
3D FFT for FPGAs ∗

Ben Humphries Martin C. Herbordt

Department of Electrical and Computer Engineering
Boston University; Boston, MA 02215

Abstract: The 3D FFT is critical in electrostatics computations
such as those used in Molecular Dynamics simulations. On FPGAs,
however, the 3D FFT was thought to be inefficient relative to other
methods such as convolution-based implementations of multigrid.
We find the opposite: a simple design using less than half the chip
resources, and operating at a very conservative frequency, takes less
than 50us for 323 and 200us for 643 single precision data points,
numbers similar to the best published for GPUs. The significance
is that this is a critical piece in implementing a large scale FPGA-
based MD engine: even a single FPGA is capable of keeping the
FFT off of the critical path for a large fraction of possible MD sim-
ulations.

1. INTRODUCTION
The FFT is one of the most important applications implemented
on FPGAs with the 1D and 2D versions finding uses especially
in signal and image processing, respectively. A small sample of
the massive amount of previous work includes [2, 4]; IP for many
variations of the 1D FFT is available from Altera and Xilinx.

The 3D FFT is also critical: it is often the heart of electrostatics
computations such as those used when computing the long-range
force in Molecular Dynamics simulations (MD). Somewhat sur-
prisingly, although MD on FPGAs has been widely studied, we are
only aware of one implementation of the 3D FFT on FPGAs: a
Masters Thesis from the University of Toronto [5]. This work is
now dated both in technology and assumptions – they found the
bottleneck to be off-chip memory access. With current technology,
most useful 3D FFTs can hold all data on chip.

Our motivation is as follows: While in previous work we have
shown that the MD range-limited force can be effectively imple-
mented on FPGAs [1], no comparable implementation exists for
the long-range force. In fact, noting the difficulties with the 3D
FFT at the time, we used a different approach, implementing it
with multigrid [3]. Although multigrid appeared to be a good fit,
it nonetheless proved to have neither sufficiently high performance
nor accuracy; we therefore revisit the 3D FFT on FPGAs.

We use the following approach. First, we constrain the problem
size and precision to those likely to be encountered: 323 and 643

data points of single precision floating point [6]. Second, we take
advantage of existing IP, in this case by Xilinx, to supply the 1D
FFTs that are the basis of the design. Our rationale is that not only
do the primary vendors integrate the existing algorithmic state-of-
the-art, they also take advantage of device-specific features. Fi-
nally, we use a conservative design with simple timing and control.

We find that even using less than half the chip resources and
operating at a conservative frequency, the 3D FFT takes less than
50us for 323 and 200us for 643 single precision data points, num-
bers similar to the best published for GPUs. The significance is that
this is sufficient to keep the FFT off of the critical path for a large
fraction of possible MD simulations.

D3 FFT
address [9:8]

RAM 0
D2 FFT

address [7:4]

D2 FFT
address [3:0]

RAM 1

RAM 2

RAM 3

address
[9:0]

address
[9:0]

address
[9:0]

address
[9:0]

Figure 1: A possible mapping of points from a 163 FFT onto
four Block RAMs.

2. APPROACH AND IMPLEMENTATION
Approach. Higher dimensional FFTs are decomposable into lower
dimensional. Therefore the N3 point 3D FFT can be computed by
executing N2 N -point 1D FFTs consecutively in the three dimen-
sions. We assume a number of 1D FFT IP blocks similar to the
number of points in a dimension. The number of “RAMs” is equal
to the number of IPs. When necessary multiple BRAMs are ganged
together to form a virtual RAM using standard EDA methods.

There are various ways to map data onto the RAMs. Shown
in Figure 1 is perhaps the most obvious: 2D slices (or slabs) of
the cube are mapped onto each RAM. Each IP then calculates the
2N2 N -point 1D FFTs for dimensions D1 and D2 using data only
from a single RAM. Computing the FFTs for D3 requires traversing
multiple RAMs, or transposing the data. We have decided to do the
former routing data with a crossbar.
Design Overview. As shown in Figure 2 the design is composed of
four main parts: RAMs, Crossbars, FFT Pipelines, and Controller.
The RAM’s primary purpose is simply to store the data through-
out the computation. The Crossbars work in conjunction with the
RAMs to select the flow of data so as to effect transpose and un-
transpose as needed. The Controller is a large state machine that
drives all of the inputs to the RAMs, Crossbars, and FFT Pipelines.
For the FFT pipelines we have used the Xilinx LogiCORE FFT
v8.0 IP generator, in particular, Float32 with natural order output,
pipelined streaming I/O, non-configurable transaction lengths, and
real-time throttling.

This crossbar-based design is somewhat more general than strictly
needed, but justified for two reasons. The first is that, while not
scalable, the 32x32 and 64x64 crossbars require only a tiny frac-
tion of the overall chip resources and so are a small price to pay for
uniformity. The second is that the crossbars instantiate a commu-
nication mechanism sufficiently general for integration into FPGA-



FPGA Border
read enable

read address
write enable

write address RAM
0

RAM
N

RAM to FFT
Crossbar

FFT
0

FFT
N

FFT to RAM
Crossbar

select

select

debug status

Control
data in valid
data in last

data out ready

Figure 2: Block diagram for 3D FFT design.

centric clusters. This is mentioned very briefly in the discussion.
Dataflow. The 1D FFT blocks are used by inputting and outputting
one word per clock. A full FFT is calculated by clocking in all
words, waiting a fixed number of cycles, and then clocking all
words out. The IP selected allow for words from subsequent FFT
frames to be input as it is calculating and outputting prior frames.

We now very briefly describe the dataflow. Overall, given that
a particular RAM index and RAM address is always the home
of any given data point, the controls to route data out of the FFT
Pipelines are delayed mirrors of the controls to route data into the
FFT Pipelines. This greatly simplifies the modeling of the dataflow
to the point that only the input flow has to be modeled and the out-
put flow will simply be the input flow delayed by the latency of the
FFT Pipeline. The one caveat is that the input routing flow must
ensure that the data points from the prior FFT dimension have been
written back to RAM before they are read out for the current FFT
dimension. This data dependency is what limits the number of FFT
Pipelines in the current design and hence the overall latency of 3D
FFT calculation as a whole.

The D1 and D2 phases are straightforward, but the D3 phase
imposes an additional timing requirement on the prior two phases.
The reason is that the third phase operates on data that spans mul-
tiple RAMs and each FFT requires data from the same RAM on
the same clock cycle. The solution is to skew the data driven to
each FFT Pipeline so that only a single point of data is required
from any particular RAM in any given cycle. When the skewing
is propagated to the prior phases, it does not change the data flow
control but merely skews it by the same amount as what it is in
the third phase. The penalty for skewing the data is minor; it only
adds cycles for the data to fill up and drain out, which is negligible
over the entire calculation. Otherwise all of the FFT Pipelines stay
completely saturated.

3. RESULTS AND DISCUSSION
Methods. We used the Xilinx ISE design suite for simulation, syn-
thesis, and mapping. The ISE suite contains all of the Xilinx FPGA
synthesis and targeting tools as well as the ISIM mixed language
simulator and the LogiCORE IP core generator. We target the Xil-
inx Virtex-7 xc7v2000t-lflg1925. This is a large, new device built

with a 28nm process. But since even our largest designs use only
a small fraction of the registers and LUTs we should get similar
results with high-end Virtex-6 parts. Results are currently from
simulation and post place-and-route. We have validated the design
with a standard soft FFT.

Table 1: Results for 323 and 643 FFTs. Shown are fraction of
resources used (registers, LUTs, and BRAMs), operating fre-
quency, and overall latency. Designs have 32 and 64 1D FFT
IPs, respectively.

Size % reg % LUTs % BRAMs MHz Latency
323 4% 6% 19% 80 42us
643 10% 18% 50% 70 183us

Results. Results are shown in Table 1. Note that only a small frac-
tion of chip resources are used. No optimization has been done on
the overall design. Since the IP blocks on their own run at 300MHz
there should be substantial room for improvement.
Status and work in progress. This extended abstract describes
work in progress. We are currently porting this application to the
Convey HC-2ex. We are also exploring a version that maximizes
the IP that can fit on the FPGA. This will need more complex and
control and require more care to make timing, but should result in
at least somewhat better performance.
Significance. This work is part of a project that is exploring FPGA-
centric clusters with direct connections among FPGAs through the
multi-gigabit tranceivers. The work by DE Shaw has shown how
effective low-latency communication can be to achieve strong scal-
ing, particularly in MD. The significance of the current work is
that it demonstrates two things: (i) a design that can scale to take
additional inputs/outputs directly from the tranceivers in an FPGA-
centric cluster and (ii) performance that indicates that the long range
force will not be on the critical path for MD on such systems.

4. REFERENCES
[1] Chiu, M., and Herbordt, M. Molecular dynamics simulations

on high performance reconfigurable computing systems. ACM
Trans. on Reconfigurable Technology and Systems 3, 4 (2010),
1–37.

[2] D’Alberto, P., Milder, P., Sandryhaila, A., Franchetti, F., Hoe,
J., Moura, J., Pueschel, M., and Johnson, J. Generating FPGA-
Accelerated DFT Libraries. In Proc. IEEE Symp. on Field Pro-
grammable Custom Computing Machines (2007).

[3] Gu, Y., and Herbordt, M. FPGA-based multigrid computa-
tions for molecular dynamics simulations. In Proc. IEEE Symp.
on Field Programmable Custom Computing Machines (2007),
pp. 117–126.

[4] Jackson, P., Chan, C., Rader, C., Scalera, J., and Vai, M. A
Systolic FFT Architecture for Real Time FPGA Systems. In
High Performance Embedded Computing Workshop (2004).

[5] Lee, S. An FPGA Implementation of the Smooth Particle Mesh
Ewald Reciprocal Sum Compute Engine (RSCE). Master’s the-
sis, University of Toronto, 2005.

[6] Young, C., Bank, J., Dror, R., Grossman, J., Salmon, J., and
Shaw, D. A 32x32x32, spatially distributed 3D FFT in four
microseconds on Anton. In SC ’09: Proceedings of the Con-
ference on High Performance Computing Networking, Storage
and Analysis (2009), pp. 1–11.


