
Towards Production FPGA-Accelerated Molecular
Dynamics: Progress and Challenges

Matt Chiu Martin C. Herbordt
Computer Architecture and Automated Design Laboratory

Department of Electrical and Computer Engineering
Boston University; Boston, MA 02215

Abstract—Recent work in the FPGA acceleration of molecular
dynamics simulation has shown that including on-the-fly neighbor
list calculation (particle filtering) in the device has the potential
for an 80× per core speed-up over the CPU-based reference code
and so to make the approach competitive with other computing
technologies. In this paper we report on progress and challenges
in advancing this work towards the creation of a production
system, especially one capable of running on a large-scale system
such as the Novo-G. The current version consists of an FPGA-
accelerated NAMD-lite running on a PC with a Gidel PROCStar
III. The most important implementation issues include software
integration, handling exclusion, and modifying the force pipeline.
In the last of these we have added support for Particle-Mesh-
Ewald and augmented the Lennard-Jones calculation with a
switching function. In experiments, we find that energy stability
so far appears to be acceptable, but that longer simulations
are needed. Due primarily to the added complexity of the force
pipelines, performance is somewhat diminished from the previous
study; we find, however, that porting to a newer (existing) device
will more than compensate for this loss.

I. I NTRODUCTION

Molecular dynamics simulation (MD) is a central method in
high performance computing (HPC) with applications through-
out engineering and natural science.Accelerationof MD is
a critical problem — there is a many order-of-magnitude
gap between the largest current simulations and the potential
physical systems to be studied. To this end, GPUs are currently
receiving much attention (e.g., [1], [2], [3]), along with dedi-
cated hardware (see, e.g., the Anton computer from D.E. Shaw
[4]). Although there have been many FPGA implementations
(e.g., [5], [6], [7], [8], [9], [10], [11]), the heavy use of floating
point in MD appeared to make these less competitive. In recent
work [12], [13], however, we have shown that when FPGAs
perform particle filtering (on-the-fly neighbor list generation),
much of the floating point computation can be eliminated.
As a result, FPGA-based MD acceleration is not only viable,
but when power considerations are factored in, potentiallyan
excellent fit.

In this paper we report on progress towards the goal of
extending this work into a production FPGA-accelerated MD
system. In particular, we are interested in eventually supporting
large scale simulations, especially to be run on Reconfigurable
Computing (RC) systems such as the Novo-G at the University

This work was supported in part by the NIH through
award #R01-RR023168-01A1. Web: www.bu.edu/caadlab. Email:
{herbordt|mattchiu}@bu.edu

of Florida [14]. The Novo-G currently has 196 Altera Stratix-
III E260 FPGAs with the capability of 1 Peta-Op (32 bit
integer) while drawing less than 10K Watts of power. It is
also projected to be continually upgraded, with 56 Stratix-IV
E530s being installed in early 2011.

This paper describes progress in several areas.
1. We have integrated our multi-level MD force pipelines into
NAMD-lite [15] (as a precursor to integration into NAMD
[16], [17]). We describe methods, interfaces, data conversions,
and exclusion.
2. Our MD force pipelines have been extended to now support
the short-range part of the Particle Mesh Ewald method
of computing the electrostatic potential (in addition to the
Multigrid method previously implemented [13]). This has
necessitated a substantial redesign: we now use table look-
up with interpolation [7] rather than direct computation [18].
In addition, in order to improve energy fluctuation we have
added a switching function to the van der Waals calculation.
3. These implementations have been completed and are cur-
rently running on one FPGA of a Gidel PROCStar III quad
FPGA board [19], the per-node accelerator of the Novo-G.
The FPGA is an Altera Stratix-III 260E [20]. We describe the
current system as well as some of the issues in getting from
working simulations to a working real system.
4. We have profiled this system. We describe areas where
performance has diminished from the post Place-and-Route
timing and the reasons why. We also project performance to
more recent technologies, the Stratix-IV and Stratix-V, and
other possible ways in which performance can be improved.
5. Substantial tuning is possible. We show preliminary results
with respect to trade-offs between interpolation order and
simulation quality. We present initial comparisons with respect
to Energy Fluctuation among some of these alternatives and
with respect to NAMD-lite and NAMD.
6. We have performed initial analysis with respect to methods
of scaling to multiple nodes, e.g., how various numbers of
nodes could be used to simulate a large benchmark such as
STMV with over 1M atoms. We find that there are likely to
be interesting differences in load balancing between FPGA-
based systems (with multi-level force pipelines) and other
technologies.

The rest of this article is organized as follows. We begin
with background on MD and our current multi-level short-
range force accelerator. We follow that with a description

of the issues in moving from ModelSim to full hardware
and software integration. In the next section we present and
analyze performance and simulation quality. We conclude with
work in progress and a brief discussion.

II. MD PRELIMINARIES

This section provides background and is based on material
appearing in [13].

A. MD Review

MD is an iterative application of Newtonian mechanics to
ensembles of atoms and molecules (see, e.g., [21] for details).
MD simulations generally proceed in iterations each of which
consists of two phases, force computation and motion integra-
tion. In general, the forces depend on the physical system
being simulated and may include LJ, Coulomb, hydrogen
bond, and various covalent bond terms:

F
total = F bond+F angle+F torsion+FHBond+Fnon−bonded

(1)
Because the hydrogen bond and covalent terms (bond, angle,
and torsion) affect only neighboring atoms, computing their
effect isO(N) in the number of particlesN being simulated.
The motion integration computation is alsoO(N). Although
some of theseO(N) terms are easily computed on an FPGA,
their low complexity makes them likely candidates for host
processing, which is what we assume here. The LJ force for
particle i can be expressed as:

F
LJ
i =

∑

j 6=i

ǫab
σ2
ab

{

12

(

σab

|rji|

)14

− 6

(

σab

|rji|

)8
}

rji (2)

where theǫab andσab are parameters related to the types of
particles, i.e. particlei is typea and particlej is typeb. The
Coulombic force can be expressed as:

F
C
i = qi

∑

j 6=i

(

qj
|rji|3

)

rji (3)

A standard way of computing the non-bonded forces
(Lennard-Jones or LJ and Coulombic) is by applying a cut-off.
Then the force on each particle is the result of only particles
within the cut-off radiusrc. Since this radius is typically
less than a tenth of the size per dimension of the system
under study, the savings are tremendous, even given the more
complex bookkeeping required.

The problem with cut-off is that, while it may be suffi-
ciently accurate for the rapidly decreasing LJ force, the error
introduced in the slowly declining Coulombic force may be
unacceptable. A number of methods have been developed to
address this issue with some of the most popular being based
on Ewald Sums (see, e.g., [22]) and multigrid (see, e.g., [23],
[24]). Here we use the standard convention of callingshort-
range the LJ force and the Coulombic force generated within
a cut-off radius. We refer to the Coulombic force generated
outside the cut-off radius aslong-range. Since the long-range
force computation is generally a small fraction of the total
(see, e.g., [25], [10]), we concentrate here on the short-range
force.

B. Short-Range Force Computation

As just described, the short-range force computation has
two parts, the LJ force and the rapidly converging part of
the Coulomb force. The LJ force is often computed with
the so-called 6-12 approximation given in Equation 2. This
has two terms, the repulsive Pauli exclusion and the van
der Waals attraction. Both require coefficients specific to the
component particles of the particle pair whose interaction
is being evaluated. These can be combined with the other
constants (physical and scaling) and stored in coefficient look-
up tables. Thus the LJ force can be expressed as

F
LJ
ji (rji(a, b))

rji
= Aab|rji|−14 +Bab|rji|−8 (4)

whereAab andBab are distance-independent coefficient look-
up tables indexed with atom typesa andb.

Returning now to the Coulomb force computation, we begin
by rewriting equation 3 as

F
CL
ji (rji(a, b))

rji
= QQab|rji|−3, (5)

whereQQab is a precomputed parameter (analogous toAab

and Bab). Because applying a cut-off here often causes
unacceptable error, and also because the all-to-all direct
computation is too expensive for large simulations, various
numerical methods are applied to solve the Poisson equation
that translates charge distribution to potential distribution. To
improve approximation quality and efficiency, these methods
split the original Coulomb force curve in two parts (with a
smoothing functionga(r)): a fast declining short range part
and a flat long range part. For example:

1

r
= (

1

r
− ga(r)) + ga(r). (6)

The short range component can be computed together with
Lennard-Jones force using a third look-up table (forQQab).
The entire short range force to be computed is:

F
short
ji

rji
= Aabr

−14
ji +Babr

−8
ji +QQab(r

−3
ji +

g′a(r)

r
). (7)

C. Computing Short-Range Forces with Table Look-up

Since these calculations constitute the “inner loop,” con-
siderable care is taken in their implementation. A major
consideration is whether to compute them directly or to use
table look-up with interpolation. We now briefly describe the
latter method and in particular how we have implemented the
force pipeline with three tables, one each forr−14, r−8 and
r−3
ji +

g′

a
(r)
r

[26]. Equation 7 can be rewritten as a function of
r2ji:

F
short
ji (|rji|2(a, b))

rji
= (8)

AabR14(|rji|2) +BabR8(|rji|2) +QQabR3(|rji|2)
where R14, R8, and R3 are lookup tables indexed with

|rji|2.

section

Fig. 1. Table look-up varies in precision acrossr
−k. Each section has a

fixed number ofintervals.

The intervals in the tables are represented in Figure 1. Each
curve is divided into several sections along the X-axis such
that the length of each section is twice that of the previous.
Each section, however, is cut into the same number of intervals
N . To improve the accuracy, higher order terms can be used.
When the interpolation is orderM , each interval needsM+1
coefficients, and each section needsN ∗ (M +1) coefficients:

F (x) = a0 + a1x+ a2x
2 + a3x

3 (9)

shows third order with coefficientsai. Accuracy increases with
both the number of intervals per section and the interpolation
order. These issues are discussed in detail in [26].

D. Cell and Neighbor Lists

P

rc

rc

Fig. 2. Shown is part of the simulation space about particle P.Its two
dimensionalcell neighborhoodis shown in white; cells have edge size equal
to the cut-off radius. The cut-off circle is shown; particles within the circle
are in P’s neighbor list.

While MD in general involves all-to-all forces among parti-
cles, a cut-off is commonly applied to restrict the extent ofthe
short-range force to a fraction of the simulation space. Two
methods are used to take advantage of this cut-off: cell lists
and neighbor lists (see Figure 2). With cell lists, the simulation
space is typically partitioned into cubes with edge-lengthequal
to rc. Non-zero forces on thereference particleP can then
only be applied by other particles in itshome celland in the
26 neighboring cells (the 3x3x3cell neighborhood). We refer
the second particle of the pair as thepartner particle. With
neighbor lists,P has associated with it a list of exactly those
partner particles withinrc. We now compare these methods.

• Efficiency. Neighbor lists are by construction 100% effi-
cient: only those particle pairs with non-zero mutual force
are evaluated. Cell lists as just defined are 15.5% efficient
with that number being the ratio of the volumes of the
cut-off sphere and the 27-cell neighborhood.

• Storage.With cell lists, each particle is stored in a single
cell’s list. With neighbor lists, each particle is typically
stored in 400-1000 neighbor lists.

• List creation complexity. Computing the contents of
each cell requires only one pass through the particle array.
Computing the contents of each neighbor list requires,
naively, that each particle be examined with respect to
every other particle: the distance between them is then
computed and thresholded. In practice, however, it makes
sense to first compute cell lists anyway. Then the neighbor
lists can be computed using only the particles in each
reference particle’s cell neighborhood.

From this last point, it appears that the creation of neighbor
lists involves not only cell lists, but also a fraction of theforce
computation itself. At this point, the question arises whether
or not to finish computing the forces of those particles that
are within the cut-off and whether they neighbor lists should
be saved.

cutoff

radius
skin

neighborlist

radius

P

Fig. 3. Neighborlists are often computed for a larger radius than the cutoff.

Most MD codes reuse the neighbor lists for multiple it-
erations and so amortize the work in their creation. But
because particles move during each iteration, particles can
enter and exit the cut-off region leading to potential error.
The solution is to make the neighborlist cut-off larger than
the force cut-off, e.g., 13.5̊A versus 12̊A (see Figure 3). There
is a trade-off between the increase in neighborhood size, and
thus the number of particle pairs evaluated, and the number
of iterations between neighbor list updates.

III. MD S YSTEM DESIGN

We briefly state our assumptions about the target High
Performance Reconfigurable Computing (HPRC) architecture.
The overall system consists some number of nodes in a typical
heterogeneous configuration with a high-end microprocessor
and an accelerator board plugged into a high-speed socket
(e.g., PCI Express). The processor runs the main application

POS Cache

Filter Bank

ACC Cache

POS SRAM

Summation

ACC SRAM

Filter

Buffer

Filter

Buffer

Force Pipeline

Position

0 Acceleration

Fig. 4. Schematic of the HPRC MD system.

program and communicates with the accelerator through func-
tion calls. The accelerator board consists of a high-end FPGA,
memory, and a bus interface. On-board memory is tightly
coupled to the FPGA through several interfaces, either real
or virtual (e.g., 6 x 32-bit).

The program is partitioned as follows. The accelerators
process the short-range force, while the processors process
the balance of the computation. Each iteration, new particle
positions are downloaded to the accelerator and forces are
uploaded to the processor. Some conversion of data may be
necessary during the transfers. If the conversion is simple, such
as between standard floating point formats, then it is performed
on the processor; if it is between non-standard formats (as in
[26]) then it is performed on the accelerator. In either case,
conversion adds little latency. Cell lists are computed on the
host and particle data is transferred to the accelerator by cell.
Neighbor lists are computed on-the-fly by the accelerator ina
process called particle filtering.

We now give an overview of the overall accelerator design
(see Figure 4); for details please see [13].

Main computation pipeline
The main computation pipeline is partitioned into two levels.
The first is the filter pipeline; it determines whether the particle
pair has a non-zero force. The second level, the force pipeline,
accepts the particle pairs that pass the filter and computes their
mutual force. Four to eight force pipelines fit on the 260E, each

with 8-10 filter pipelines.

Host-accelerator data transfers
At the highest level, processing is built around the timestep
iteration and its two phases: force calculation and motion
update. During each iteration, the host transfers positiondata
to, and acceleration data from, the coprocessor’s on-board
memory (POS SRAM and ACC SRAM, respectively).

Board-level data transfers
Force calculation is built around the processing of successive
home cells. Position and acceleration data of the particlesin
the cell set are loaded from board memory into on-chip caches,
POS and ACC, respectively. When the processing of a home
cell has completed, ACC data is written back. Focus shifts and
a neighboring cell becomes the new home cell. Its cell set is
now loaded; in our current scheme this is usually nine cells
per shift. The transfers are double buffered to hide latency.

Force pipelines to ACC cache.
To support an optimization due to Newton’s Third Law, two
copies are made of each computed force. One is accumulated
with the current reference particle. The other is stored by index
in one of the large BRAMs on the Stratix-III.

IV. I MPLEMENTATION: FROM SIMULATION TO

PRODUCTION

A. NAMD-lite Integration

A number of MD software packages have been developed
and widely used in the community, each with its own features
and goals. NAMD is a MD simulation package which is highly
regarded for its high scalability and parallel efficiency. It was
written in C++ with Charm++ parallel objects and can be
scaled up to hundreds of processors on a high-end parallel
system. Despite of its excellent reputation and popularity, extra
complications may be introduced to the development due to its
complex parallel structure. NAMD-lite [15] is a prototyping
framework whose purpose is to simplify and smooth the
development process and to provide a way to examine and
validate new features before integrating them into NAMD.

From a programming standpoint, NAMD-lite integration has
been straightforward. The tasks are replacement of the short-
range force computation with the appropriate accelerator calls,
data conversion from double precision floating point to single
precision and back again, packing and unpacking the data, and
handling particle exclusion.

We now give some details of the data transfer and handling
particle exclusion. On transfer to the accelerator, particles
are grouped together by cell ID. The information that must
be included in the transfer are the particles’ position and
properties (charge and type), and also the cell-list data itself:
this last enables cell-level phases in the accelerator.

Particle exclusion refers to the necessity of not computing
the non-bonded forces on bonded particles. To support this
feature, our solution is to apply a short cut-off to the non-
bonded force calculations based on the fact that two non-
bonded particles generally cannot be too close to each other.
Therefore, two particles within a certain short distance must

Saturationy

Exclusion

distance

Distance

Saturation

E
n
e
rg
y

distance

Fig. 5. Graph shows van der Waals interaction with cut-off check with
saturation force.

be bonded. The short cut-off distance can be easily calculated
by solving the inequalityFshort < range, whererange is the
dynamic range with a reasonable force value. The left term of
the inequality is dominated by the 14 term. Multiple short cut-
off values are required as this depends on the particle type.A
simple graph is shown in Figure 5 to demonstrate this concept.

If the exclusion cutoff is chosen conservatively, two particles
would be bonded as long as their intra-distance is smaller than
the exclusion distance. For bonded particle pairs whose intra-
distance is larger than the exclusion cutoff, the non-bonded
force is subtracted in the host. Since the exclusion distance
check in FPGA is performed in integer arithmetic while it is
done in double precision in the host, an inconsistency may
occur when the distance between two particles is very close
to the exclusion cutoff. In order to minimize the impact of this
inconsistency, a saturation force is applied if the intra-distance
between two particles is smaller than the exclusion cutoff,as
shown by the horizontal line.

Another enhancement is to scale the saturation forces down
with distance, as shown by the diagonal dashed line. This can
help avoid overflow in force accumulation step and improve
precision accuracy. This final feature has not yet been imple-
mented.

B. Force Pipelines

In Section 2.2 we described the general methods involved
in computing the short-range force. Here we describe issues
in their actual implementation.

Van der Waals Energy/Force
While the van der Waals term shown in Equation 4 converges
quickly, it must still be modified for effective MD simulations.
In particular, a switching function is implemented to truncate
van der Waals force smoothly at the cutoff distance (see
Equations 10-12).

s = (cutoff2 − r2)2 ∗ (10)

(curoff2 + 2 ∗ r2 − 3 ∗ switch dist2) ∗ denom
dsr = 12 ∗ (cutoff2) ∗ (switch dist2 − r2) ∗ denom (11)

denom = 1/(cutoff2 − switch dist2)3 (12)

h

g
y

Switch

distance CutoffE
n
e
rg

Distance
0

Fig. 6. Graph shows van der Waals potential with switching/smoothing
function.

Without switching/smoothing function, the energy may not
be conserved as the force would be truncated abruptly at the
cutoff distance. The graph of van der Waals potential with the
switching/smoothing function is illustrated in Figure 6.

The van der Waals force and energy are computed directly
in single precision floating point format as shown here:

IF (r2 ≤ switch dist2) UvdW = U, FvdW = F
IF (r2 ≤ switch dist2 && r2 < cutoff2)

UvdW ∗ s, FvdW = F ∗ s+ Uvdw ∗ dsr
IF (r2 ≥ cutoff2) UvdW = 0, FvdW = 0

Electrostatic Energy/Force
The most flexible method in NAMD-lite of calculating the
electrostatic force/energy is Particle Mesh Ewald (PME) and
this we now support. PME is widely used to evaluate the
standard Ewald Sums due to its computational efficiency. It
approximates the long range part of the Ewald Sums by
a discrete convolution on an interpolation grid; this can be
performed using a discrete 3D Fast Fourier Transform (FFT).

As previously with multigrid, the short-range part of PME
is accelerated in FPGA while long-range part is evaluated in
the host. The short-range part of PME, Es, is shown below.

Es =
1

4πǫ0

1

2

∑

n

N
∑

i=1

n
∑

i=0

qiqj
|ri − rj + nL|erfc(

|ri − rj + nL|√
2σ

)

(13)
Since the Es computation contains the evaluation of the

complementary error function (erfc), which is expensive in
FPGA logic, we use polynomial interpolation rather than di-
rect computation. The polynomial coefficients were computed
using Matlab by finding the coefficients of a polynomial p(x)
of degree n that fits the data, p(x(i)) to y(i), in terms of least
squares. Energy conservation is used to measure the quality
of approximation for various polynomial interpolation orders
(as shown below).

C. Implementation Details

Our MD acceleration solution has been successfully imple-
mented and is currently running on one FPGA of a Gidel

Fig. 7. PROCStar III System Overview (from Gidel PROCStar III User’s
Guide)

TABLE I
PROCSTAR III M EMORY CONFIGURATION.

Bank A Bank B Bank C
on-board SODIMM SODIMM

Size 256MB x 4 2GB x 4 2GB x 4
32-bit paths
Perf. (DDR) 667 MHz 667 MHz 360 MHz
Throughput 16 GB/s 16 GB/s 8.5 GB/s

PROCStar III board, a single node of Novo-G. The PROCStar
III is a PCI based system with an 8-lane PCI Express (PCIe
x8) host interface (see Figure 7). Each processing unit contains
an Altera Stratix III SE260 FPGA, three memory banks (see
Table I), and connections to the other FPGAs.

The heterogeneous memory design leads to some design
issues. For example, in order to prevent bank C from becoming
a bottleneck, data are allocated to the different banks by type:
Bank C stores the particle type, Bank A stores the particle
positions and charge, and Bank B holds the forces.

V. RESULTS: PERFORMANCE ANDQUALITY

A. Initial Performance Profile

For the results in this and the following subsection we refer
to the NAMD benchmark NAMD2.6 on ApoA1. It has 92,224
particles, a bounding box of108Å×108Å×78Å, and a cut-off
radius of12Å.

In previous work [12], [13], we reported an expected run-
ning time of 22ms per iteration for the accelerator execution of
the short-range force. This number is based on the following
assumptions:

• ModelSim simulations and post place-and-route area and
timing results, which indicate the following: 8 force
pipelines, 9 filter pipelines per force pipeline, and an
expected operating frequency of 196MHz.

• Software simulations which indicate a force pipeline
efficiency of 95%.

• The FPGA logic required to interface with accelerator
memory and I/O would be no more than 10% of the
FPGA’s logic and memory resources.

• The electrostatic force would be computed using multi-
grid.

Current measured times, on the configuration described in
the previous subsection, yield a time of 70 ms per iteration.
This reduction by a factor of more than3× is accounted for
as follows.

1) Interface/Peripheral Logic. With highly complex de-
vices having thousands of BRAMs and a dozen or
more memory streams, hand-crafted interface logic is no
longer viable. Interface packages provided by vendors
(e.g., Gidel and BEEcube) fill the need extremely well,
but also require substantially more FPGA resources than
were used in previous generations.

2) Pipeline Logic. Two factors have made the pipeline
logic substantially more complex. The first is imple-
menting the L-J switching function, which was neces-
sary to improve energy conservation. The second was
moving from multigrid to PME. This has necessitate
returning to our original design [26] which used poly-
nomial interpolation.

3) Pipeline Efficiency. The assumptions we made for our
software simulations did not accurately capture output
conflicts and therefore the number of pipeline stalls.

4) Phase Efficiency.Particles in each home cell are pro-
cessed in cohorts equal to the number of filter pipelines.
For example, with 173 particles and 32 filters, there
would be six phases. The final phase, however, runs at
only 40% efficiency. We describe several methods for
mitigating this issue [13], but they are not implemented
in the current version.

The first two factors result in the number of force pipelines
being reduced from 8 to 4 and the total number of filters, and
thus the capacity, from 72 to 32. The operating frequency is
currently about 190MHz. The third and fourth factors resultin
the efficiency dropping from 95% to about 80%. Substantial
improvements are possible for the current device technology
and, especially, by upgrading to the current generation FPGA;
these are sketched in the next section.

B. Tuning and Simulation Quality

Energy Plot
-222300

-222450

-222400

-222350

Energy Software

Linear

2nd

3rd

-222500

1 11 21 31 41 51 61 71

Time

NAMD

Fig. 8. Graph shows Energy Plot for various interpolation orders of the
short-range part of PME van der Waals potential with switching/smoothing
function. Comparisons are with NAMD and NAMD-lite. Time is in 100fs
increments (up to 7.1ps). Results are summarized in Table 2.

TABLE II
TABLE SHOWS ENERGY DRIFT AND VARIANCE OFFPGA ACCELERATED

AND BASELINE CODES.

NAMD NAMD-lite Linear 2nd Ord 3rd Ord
Slope -0.1898 -0.1167 0.338 0.007 -0.0235
Std Dev 5.755 5.219 9.131 5.136 4.533

In order to validate and measure quality of our FPGA
design, energy was plotted as a function of time (see Figure 8).
In particular, we measure how energy is conserved for various
implementations of the short-range part of PME. The Energy
drift slope and standard deviation are presented in Table II.
The results labeled NAMD and NAMD-lite are from those
codes running on the processor only. The other results have
the short-range forces computed on the accelerator using table
look-up with polynomial interpolation with the order as shown.
The time scale is in increments of 100fs.

These results are highly preliminary and the time scale is
still too short to draw conclusions. The difficulty in gener-
ating longer time-scale simulations is that NAMD-lite is an
unoptimized serial code and so each of these graphs (except
NAMD) takes several hours to generate. Still we find these
results promising: an implementation with 2nd or 3rd order
polynomial interpolation could have good energy stability. We
are in the process of generating Energy Plots on a much longer
time scale as well as measuring the highly robust invariant,the
Shadow Hamiltonian [27].

VI. WORK IN PROGRESS, DISCUSSION

A. Performance

TABLE III
ALTERA STRATIX FPGA OVERVIEW.

Stratix III Stratix IV Stratix V Stratix V
EP3SE260 EP4SE820 5SEBA 5SGSMB8

Equiv. LEs 203 650 1087 530
18x18 Mults 768 1024 1100 3510
Mem. (Mb) 1.5 2.3 4.3 3.6

One way to improve performance immediately is to convert
the van der Waals computation from direct to polynomial
interpolation. This should enable a 20% improvement in
performance due to either an added pipeline or increased
operating frequency. There is also substantial performance
improvement possible with various low-level optimizations,
but the engineering time might be better spent in creating
a parallel design (below) and in porting the design onto the
current generation FPGAs (see Table III).

We have ported the current design to the Stratix IV and,
without device-specific changes, fit six pipelines (through
post Place-and-Route). Discounting the anticipated increase
in operating frequency, this reduces latency to under 40ms.
Moving to the Stratix V allows for both immediate increase
in performance due to scaling, but also potential for redesign.
Depending on which device is selected there will be either
twice as much logic or three times as many multipliers. The

first favors interpolation, the second direct computation.In
either case, a conservative estimate gives 12 pipelines with
16 being viable. This should reduce the latency to under
20ms, again not counting the likely improvement in operating
frequency.

B. Simulation Quality

FPGA modifications to incorporate the Shadow Hamiltonian
have been completed and the initial data are being collected.
Since energy drift can become a significant factor even afterre-
maining stable for long periods, we are conducting long time-
scale measurements. If there are significant differences with
the original codes, there are various solutions: these include
increasing the precision of all or part of the computation and
increasing the interpolation order.

C. Scalability

We are investigating parallel versions of accelerated
NAMD-lite. A version using all four FPGAs on the PROCStar
III board has been created and tested. Its success depends on
hiding the latencies of the data transfers.

Because of the transfer latencies, scalability to larger num-
bers of FPGAs, at least in the short term, depends on in-
creasing the problem size. One example is another NAMD
benchmark: the STMV (virus) with 1.07M atoms and a 216A
x 216A x 216A simulation domain. With 12A cells, this yields
an 183 cell configuration.

To reduce the frequency of the neighbor list calculations
and data redistribution among nodes, NAMD uses two larger
dimensions: the pair-list distance (typically 13.5A) and the
patch dimension (typically 16A). Pair lists are commonly
generated every 10 steps. Movement of atoms among nodes
is highly optimized, but a common step is to move hydrogen
groups (a heavy atom and all of its bonded hydrogen) among
patches at the beginning of every cycle, which itself is a
tunable parameter often set at 20.

One major benefit of the multi-level force pipeline in
the FPGA-based acceleration is the on-the-fly neighborlist
generation (particle filtering). Each filter pipeline requires less
than 1/20th the logic of a force pipeline and no multipliers.
Since there is currently a surplus of logic (with respect
to multipliers), a doubling of the cell volume, say, from
12A3 to 15A3, would likely be possible with little affect on
performance.

D. Discussion

We have described progress towards creating a production
multi-FPGA MD simulator. So far we have successfully inte-
grated our short-range force/energy pipelines into NAMD-lite
and this is now running on a workstation containing a single
node of the Novo-G. The initial measurements of simulation
quality indicate that this approach is viable, although more
testing is needed (and in progress). Substantial performance
was lost due, especially, to the need to support a more complex
force model. Some of this loss can be recovered through design
improvements. Much more performance is possible by porting

to current generation devices. We also find that the multi-level
force pipeline has certain features that may facilitate creation
large-scale systems.

REFERENCES

[1] J. Anderson, C. Lorenz, and A. Travesset, “General purpose molecular
dynamics simulations fully implemented on graphics processingunits,”
J. Computational Physics, vol. 227, pp. 5342–5359, 2008.

[2] J. Phillips, J. Stone, and K. Schulten, “Adapting a message-driven
parallel application to GPU-accelerated clusters,” inSupercomputing,
2008.

[3] C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W.-M. Hwu,
“GPU acceleration of cutoff pair potentials for molecular modeling
applications,” inProc. ACM Int. Conf. on Computing Frontiers, 2008.

[4] Shaw, D.E., et al., “Anton, a special-purpose machine formolecular
dynamics simulation,” inProc. International Symp. on Computer Archi-
tecture, 2007, pp. 1–12.

[5] S. Alam, P. Agarwal, M. Smith, J. Vetter, and D. Caliga, “Using FPGA
devices to accelerate biomolecular simulations,”Computer, vol. 40,
no. 3, pp. 66–73, 2007.

[6] N. Azizi, I. Kuon, A. Egier, A. Darabiha, and P. Chow, “Reconfig-
urable molecular dynamics simulator,” inProc. IEEE Symp. on Field
Programmable Custom Computing Machines, 2004, pp. 197–206.

[7] Y. Gu, T. VanCourt, and M. Herbordt, “Improved interpolation and
system integration for FPGA-based molecular dynamics simulations,” in
Proc. IEEE Conference on Field Programmable Logic and Applications,
2006, pp. 21–28.

[8] T. Hamada and N. Nakasato, “Massively parallel processors generator
for reconfigurable system,”Proc. IEEE Symp. on Field Programmable
Custom Computing Machines, 2005.

[9] V. Kindratenko and D. Pointer, “A case study in porting a production
scientific supercomputing application to a reconfigurable computer,” in
Proc. IEEE Symp. on Field Programmable Custom Computing Ma-
chines, 2006, pp. 13–22.

[10] R. Scrofano and V. Prasanna, “Preliminary investigation of advanced
electrostatics in molecular dynamics on reconfigurable computers,” in
Supercomputing, 2006.

[11] J. Villareal, J. Cortes, and W. Najjar, “Compiled code acceleration of
NAMD on FPGAs,” inProc. Reconfigurable Systems Summer Institute,
2007.

[12] M. Chiu and M. Herbordt, “Efficient filtering for molecular dynamics
simulations,” inProc. IEEE Conference on Field Programmable Logic
and Applications, 2009.

[13] ——, “Molecular dynamics simulations on high performance recon-
figurable computing systems,”ACM Transactions on Reconfigurable
Technology and Systems, vol. 3, no. 4, 2010.

[14] A. George, “Novo-G Overview,” Presentation at CHREC: NSF Cen-
ter for High-Performance Reconfigurable Computing, 16 June 2010,
http://www.chrec.org/ george/Novo-G.pdf, 2010.

[15] D. Hardy, “NAMD-lite,” http//www.ks.uiuc.edu/Development/MDTools/namdlite/,
University of Illinois at Urbana-Champaign, 2007.

[16] J. Phillips, G. Zheng, and L. Kale, “NAMD: biomolecular simulation
on thousands of processors,” inSupercomputing, 2002.

[17] Phillips, J.C., et al., “Scalable molecular dynamics with NAMD,” J.
Computational Chemistry, vol. 26, pp. 1781–1802, 2005.

[18] M. Chiu, M. Herbordt, and M. Langhammer, “Performance potential
of molecular dynamics simulations on high performance reconfigurable
computing systems,” inProceedings High Performance Reconfigurable
Technology and Applications, 2008.

[19] PROCStar III, Gidel Reconfigurable Computing,
http://www.gidel.com/PROCStar

[20] Stratix III Device Handbook, Altera Corporation, http://www.altera.com/
literature/ hb/stx3/ stratix3handbook.pdf accessed 9/2010, 2010.

[21] D. Rapaport,The Art of Molecular Dynamics Simulation. Cambridge
University Press, 2004.

[22] T. Darden, D. York, and L. Pedersen, “Particle Mesh Ewald: an
N log(N) method for Ewald sums in large systems,”Journal of
Chemical Physics, vol. 98, pp. 10 089–10 092, 1993.

[23] J. Izaguirre, S. Hampton, and T. Matthey, “Parallel multigrid summation
for the n-body problem,”Journal of Parallel and Distributed Computing,
vol. 65, pp. 949–962, 2005.

[24] R. Skeel, I. Tezcan, and D. Hardy, “Multiple grid methodsfor classical
molecular dynamics,”Journal of Computational Chemistry, vol. 23, pp.
673–684, 2002.

[25] Y. Gu and M. Herbordt, “High performance molecular dynamics sim-
ulations with FPGA coprocessors,” inProc. Reconfigurable Systems
Summer Institute, 2007.

[26] Y. Gu, T. VanCourt, and M. Herbordt, “Explicit design ofFPGA-based
coprocessors for short-range force computation in moleculardynamics
simulations,”Parallel Computing, vol. 34, no. 4-5, pp. 261–271, 2008.

[27] R. Engle, R. Skeel, and M. Drees, “Monitoring Energy Drift with
Shadow Hamiltonians,”J. Computational Physics, vol. 206, pp. 432–
452, 2005.

