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Abstract: The acceleration of molecular dynamics

(MD) simulations using high performance reconfig-
urable computing (HPRC) has been much studied.
Given the intense competition from multicore, and from
other types of accelerators, there is now a question
whether MD on HPRC can be competitive. We concen-
trate here on the MD kernel computation—determining
the force between short-range particle pairs—and exam-
ine it in detail to find the performance limits under
current technology and methods. We systematically
explore the design space of the force pipeline with re-
spect to arithmetic algorithm, arithmetic mode, pre-
cision, and various other optimizations. We examine
simplifications that are possible if the end-user is will-
ing to trade off simulation quality for performance. And
we use the new Altera floating point cores and compiler
to further optimize the designs. We find that for the
Stratix-III, and for the best (as yet unoptimized) single
precision designs, 11 pipelines running at 250MHz can
fit on the FPGA. If a significant fraction of this poten-
tial performance can be maintained in a full implemen-
tation, then HPRC MD should be highly competitive.

1 Introduction

Molecular dynamics simulation (MD) is a central
method in high performance computing (HPC) with
applications throughout engineering and natural sci-
ence. Acceleration of MD is recognized as a critical
problem with a many order-of-magnitude gap between
the largest current simulations and the potential phys-
ical systems to be studied. As such it has received
attention as a target for supercomputers [6], clusters
[4], and dedicated hardware [15, 23, 27], as well as
coprocessing using GPUs [20], Cell [24], and FPGAs
[1, 3, 9, 11, 13, 21, 30]. The last of these, MD with
High Performance Reconfigurable Computing (HPRC)
is our focus here. In particular, we seek to establish
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bounds on possible performance of MD on HPRC with
the goal of finding whether current methods and tech-
nologies can provide the basis for cost-effective imple-
mentations.

While HPRC MD has been widely studied, deliv-
ering cost-effective production applications has proved
challenging. Although there are many difficulties, the
basic problem is perhaps that MD codes often rely on
double precision floating point (DP). There are two rea-
sons why this is problematic for HPRC. First, FPGAs
are not highly optimized for floating point. And second,
DP is high precision: this does not play to the FPGAs’
strength, which is configurability into large numbers of
low precision arithmetic units.

Our method of determining the current viability of
HPRC/MD is as follows. We use as our basic metric
throughput of short-range force computations between
particle pairs. In other words, how many of these force
computing pipelines fit on a target FPGA and how fast
do they run? For comparison, we use published results
with respect to standard benchmarks.

Although a simple metric, we believe that it cap-
tures the essence of MD — short-range force compu-
tation is the bulk of the work; it may be possible to
offload or otherwise hide other parts of the computa-
tion. Another advantage is that, although far from triv-
ial to determine, it is at least somewhat independent
of the way the rest of the application is implemented.
To use a higher level metric, say, examining complete
HPRC/MD systems (many of which exist only in pro-
totype), would both be intractable and not answer the
basic question. After all, for any given HPRC/MD sys-
tem, it may be possible to drastically improve perfor-
mance through continued optimization. On the other
hand, a lower level metric, say, peak FLOPs, would not
allow for arithmetic-level optimizations (which are also
a focus of this study). Stating our goal another way, we
want to be able to say, “even if everything else about
the design is perfect (e.g., keeping the pipelines full),
we are limited by the particle-particle force computa-
tion to performance of no better than N-times a single
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processor core.” Our goal is similar to that of Koehler,
et al. [14], but our methods take full advantage of our
application knowledge.

This simplified metric leaves a substantial design
space. There are various ways to perform the arith-
metic, modes in which to perform the operations, lev-
els of precision, and other optimizations if the user can
tolerate reduced quality simulations:

e Direct computation versus table lookup with inter-
polation (TLwI),

e If TLwl, what order interpolation?

e Precision: single, double, other,

e Mode: floating point, hybrid fixed/floating point,
other,

e Implementation: synthesized components, vendor
cores, vendor compiler, (such as the floating point
datapath synthesis tool from Altera [16]),

o Target FPGA, and

e Various arithmetic reorderings.

We find that for the Stratix-III, and for the best (as
yet unoptimized) single precision designs, 11 pipelines
running at about 250MHz can fit on the FPGA. If a
significant fraction of this potential performance can
be maintained in a full implementation, then HPRC
MD should remain highly competitive.

Significance is at three levels. The first is demon-
strating the continued competitiveness of HPRC/MD.
The second is (as far as we know) the first systematic
exploration of the MD datapath design space for FP-
GAs. We find that direct computation, rather than
table lookup, appears to be preferred. The third is a
case study of the Altera Floating Point Compiler. Al-
though this is not an ideal computation, we still find a
substantial reduction in non-DSP logic.

The rest of this paper is organized as follows. In
the next section, we review the applicable parts of MD
simulation. There follows descriptions of the FPGA im-
plementations, after which comes the results obtained
so far and some discussion.

2 MD Computation
2.1 MD Review

MD is an iterative application of Newtonian mechanics
to ensembles of atoms and molecules (see, e.g., [19] for
details). MD simulations generally proceed in phases,
alternating between force computation and motion in-
tegration. In general, the forces depend on the physical
system being simulated and may include LJ, Coulomb,
hydrogen bond, and various covalent bond terms:

Ftotal — Fbond_+_Fangle _+_Ftorsion+FHBond_+_Fnonfbonded

(1)

Because the hydrogen bond and covalent terms (bond,
angle, and torsion) affect only neighboring atoms, com-
puting their effect is O(NN) in the number of particles
N being simulated. The motion integration computa-
tion is also O(N). Although some of these O(N) terms
are easily computed on an FPGA, their low complexity
makes them likely candidates for host processing, which
is what we assume here. The LJ force for particle i can
be expressed as:
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where the ¢,;, and o,, are parameters related to the
types of particles, i.e. particle ¢ is type a and particle
j is type b. The Coulombic force can be expressed as:
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A standard way of computing the non-bonded forces
(LJ and Coulombic) is by applying a cut-off. Then
the force on each particle is the result of only particles
within the cut-off radius. Since this radius is typically
less than a tenth of the size per dimension of the system
under study, the savings are tremendous, even given
the more complex bookkeeping required to keep track
of cell- or neighbor-lists.

The problem with cut-off is that, while it may be
sufficiently accurate for the rapidly decreasing LJ force,
the error introduced in the slowly declining Coulombic
force may be unacceptable. A number of methods have
been developed to address this issue with some of the
most popular being based on Ewald Sums (see, e.g.,
[5]) and multigrid (see, e.g., [12, 25]). Here we use
the standard convention of calling short-range the LJ
force and the Coulombic force generated within a cut-
off radius. We refer to the Coulombic force generated
outside the cut-off radius as long-range. Since the long-
range force computation is generally a small fraction of
the total (see, e.g., [7, 21]), and because of the high-
level goal of this particular paper, we ignore it here.

2.2 Short-Range Force Computation

As just described, the short-range force computation
has two parts, the LJ force and the rapidly converg-
ing part of the Coulomb force. The LJ force is often
computed with the so-called 6-12 approximation given
in Equation 2. This has two terms, the repulsive Pauli
exclusion and the van der Waals attraction. Both re-
quire coeflicients specific to the component particles of
the particle pair whose interaction is being evaluated.
These can be combined with the other constants (physi-
cal and scaling) and stored in coefficient look-up tables.



Thus the LJ force can be expressed as
Fi/ (rji(a,b))

= Aup|rjil ™ + Baplrjs| 2 (4)
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where A, and By, are distance-independent coefficient
look-up tables indexed with atom types a and b.

Returning now to the Coulomb force computation,
we begin by rewriting equation 3 as

F§L(rji(a, b))

rji

= QQab|T'ji|_3a (5)

where Q@ is a precomputed parameter (analogous to
Agup and B,p). Because applying a cut-off here often
causes unacceptable error, and also because the all-to-
all direct computation is too expensive for large simu-
lations, various numerical methods are applied to solve
the Poisson equation that translates charge distribution
to potential distribution. To improve approximation
quality and efficiency, these methods split the original
Coulomb force curve in two parts (with a smoothing
function g,(r)): a fast declining short range part and a
flat long range part. For example:

1 1

- = (2 = 9a(r) + ga(r). (6)

The short range component can be computed together
with Lennard-Jones force using a third look-up table
(for QQup)- The entire short range force to be com-
puted is:

short
Fji
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2.3 Computing Short-Range Forces

with Table Look-up

Since these calculations are in the “inner loop,” con-
siderable care is taken in their implementation: even in
serial codes, the LJ equation is often not evaluated di-
rectly, but rather with table look-up and interpolation
(TLwI). Previous implementations of FPGA/MD have
used table look-up for the entire LJ force as a function
of particle separation [3, 8]. The index used is |r;;|?
rather than |rj;| so as to avoid the costly square-root
operation. This method is efficient for uniform gases
where only a single table is required [3], but is less
likely to be preferred in more general cases.

In more recent work [10], we use a different method:
Instead of implementing the force pipeline with a single
table lookup, we use three, one each for =%, »—8 and
r;f + @. Equation 7 can be rewritten as a function
of r?i:

F52r(|rjil*(a, b))

I‘ji

AapRia(rjil?) + BapRs(I75il*) + QQupR3(r5il?), (8)

where R14, Rg, and R3 are lookup tables indexed with
il

section

\

Figure 1: Table look-up varies in precision across r~*.

Each section has a fixed number of intervals.

The intervals in the tables are represented in Fig-
ure 1. Each curve is divided into several sections along
the X-axis such that the length of each section is twice
that of the previous. Each section, however, is cut into
the same number of intervals N. To improve the accu-
racy, higher order terms can be used. When the inter-
polation is order M, each interval needs M + 1 coeffi-
cients, and each section needs N x (M + 1) coeflicients:

F(z) = aop + a1z + azx® + azz® (9)

shows third order with coefficients a;. Naturally, ac-
curacy increases with both the number of intervals per
section and the interpolation order as shown in Fig-
ure 2. These issues are discussed in detail in [10].
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Figure 2: Comparisons of various orthogonal interpola-
tions. Varied are the order and the number of intervals
per section.

3 FPGA Implementations

3.1 Overview

In this section we describe FPGA implementations of
Equation 7. All are pipelined and, on every cycle, in-
put particle pair positions and output corresponding
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Figure 3: Shown is the functional block diagram of the
short-range particle-particle datapath.

forces. There are numerous design axes as described in
Section 1. The ones that visibly affect the design are
as follows: direct computation versus table lookup with
interpolation (TLwI); for TLwI, order of interpolation;
for direct, whether the Altera FP Compiler is used or
the FP cores directly; and whether integer is used for
part of the computation.

The last two require further explanation. The Al-
tera floating point compiler optimizes floating point
datapaths. As described in [16], there are two sources
of performance gain. The first is that expressions are
examined for functional redundancy among operators:
since only the end result must comply with the FP stan-
dard, intermediate operations can often be removed.
For example, with several consecutive FPADDs some
normalizations can probably be avoided. The second
is that the compiler makes trade-offs in using various
component types, e.g., using hard or soft components
as available. Here, the use of the compiler results in a
different datapath being optimal.

The second axis requiring explanation is float ver-
sus hybrid fixed/float. The problem arises in the final
force accumulation at the end of the pipeline. The new
force component for each particle needs to be added
to the running total. The floating point addition re-
quires more than one cycle. Since this is pipelined,
this does not change throughput. But if the same par-

Optional Fixed/FP Converter

v
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Figure 5: Shown is the Coulomb + LIJ block (from
Figure 4) modified with respect to the FP Compiler
optimization.

ticle’s force is referenced on successive cycles a haz-
ard results. There are several solutions. Either the
pipeline can stall, the particles can be orchestrated so
that this does not happen, the forces can be combined
in a longer structure, or the force can be saved in inte-
ger. In this last case, addition takes only a single cycle.
Integer operations are also more efficient than floating
point, and if done carefully, result in no loss of preci-
sion. The GROMACS code, for example, uses mixed
fixed /floating point [29].

3.2 Direct Computation

The direct computation flow is shown in Figure 3 and
detail in Figure 4. Note that the computation through
obtaining r2 can be done in fixed point. In that case, it
must be converted to floating point before being com-
bined with the coeflicients (on the smoothing side) and
divided (on the Coulomb + LJ side). The conversion
at the output is similar.

Figure 5 shows the Coulomb plus LJ block that
should be replaced when using the compiler. This is
because there is a highly efficient inverse square root,
which replaces the square root and the divide. This is
because there are good convergence algorithms for in-
verse square root, but not square root, so this can be
implemented with multipliers rather than logic. This
both saves logic and increases speed.
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Figure 4: Shown is the detailed datapath for the direct computation. For hybrid integer/floating point, the
computation is the same, but with data before the first conversion and after the second being integer.

3.3 Table Lookup with Interpolation

We now describe the interpolation pipeline (see Fig-
ure 6). Given that the interpolation function is third
order, it necessarily has the format

F(z) = (Cs(z — a) + Co) (¢ — a) + C1) (2 — a) + Co,
where £ = r? = input, a = the index of the interval
from the beginning of the section (see Figure 1), and
x — a = the offset into the interval. The coefficients
Cy,...,C5 are unique to each interval, and are retrieved
by determining the section and interval. Proper encod-
ing makes trivial the extraction of the section, interval,

and offset.

Figure 7 contains the replacement in Figure 4
needed to implement TLwl. For lower order interpo-
lation, fewer stages are needed.

4 Results

4.1 Reference Codes

We use NAMD [18] and ProtoMol [17] as reference
codes both to determine the number of short-range
particle-particle interactions computed per iteration as
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Figure 7: Shown is the Coulomb + LJ block (from Fig-
ure 4) modified for Table Lookup with Interpolation.
Interpolation is 3rd order. Represented are three com-
putations being done at once.

well as the time per iteration per core. NAMD scales
well with multiple cores and multiple processors up to
hundreds of processors.

We refer to the NAMD benchmark NAMD2.6 on
ApoAl. 1t has 92,224 particles, a bounding box of
1084 x 1084 x 784, and a cut-off radius of 124. By
instrumenting the codes, we determine that on av-
erage 33.4M non-trivial particle-particle computations
are performed per iteration. According to a study by
Stone, et al. [26], this benchmark is executed at 1.78
seconds per iteration on a single core of an Intel core 2
quad-core 2.66 GHz processor.

4.2 Performance Results

The two metrics for evaluating our designs are potential
performance, described in this subsection, and simula-
tion quality, described in the next.

We obtain the potential performance by multiply-
ing the number of results obtained per cycle by the
operating frequency. Since pipelines each generate a
result per cycle, their number is the same as the re-
sults per cycle. Results are through post place-and-
route (PaR) using the standard Altera tool chain. This
method is sufficient to give precisely the number of
pipelines. For operating frequency, true implementa-
tions are often slightly lower. On the other hand, the
floating point cores (and code compiled using the Al-
tera Floating Point Compiler or FPC) are specified to
run at more than 250MHz, so with some optimization
higher performance than that shown should be realized.

Peak Performance
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Figure 8: Peak performance in throughput of particle-
particle force computations using direct computation.

1. Highest performing configuration. The results
from the highest performing configuration are shown in
Figure 8. Eleven pipelines run at 250MHz for a poten-
tial peak performance of 2.75G particle-particle force
computations per second. The design configuration is
as follows:



Direct computation (no table look-up)
Single precision floating point
Generated using FPC

Stratix-III EP3SE260

For the same configuration but with double precision

In the rest of this subsection, we examine the effect
of varying, one at a time, a particular design param-
eter. All other parameters remain as in the highest
performing configuration.

floating point, 3 pipelines run at 180MHz. For the Single vs. Double Precision
Stratix-II EP25180, the capacity is 5 pipelines running 45 :
at 184MHz for single precision and 2 pipelines running 40 {-1@Single |
at 177MHz for double precision. 35 | |E1Double
& 30 |

Table 1: Results for short-range particle processing. _5 25 A1
Potential speed-up is for single precision floating point § 20
on the Stratix-III versus a single core running NAMD. = 15
Efficiency refers to filtering method used by FPGA, and > 10 4
ranges from the straight-forward to the challenging. 5 |

Precision | cell size = | cell size = perfect 0~ DC.Logic  DCDSP ‘ LUT3-Logic ‘ LUT3.DSP

cut-off cut-off/2 filtering )
(14% effic.) | (24% effic.) | (100% effic.) Implementation-Resource
Single 20 x 35 x 146 x . .. . .
Double 1% X 98 x Figure 9: Precision comparison on the Stratix-III.

We now compare with the NAMD result just refer-
enced, again stating that our goal is to find the bounds
of peak performance (using throughput of short-range
force computations as a metric), and not a comparison
of complete systems.

A primary consideration in evaluating the FPGA
performance is the control structure that ensures that
computations entering the pipeline are performing use-
ful work, i.e., are for particle pairs within the cut-
off radius. MD codes generally do this in two parts.
First, for each particle, a set of neighborhood parti-
cles is determined using either cell or neighbor lists.
This reduces the computation by 3-4 orders of magni-
tude; there remain, however, 5-10 times as many par-
ticles as are within the cut-off radius. For serial codes,
a simple distance computation can be used to deter-
mine whether further processing is necessary. For the
benchmark referred to above, there remain an average
of 33.4M short-range force computations per iteration.

On FPGAs, filtering (removing useless computa-
tions) is potentially costly: we already have highly par-
allel structures, and additional routing can take signif-
icant chip area. In Table 1 we illustrate three possible
scenarios. In the first column, we show the potential
acceleration using a cell size equal to the cut-off radius
and no further filtering. This method is straightfor-
ward and was used by Gu [10]. The second column
shows the potential acceleration if smaller cell sizes can
be implemented efficiently. The third column shows the
potential acceleration if perfect filtering can be imple-
mented.

2: Single precision versus double precision. A
comparison between single and double precision is
shown in Figure 9. Although the latest Stratix-III chips
have substantial floating point support, this does not
yet result in direct scaling from single to double preci-
sion. The increased resources required is 2.5x - 3x for
logic, but 4x - 4.5x for the multipliers. Also, the op-
erating frequency is reduced, but the quality improves.

Stratix Il vs. Il (Single precision)
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Figure 10: FPGA version comparison.

3: Stratix-IT versus Stratix-III. A more detailed
comparison of the Stratix-II and Stratix-III is shown
in Figure 10. Interesting is that a greater fraction of
non-DSP logic is used on the Stratix-III.

4: Effect of arithmetic implementation. Figure 11
shows the resource usage of various implementations.
Direct computation (DC) uses less than 10% of the
DSP units and far less of the remaining logic. The 3rd
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Figure 11: Comparison of implementation costs of var-
ious pipeline implementations. LUT1 to LUT4 are
TLwI of orders 1 to 4, DC is direction computation.
All are single precision on the Stratix-III.

order TLwI uses a similar fraction of DSP units, but
substantially more logic. Going to 2nd and 1st order
allow the implementation of perhaps another pipeline
or two, but are not likely to be worth the decrease in
simulation quality. Overall, this is a surprising result.
In previous studies we found that TLwl was superior.
We attribute the change to advances in floating point
support and compilation in new generation FPGAs.

FPC vs. Non-FPC

EBFPC
Non-FPC

10

LUT2  LUT3
Implementation

LUT1 LUT4 DC

Figure 12: Effect of using the Altera FPC on logic uti-
lization. For single pipeline, single precision, Stratix-
ITI. Same configurations as in Figure 11.

5: Floating Point Compiler versus core only. The
effect of using the Altera Floating Point Compiler is
shown in Figure 12. This computation (short-range
force pipeline) does not take advantage of most of the
compiler optimizations, but still results in a substantial
reduction in non-DSP logic. This is likely to be critical
for implementing more aggressive filtering. In partic-
ular, note that in Figure 10 nearly 100% of the DSP

blocks are used, but less than 60% of the remaining
logic. Without the FPC, the latter would also be close
to 100% resulting in an unroutable design.
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Figure 13: Relative average force error for the particle-
particle force computation for various implementations
and precisions. DC is direct computation, LUTn refers
to TLwI of various orders.

4.3 Quality Results

Direct evaluations of MD simulation quality, such as
through wet-lab experiments, are often impractical.
Thus surrogates are often used. One type is to mea-
sure the errors with respect to a reference computation.
Another type monitors the simulation output, e.g., to
confirm that a physical invariant, such as the total en-
ergy, actually is so. Here we use two of each type.

Relative rms total force error
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Figure 14: Relative average force error for the total
force on a particle per iteration for various implementa-
tions and precisions. DC is direct computation, LUTn
refers to TLwl of various orders.

1. Error per individual particle-particle force
computation. Figure 13 shows the relative average
error for the individual particle-particle force compu-
tations for the various pipeline implementations. The



reference is direct computation using double precision
(DC Double, error = 0). We generate the particle pairs
by randomly selecting particle positions between the
cut-off and exclusion radii. For single precision TLwlI,
error becomes worse for higher orders. This is because
of the higher precision required for those tables.

o Energy fluctuation (Single vs. Double Precision)
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Figure 15: Energy profile of BPTI with 14K particles.

2. Error per total force on a particle per iter-
ation. Figure 14 shows the relative rms force error of
the total force on a particle (see, e.g., [22, 25, 31]). The
reference is direct computation using double precision
(DC Double, error = 0). LUTO refers to TLwI with no
interpolation (as in [31]). All except for LUTO appear
to exceed the quality criteria in Shaw, et al. [23].
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Figure 16: Energy profile of argon with 400 particles.

3. Enmnergy fluctuation. We simulated BPTI with
14K particles and 26 particle types. After 37K time
steps (see Figure 15), the energy fluctuations [2] for
direct force computation are 2.48x10™* and 2.62x 10~

for double precision and single precision, respectively.
The ratios of the fluctuations between total energy and
kinetic energy are 0.0402 and 0.0422; both surpass the
.05 suggested in [28].

4. Energy drift. The final quality measure we refer to
as “energy drift.” We simulated 400 Argon atoms (as
per the ProtoMol test case); the results are shown in
Figure 16. Note that while the double precision direct
computation remains stable, both simulations with 1st
order TLwI appear to drift. That is, not only is there
an envelope within which the energy fluctuates, the en-
velope itself fluctuates. This behavior may be less likely
to be acceptable.

5 Discussion and Future Work

From Figure 11 we see that direct computation is some-
what favorable to table lookup with interpolation, ex-
cept when 1st order is used. The reduction in accuracy,
however, may not be acceptable (see Figure 16). Other
results are a demonstration of the Altera floating point
compiler, and numerous observations with respect to
datapath design parameters. The most important of
these is probably that the reduction in simulation qual-
ity (by standard measures) of going from double to sin-
gle precision appears to be negligible.

Our initial goal was to bound possible performance
gain of the HPRC/MD over core-based MD. We have
found that HPRC/MD continues to be highly com-
petitive. Each Stratix-III pipeline can provide perfor-
mance, by the metric of this paper, of about 13x a core.
The best implementation (other than the low order ta-
ble lookup) supports 11 pipelines for a total potential
speed-up of about 143x. The corresponding generation
of microprocessor has four cores, so a chip to chip com-
parison would be about 35x. Of course achieving this
throughput requires (at least) highly efficient routing
and filtering.

Again, none of these results are comparisons. Our
purpose was to continue exploring the HPRC/MD de-
sign space, and to determine whether yet further work
in this direction is warranted.
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