equation, which is the sum of
Coulomb’s law in a dielectric and the Born equation [20]:

















ij r

jiij

ji

ij ij

ji
ij

ji

ij

er

qq

r

qq
E






42

int
2

166332

 (5)

where i and j represent the Born radius for atoms ‘i’

and ‘j’, respectively. These in turn depend on the self-
energy of the atom.

Equations (4) and (5) represent the main
computations that need to be performed for all atom-atom
pairs to evaluate the total electrostatic energy of a given
conformation. In addition, the energy gradients need to be
computed to determine the forces acting on the atoms and
update the atom coordinates.

(b) (a)

5.38% 0.2%

94.4%

Electrostatics van der Waals Bonded

1.02%

98.98%

Energy Evaluation Rest

3. ENERGY COMPUTATION: DATA
STRUCTURES
In the original ACE computation, atoms are arranged in
neighbor lists. Each “first atom” ‘i’ in the array of
neighbor lists has a list of “second atoms” ‘k’ that
contribute to its self-energy and the total interaction energy
(see Figure 2).

Figure 2. Array of neighbor lists

As the positions of the atoms change, the neighbor

lists are updated. To compute the self-energies of the
atoms, the original FTMap program cycles through the list
of first atoms. For each first atom, it traverses the list of
second atoms, updating the self-energies of both the first
atom as well as the second atom. After the self-energies of
all the atoms have been computed, they are accumulated
and the total self-energy of the system is obtained.
Similarly, the neighbor list array is again traversed to
compute the pair-wise interaction energies using the
generalized Born equation. Note that the neighbor lists
must be traversed twice since the evaluation of pair-wise
interaction energy requires that the individual total self-
energy of each atom be known. The final step involves
computing the gradients for each atom and updating the
forces acting on the atoms.

The above computations can be divided into two
FPGA pipelines, one for computing self-energies and the
other for computing pair-wise interactions. These pipelines
can process atom-pairs in streaming fashion, generating
and updating two energy values per cycle.

Figure 3. Atom-pairs list

We now examine the basic data structure and
show how it is modified for the FPGA. As shown in
Figure 2, a neighbor list essentially represents a pointer to a
list of atoms. To better map this data structure to the
FPGA’s block RAMs, we replace the two dimensional
structure of the neighbor lists with a one dimensional pairs
list (see Figure 3). The pairs list, as the name suggests, is a
list of atom-pairs, containing the indices of the two atoms
involved in the pair and the corresponding atom types. On
the FPGA, a fetch unit reads a pair of indices in each cycle
and fetches the coordinates of the atoms involved. It also
reads the atom types and fetches the corresponding
parameters.

4. ELECTROSTATIC ENERGY
EVALUATION ON THE FPGA

4.1 Basic Design
As stated earlier, we divide the evaluation of electrostatics
energy into two FPGA pipelines – one for computing self-
energies of the atoms (the Eself pipeline) and a second for
computing the pair-wise interactions (the GB pipeline).
Since the evaluation of pair-wise interactions requires the
individual total self-energy of each atom, the self-energy
computations must be finished before evaluation of pair-
wise interactions can begin. This leads to two possible
solutions. The first is to utilize the entire FPGA for self-
energy pipelines and then reconfigure the FPGA into pair-
wise interaction pipelines. The second scheme involves
having both the pipelines present on the FPGA at the same
time, but starting the pair-wise interaction pipeline only
after the self-energy pipeline has finished evaluating
energies of all the atoms. This results, however, in part of
the FPGA resources remaining idle at all times.

Though the first scheme yields better utilization of
FPGA resources and allows for more replication of
pipeline instances for parallel evaluations, it is not likely to
be the preferred solution. Since the time per iteration for
the energy evaluation is relatively small (a few
milliseconds on serial computer and a few microseconds on
an FPGA), the time required for reconfiguring the FPGA
for each iteration will dominate the overall compute time
and nullify any performance benefits obtained by better
utilization of resources. Moreover, having multiple
pipelines in parallel would add to the complexity of the
data path and require replication of various block RAMs
for independent accesses by different pipelines. This in turn
would require broadcasting to multiple BRAMs as well as
combining the partial values from those BRAMs, further
adding to the complexity of the system.

Thus in the current design both pipelines are
present on the FPGA throughout the computation. The GB

Atom 1 Type Atom 2 TypePair # Atom 1

Atom index

Atom 2

Atom Type

0
1
2
3
4
5
6

0
0
0
0
1
1
2

7
8
9

2
2
3

2
1

11
14
2
5
4

15
12
4

T5
T5
T5
T5
T3
T3
T1
T1
T1
T5

T1
T3
T2
T4
T1
T3
T8
T7
T4
T8

First Atoms Second Atoms Atoms List

n-1

3

0

1
2

2

0

1

2
1

11
14

2
5

4
15

4

12

3

Self-energy

pipeline starts only after the Eself pipeline has finished
processing all the atoms.

4.2 The Self-energy Pipeline
Figure 4 shows the FPGA design for computing the self-
energies of the atoms. The self-energy pipeline computes
the atom self-energies along with some other quantities for
updating the forces acting on the atoms.

Figure 4. Self-energy Pipeline

The self-energy of an atom is the sum of the

contributions due to all the neighboring atoms within a
cutoff. At the head of the pipeline, a cut-off filter unit
checks to see if the two atoms are within a cut-off distance.
If so, it notifies the parameter fetch unit so that it can fetch
the remaining parameters for the two atoms and pass them
to the pipeline.

In each cycle, the pipeline accepts one pair of
atoms and computes two sets of quantities: pair-wise
values and atom-wise values (see Figure 4). Pair-wise
values are those which are for a particular atom-pair and
include a switching function [10] and its derivative (sw and
dsw), and pair-wise force functions along each of the three
axes (xsf, ysf and zsf). The switching function is used to
represent the effect of distance dependent dielectric in the
electrostatic energy expression. If the distance between the
two atoms is larger than the cutoff, the switching function
takes a value of 0, reducing the electrostatic energy
between the atom-pair to zero. Similarly, the pair-wise
force function along an axis depends on the switching
function and its derivative as well as the difference of the
atom-coordinates along that axis. The resulting forces
acting on the two atoms along that axis are equal in
magnitude and opposite in direction. The expressions for
these various pair-wise quantities and their derivations are
shown in Equations 6 – 14.

Atom-wise values are for each atom in the pair

and include partial self-energy of the atom (self
ikE in

Equation 3) and partial force-functions along the three axes
(xf, yf, and zf) used to update the forces acting on the atom.
The expressions for these atom-wise quantities, as
evaluated by the self-energy pipeline, are shown in
Equations 11 and 14. These partial values must be
accumulated to obtain the total value for each atom. As
shown in Figure 4, the self-energies and the force functions
of the two atoms computed by the Eself pipeline are
accumulated by the accumulators. The accumulated values
are stored in block RAMs for use by the GB pipeline. Pair-
wise quantities such as switching functions and force
functions are also stored in block RAMs and used by the
GB pipeline. The block RAM requirements for the design
are discussed in Section 5.

))(3()(3_ 22
cot

22222 rnbrnbrnbconstsw cutoffcutoff  (6)

))((12_ 22
cot

22 rnbrnbconstdsw cutoff 
 (7)










2

2

exp ik

ikr

ike  (8)

4

44

3

8

~
1 














ikik

ikk

r

rV
T


 (9)

 1exp22 TswT  (10)

2TEE selfself  (11)

dswT
rr

r
TswT

ikikikik

ikik .2
exp4

)(

)3(
183

2442

44





















 (12)

)21(3 xxTxsf )21(3 yyTxsf )21(3 zzTzsf  (13)

xsfxfxf  ysfyfyf  zsfzfzf  (14)

The computation of the electrostatic energy is generally
performed with double precision floating point. On our
FPGA Eself pipeline, we currently use single precision
floating point arithmetic, with apparently little loss in
accuracy when used in FTMap (see Section 6.2). The

<=cutoff?
Self-energy Pipeline

swij

dswij

eselfi

xsfij
ysfij
zsfij

For atom 1

Pair-wise

Accumulator

ESelfi Xfi Yfi Zfi

xfi zfi yfi

rij

Param.
Fetch
Unit

σij
μij

Vsolv
qi

For atom “i”

For atom “j”

Pair-
wise

Atom Co-ordinates

eselfj

For atom 2

Accumulator

Eselfj Xfj Yfj Zfj

xfj zfj yfj

ωij

floating point operations of the pipeline are optimized
using the Floating Point Compiler from Altera [21]. It
generates a 105 stage pipeline running at 185 MHz.

4.3 The Generalized Born Pipeline
The Generalized Born pipeline is used to compute the pair-
wise interactions between atom-pairs and to update the
forces acting on them. As in the case of the self-energy
pipeline, only those pairs whose distance is less than the
cutoff need to be processed.

The Generalized Born pipeline uses atom self-
energies generated by the Eself pipeline to compute the
Born radius and its derivative associated with each atom
(Equations 15 and 16). These in turn are used to compute
the pair-wise interaction energies (Born and Coulomb
energies) of the atoms (EBorn and ECoul in Figure 5). The
expressions for ECoul and EBorn are given by the first and
the second terms of the GB equation (Equation 5). The
Born and Coulomb electrostatic energies of different atoms
are then accumulated to generate the total electrostatic
energy of the complex. Note that unlike self-energies, we
do not need the individual total Born and Coulomb
energies of each atom. Thus, the partial energy values
generated by the GB pipeline are accumulated into a single
total value.

irBorn
iSelfE

1 if
0

1
bE iSelf  (15)

).2(00
iSelfEbb  otherwise

idBrdes
iSelf
i

Ek

rBorn

.
 if

0
1

bE iSelf  (16)

k

b2
0 otherwise

(b0 and k are constants)

The GB pipeline also computes partial forces
acting on each atom. These are computed using the pair-
wise and atom-wise force functions generated by the self-
energy pipeline. These partial forces must be accumulated
to compute the total forces acting on each atom, which are
then used to update the atom coordinates. To update the
positions of the atoms, we need the individual forces acting
on each atom; the accumulator thus stores the individual
values into force block RAMs. The total force values,
along with the energy gradients, are then used to determine
the new atom positions in the complex for the next
minimization iteration.

Like the Eself pipeline, the GB pipeline also uses
single precision floating point arithmetic and is generated
using the Altera Floating Point Compiler. The compiler
generates a 125 stage pipeline running at 190 MHz. It
requires about 18% of the resources of a high end Stratix
III FPGA (SE110).

5. INTEGRATING THE PIPELINES
Since the evaluations of different atom-pairs are
independent of each other, having multiple pipelines that
process different pairs in parallel would yield better
performance. Synthesis results indicate that we can fit two
instances each of the Eself and GB pipelines on a Stratix III
SE110 FPGA, allowing four energy updates per cycle.
Having multiple pipelines, however, results in some added
complexity in block RAM accesses and data storage.

Figure 5. Generalied Born Pipeline

Before addressing the issues associated with block
RAM accesses, we briefly discuss the issue of feeding one
“valid” atom-pair to each of the pipeline instances. As
stated earlier, only those atom pairs that pass the cutoff
distance test need to be processed by the Eself and GB
pipelines. Thus, in order to provide the pipelines with one
valid atom-pair per cycle, we need multiple cutoff filter
units for each energy pipeline. This results in two
complications. First, each cutoff filter requires two sets of
atom-coordinates per cycle. These can be read from a
single dual-ported block RAM. For multiple filters, we
thus need to replicate the BRAMs, one for each filter.
Second, there are multiple filters and each filter can
potentially output a valid atom-pair each cycle. Since the
energy pipeline can only process one of those per cycle, we

rij eBornij

Accumulator

EBorn

fxi, fyi, fzi

Accumulator
Fxi, Fyi, Fzi

fxj, fyj, fzj

Accumulator

Fxj, Fyj, Fzj

eCoulij

Accumulator

ECoul

Generalized Born
Pipeline

MMAC

MMAC

MMAC

diarri diarrj fx, fy, fz
rBorni

rBornj

qi

qj

swij

dswij

dBrdesi

dBrdesj

< cutoff
rij

Born radii pipeline ESelfi
ESelfj

rBorni
rBornj
dBrdesi
dBrdesj

need to add a mechanism for storing the rest in FIFOs and
possibly stalling the pipeline if the FIFOs get filled up.

In order to avoid these pipeline complications, one
possible solution is to process all of the atom-pairs present
in the list without filtering with respect to the cutoff

distance. Note that during the initial creation of the
neighbor-lists on the host, a cut-off test is performed. Only
those atom-pairs which are within a cutoff are added to the
list. A second cutoff test is required on the FPGA to check
for atoms that might have moved out of the cutoff radius
due to position updates during

minimization iterations, and to check for short-range
cutoff.

 The change in position during minimization steps,
however, is not radical [10]. Due to this, most of the atoms
will likely pass the cutoff test on the FPGA. We noticed
that, on average, only about 7-8% of total pairs fail the test.
Moreover, since the total number of atom-pairs to be
processed is only a few thousand (unlike molecular
dynamics where millions of pairs are screened)
unconditionally processing all the atoms does not lead to a
significant performance loss. Thus we decided to
unconditionally process every atom-pair. A cut-off filter is
still needed at the head of the energy pipeline to invalidate
the energy and force updates at the end of the pipeline if
the atom-atom distance is larger than the cutoff. This can
be viewed as inserting a bubble into the pipeline whenever
the distance is larger than the cutoff.

Figure 6 shows the complete electrostatic energy
pipeline with two instances each of the self-energy and
pair-wise interaction pipelines. Also shown are the

different block RAMs required in the design (dark green
boxes). Two atom pairs are fetched from the pairs-list (of
Figure 2) in each cycle and one pair is fed into each of the
pipeline instances. As shown, the block RAMs for the
atom coordinates and the other atom-wise and pair-wise
parameters (atom charge, solvation volume, ω, μ, σ) are
replicated to feed the two pipelines. The pair-wise
parameters (ω, μ, σ) are not symmetric and hence two sets
of these are required per cycle. This is done by utilizing
the dual-ported capability of the block RAMs. Similarly,
atom charges and coordinates are replicated into two sets of
dual-ported block RAMs, one for independently feeding
each of the Eself pipelines.

Each of the Eself pipeline generates and stores
self-energy and force function values (Eself, Xf, Yf, Zf)
into its own set of block RAMs. An independent set of
BRAMs is required for each pipeline since each pipeline
performs two updates per cycle and FPGA block RAMs
provide only two read/write ports. Thus the values in the
block RAMs of the two pipelines are partial and must be
combined before being fed into the GB pipeline. As shown

Charge

Vsolv

ω

μ

σ

Eself
Pipeline

dsw

Accum.

Accum.

sw

 Co-
ordinate

s

xsf, ysf,
zsf (3)

Param.
Fetch
Unit

Charge

Vsolv

ω

μ

σ

Eself
Pipeline

dsw

Accum.

Accum.

sw

 Co-
ordinate

s

xsf, ysf,
zsf (3)

Param.
Fetch
Unit

Eself

Eself

4 reads

 Xf, Yf,
Zf (3)

 Xf, Yf,
Zf (3)

Born radii Pipe

Born radii Pipe

Generalized Born
Pipeline

Charge

ebornij Accum
EBorn_total

ecoulij
Accum ECoul_total

Force
Accum

Force

(Fx, Fy,
Fz) (3)Force

Accum

fxi, fyi, fzi

fxj, fyj, fzj

ESelfi

ESelfj

Xfi, Yfi, Zfi

Xfj, Yfj, Zfj

Born radii Pipe

Born radii Pipe

dsw
sw

ebornij Accum
EBorn_total

ecoulij Accum
ECoul_total

Force
Accum

Force

(Fx, Fy,
Fz) (3)Force

Accum

fxi, fyi, fzi

fxj, fyj, fzj

ESelfi

ESelfj

Xfi, Yfi, Zfi

Xfj, Yfj, Zfj

Generalized Born
Pipeline

sw
dsw

xsf, ysf, zsf

xsf, ysf, zsf

Charge

Figure 6. Complete Electrostatic pipeline with two Eself and GB pipelines

in Figure 6, this can be done on the fly. Partial values from
the two BRAMs are fetched and added and the sum is then
fed into the GB pipeline.

Each GB pipeline requires two atom-wise
quantities (Eself, Xf, Yf, Zf) per cycle, each of which is a
sum of values from the two sets of BRAMs. Thus, each
GB pipeline needs to access two locations in each BRAM.
This results in 4 reads per cycle for each of the BRAMs (as
shown in Figure 6). Since four read ports are not supported
by FPGA block RAMs, we implement this by further
replicating each of the block RAMs into two banks (see
Figure 7). Each RAM requiring four read ports is
implemented by instantiating two banks of dual ported
RAMs. Writes are broadcast to both the banks and two
reads are provided by each of the banks.

Figure 7. 4-port RAM using 2-port banks

For the pair-wise quantities generated by the two
Eself pipelines (sw, dsw, xsf, ysf, zsf), we could use a
unified BRAM since each pipeline updates only one set of
values per cycle. As shown in Figure 6, we still utilize
independent sets of BRAMs for each pipeline. This is done
due to two reasons. First, this allows the use of simple
dual-ported block RAMs. Second, even though the pair-
wise quantities are stored by the two pipelines in separate
BRAMs, they need not be combined before being fed to the
GB pipeline. This is because these values are specific to a
particular atom-pair and the distribution of pairs among the
pipelines is the same in both the Eself and GB pipelines.
That is, if a particular pair is processed by the first Eself
pipeline, it will always be processed by the first GB
pipeline. Finally, the total forces generated by the GB
pipeline are stored in dual-ported block RAMs. Again,
each GB pipeline has its own set of independent force
BRAMs and updates two force values per cycle. These
two sets of BRAMs are then combined to generate the total
forces which are used to update atom positions for the next
iteration.

6. RESULTS

6.1 Performance Results
Table 1 shows the resource utilizations for the self-energy
and pair-wise interaction pipelines. As shown, utilization

for both of the pipelines is dominated by the block
multipliers. On the Stratix III SE110 FPGA, we can fit two
instances of each of the pipelines, operating at 185 MHz
with single precision floating point precision.

Table 2 shows the estimated speedup on FPGA for
evaluation of one iteration of electrostatic energy for a
protein-probe complex. The complex contains 2260 atoms
and requires 9780 atom-atom evaluations per iteration.
Also shown are results from our earlier work on energy
minimization on GPUs [22]. As shown, the FPGA
implementation results in an estimated speedup of two
orders of magnitude over a single core of a quad core Intel
Xeon processor (2.00 GHz). This represents an 8x
improvement over our previous work on acceleration of
energy minimization using NVIDIA Tesla C1060 GPU
(with 240 processor cores and running at 1.3GHz).

Table 1. Resource Utilizations on Stratix III SE110

Resource
Self-energy

Pipeline

Pair-wise
Interaction

Pipeline

Total with two
of each

pipelines

Combinational
ALUTs

13,927 (17%) 8,913 (11%) 45,680 (54%)

Memory ALUTs 1543 (4%) 1126 (3%) 5338 (13%)

Register Bits 19,161 (22%) 12,157 (14%) 62,636 (73%)

Block Multipliers 264 (29%) 162 (18%) 852 (95%)

M9K BRAMs 104 (16%)

M144K BRAMs 14 (88%)

Table 2. Estimated FPGA Speedups

Computation
Serial
Time

FPGA
Time

GPU
Time

Speedup
over

Serial

Speedup
over GPU

Self-energy 6.15 ms 0.027 ms 0.22 ms 225x 8x

Pair-wise
Interaction

2.75 ms 0.027 ms 0.23 ms 100x 8.5x

6.2 Error Analysis
As stated earlier, the original FTMap program uses double
precision floating point to represent the energy and force
values. In our FPGA design, we currently use single
precision floating point arithmetic. To study the effects of
the reduced precision on convergence, we performed a
preliminary experiment on a protein-probe complex. We
performed minimization using both single and double
precision and compared the final coordinates of the atoms
in the complex after minimization. Note that the goal of
the FTMap program is to obtain the probe orientation in the
protein that results in the least energy conformation. By

 Bank 0

Bank 1

Read 0

Read 1

Read 2

Read 3

Write 0

Write 1

comparing the coordinates of the atoms, we effectively
compare the final orientation of the probe in the protein.
The atom coordinates in FTMap are represented with a
resolution of 1/1000th of an Angstrom. This is the same as
required for the atom-coordinates in the Protein Data Bank
(pdb) file format [23]. Our experiment indicates that out of
2260 atoms in the complex, the coordinates of 2256 atoms
match precisely between the single and double precision.
Of the remaining 4, the coordinates of 3 of the atoms match
within 1/100th of an Angstrom, with the fourth one
matching within 1/10th of an Angstrom.

 Though this experiment is preliminary, it gives an
indication that single precision floating point may suffice
for computations in energy minimization, at least as used in
mapping. We are currently performing more experiments
for precision and error analysis using both single precision
as well as mixed and other hybrid precision schemes.

7. CONCLUSION
We have presented FPGA pipelines for the electrostatic
energy computation as used in energy minimization
applications. The design achieves a two order-of-
magnitude speedup over a single CPU core for
computations that constitute more than 90% of total serial
runtime. The overall speedup, however, is much modest
and is currently limited to 14x. This is because the
evaluation of the van der Waals energy constitutes around
5.5% of total runtime on host and has not yet been
accelerated. Computations involved in evaluating the van
der Waals energy are similar to those for evaluating the
electrostatics energy and can benefit from FPGA
acceleration. Acceleration of van der Waals evaluation
would result in higher overall speedup and is now in
progress.

We compared our results with our previous work
of mapping the energy computation to GPUs and showed
that FPGA implementation achieves an 8x improvement
over the GPU version. In spite of the huge floating point
capabilities of modern GPUs, the speedup on GPU is
comparatively modest. This is mainly due to the
limitations associated with its fixed architecture. In
contrast, FPGAs provide immense flexibility both with
respect to selection of the computational cores and the data
communication among them. In addition, modern FPGAs
boast of high floating point capabilities, with latest chips
achieving up to 200 GFLOPs peak for single precision
floating point. These features, combined with deeply
pipelined designs and high utilization, result in very high
performance.

We also performed preliminary error analysis by
comparing the coordinates of the atoms in a protein-probe
complex after minimization, using double and single

precision floating point arithmetic. Our experiment shows
that the final atom-coordinates obtained using single
precision are in good agreement with the results obtained
using original FTMap program that uses double precision
floating point arithmetic.

8. REFERENCES
[1] Brenke, R. et al. (2009) Fragment-based identification
of druggable ‘hot spots’ of proteins using Fourier domain
correlation techniques. Bioinformatics, 25(5), 621-627.
[2] Meng, E. C., Gschwend, D. C., Blaney, J. M. and
Kuntz, I. D. (1993) Orientational sampling and rigid-body
minimization in molecular docking. Proteins, 17, 266–278.
[3] Taylor, J. S. and Burnett, R. M. (2000) DARWIN: A
program for docking flexible molecules. Proteins:
Structure, Function, and Bioinformatics, 41(2), 173 – 191.
[4] Li, L., Chen, R. and Weng, Z. (2003) RDOCK:
Refinement of Rigid-body Protein Docking Predictions.
Proteins, 53, 693-707.

[5] Grosdidier, A., Zoete, V. and Michielin, O. (2007)
EADock: Docking of small molecules into protein active
sites with a multiobjective evolutionary optimization.
Proteins, 67(4), 1010-1025.

[6] Eisen, M. B., Wiley, D. C., Karplus, M. and Hubbard ,
R. E. (1994) HOOK: A program for finding novel
molecular architectures that satisfy the chemical and steric
requirements of a macromolecule binding site. Proteins:
Structure, Function and Genetics, 19, 199-221.

[7] Miranker, A. and Karplus, M. (1991) Functionality
maps of binding sites: a multiple copy simultaneous search
method. Proteins: Structure, Function and Genetics, 11,
29-34.

[8] Caflish, A., Miranker, A. and Karplus. M. (1993)
Multiple copy simultaneous search and construction of
ligands in binding sites: application to inhibitors of HIV-1
aspartic proteinase. J.Med.Chem., 36, 2142-2167.
[9] Landon, M., Lancia, D., Yu, J., Thiel, S., Vadja, S.
(2007) Identification of Hot Spots within Druggable
Binding Regions by Computational Solvent Mapping of
Proteins. J. Med. Chem., 50, 1231–1240.
[10] Brooks, B.R. et al. (1983) CHARMM: a program for
macromolecular energy, minimization, and dynamics
calculations. J. Comp. Chem., 4, 187–217.
[11] Schaefer, M. and Karplus, M. (1996) A
Comprehensive Analytical Treatment of Continuum
Electrostatics. J. Phys. Chem., 100 (5), 1578-1599.
[12] Constanciel, R., and Contreras, R. (1984) Self
consistent field theory of solvent effects representation by
continuum models: Introduction of desolvation
contribution. Theoret. Chim. Acta (Berl.), 65, 1-11.
[13] http://en.wikipedia.org/wiki/Energy_minimization.

[14] http://www.wag.caltech.edu/publications/theses/alan/
subsectional_4_0_2_1.html.

[15] Cornell, W. D. et al. (1995) A Second Generation
Force Field for the Simulation of Proteins, Nucleic Acids,
and Organic Molecules. J. Am. Chem. Soc. 117, 5179-
5197.

[16] Pappu, R.V., Hart, R. K., and Ponder, J. W. (1998)
Analysis and Application of Potential Energy Smoothing
and Search Methods for Global Optimization. J. Phys.
Chem. B, 102, 9725–9742.

[17] Ershov, R. E. (1970) Self-energy of a “smeared”
charge. Russian Physics Journal, 13 (6), 813-813.

[18] http://farside.ph.utexas.edu/teaching/em/lectures/
node56.html

[19] Born, M. Z. (1920) Physics, 1, 45.

[20] Still, W. C., Tempczyk, A., Hawley, R. C.,
Hendrickson, T. (1990) Semianalytical treatment of
solvation for molecular mechanics and dynamics. J. Am.
Chem. Soc., 112 (16), 6127-6129.
[21] Langhammer, M. Floating point datapath synthesis for
FPGAs. In Proceedings of IEEE Conference on Field
Programmable Logic and Applications (2008), pp 355-
360.
[22] Sukhwani, B. and Herbordt, M. C. (2009)
Accelerating Free-Energy Minimization using Graphics
Processors. In Proceedings of Symposium on Application
Accelerators in High Performance Computing.

[23] http://deposit.rcsb.org/adit/docs/pdb_atom_format.
html

