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ABSTRACT

Modeling the interactions of biological molecules, or dock-
ing, is critical to both understanding basic life processes and
to designing new drugs. Here we describe the GPU-based
acceleration of a recently developed, complex, production
docking code. We show how the various functions can be
mapped to the GPU and present numerous optimizations.
We find which parts of the problem domain are best suited
to the different correlation methods. The GPU-accelerated
system achieves a speedup of at least 17.7x with respect to
a single core and 6.1x with respect to four cores for all likely
problems sizes. This makes it competitive with FPGA-based
systems for small molecule docking, and superior for protein-
protein docking.

1. INTRODUCTION

A fundamental operation in biochemistry is the interac-
tion of molecules through non-covalent bonding or docking
(see Figure 1 generated using Pymol [17]). Modeling molec-
ular docking is critical both to evaluating the effectiveness of
pharmaceuticals, and to developing an understanding of life
itself. Docking applications are computationally demand-
ing. In drug design, millions of candidate molecules may
need to be evaluated for each molecule of medical impor-
tance. As each evaluation can take many CPU-hours, huge
processing capability must be applied; typically, production
settings rely on large clusters.

While accelerating docking using heterogeneous parallel
processors has clear and obvious benefits, there has been
surprisingly little work thus far. SymBioSys uses the Cell
Broadband Engine in their eHITS software [14], and Ser-
vat, et al. report using the same processor to accelerate
the FTDock code [20]. The present authors have previ-
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Figure 1: Docked complex of two proteins.

ously used FPGAs to accelerate the PIPER code [21]; ear-
lier they and collaborators demonstrated proof-of-concept
FPGA-based acceleration of ZDOCK and some other sys-
tems [26]. With GPUs, the only published work so far ap-
pears to be in a dissertation by Korb [11]. There the struc-
ture transformation and scoring function evaluation phases

are accelerated.

Close shape Non-intersection Poor fit

complementarity Collision
Figure 2: Shape complementarity, collisions, misses,
and poor matches.

The basic computational task for docking is to find the rel-
ative offset and rotation (pose) between a pair of molecules
that gives the strongest interaction (see Figure 2). Hierarchi-
cal methods are often used: (i) an initial phase where candi-
date poses are determined (docking), and (ii) an evaluation
phase where the quality of the highest scoring candidates
is rigorously evaluated. This work describes the GPU-based
acceleration of PIPER, a state-of-the art code that performs
the first of these tasks. PIPER minimizes the number of
candidates needing detailed scoring with only modest added
complexity [12]. Our methods are general, however, and can
be applied to other rigid molecule docking codes.



Many docking applications including PIPER assume, at
least initially, a rigid structure (see Figure 2). This still
allows modeling of various force laws that govern the in-
teraction between molecules, including geometric, electro-
static, atomic contact potential, and others. A standard
technique maps the molecules’ characteristics to three di-
mensional grids. The most energetically-favorable relative
position is determined by summing the voxel-voxel interac-
tion values for each modeled force at all positions to generate
a score, and then repeating this for all possible translations
and rotations. Some other well-known rigid molecule dock-
ing codes with public domain servers are Situs [27], FTDock
[6], ZDOCK [1], Hex [18], GRAMM [24], DOT [22], and
PatchDock [19]. Some of the many docking codes that use
rigid molecule docking as a preliminary step are Glide [5],
ClusPro [2], and GRAMM-X [23].

The computational complexity of rigid molecule docking
is large. With typical grid sizes of N = 128 in each dimen-
sion and the total number of angles 10,000, 10'° relative
positions are evaluated for a single molecule pair. Typically,
the outer loop consists of the rotations while the translations
are handled with a 3D correlation. Since the latter require
O(N 6) operations, this type of exhaustive search was long
thought to be computationally infeasible [13]. The introduc-
tion of the FFT to docking [10] reduced the complexity of
each 3D correlation to O(N®log N) for steric (shape only)
models; further work expanded the method to electrostatic
[6] and solvation contributions [1].

Docking computations are generally used to model one of
two types of interactions: between proteins (protein-protein
docking) or between a protein or other large molecule and
a small molecule (small molecule docking). In the latter
case the large molecule is referred to as the substrate or
receptor and the small molecule as the ligand. Protein-
protein docking is important for basic science, while small
molecule docking is the method primarily of interest in drug
discovery. In both cases, one molecule has a grid size of
up to 1283%; in protein-protein the second molecule is sim-
ilar, but in small-molecule the ligand is typically an order
of magnitude smaller (per dimension). This difference leads
to there being a divergence in optimizations, with docking
codes sometimes specializing in one domain or the other.
We have found that this divergence emerges in accelerated
docking as well.

In our previous work [25, 26] we showed that, for FPGA-
based coprocessors, the original direct correlation—rather than
an FFT—is sometimes the preferred method for computing
rigid molecule docking. This is largely due to the efficiency
with which FPGAs perform convolutions with the modest
precision (2-7 bits) of the original voxel data. Note that this
precision goes to 48 or 106 bits (single or double precision
complex floating point) for the FFT. In [21], we extended
these methods to facilitate integration into PIPER, adding
support for multiple and complex energy functions. The re-
sult was, for small-molecule docking, a multi-hundred-fold
speed-up of PIPER’s correlation computation and a 9-fold
speed up of the entire application. Both these numbers are
with respect to a fully utilized quad-core processor.

In that work we also found the limits of the correlation-
based approach for current generation FPGAs. Since the

FFT has the advantage over direct convolution in asymp-
totic complexity, the question is at what molecule sizes this
advantage begins to dominate over other factors, such as
precision. We found that the split occurs almost directly on
the small/large molecule boundary: for ligands less than 25
direct correlation yields significant acceleration; for larger
ligands the FFT, even on the host, is superior.

Our basic result here is a set of GPU-based solutions that
work well for both protein-protein and small-molecule dock-
ing domains, with performance speed-ups of at least 6.1x
being achieved across the entire range, again with respect
to a fully utilized quad-core CPU. We also find a divergence
of methods for large and small molecule applications, al-
though the excellent FFTs available on the GPU push the
cross-over point down to a smaller ligand size.

The significance is as follows. We believe this to be the
first published study of a production docking code accel-
erated with a GPU, and because of its cost effectiveness,
we anticipate wide distribution. Further significance is the
finding with respect to the cross-over point between 3D cor-
relations and FFTs on GPUs. This could be of interest
in the many other applications where these operations are
fundamental. And finally, the comparison with the FPGA
points to the best ways to build cost-effective rigid-molecule
docking systems using the current generation of accelerator
technology. Other contributions are the implementations of
numerous other parts of the application, including results
filtering and system integration. We have also conducted
numerous experiments to optimize coordination of multiple
passes for different force components, and data distributions
among blocks and blocks among SMPs.

The rest of this paper is organized as follows. We next
give a brief overview of PIPER. There follows the design
and implementation of the GPU accelerator, and details of
how various design decisions were made. We then present
results, including comparisons with multicore and FPGA
versions. We conclude with discussion and future work.

2. THE PIPER DOCKING PROGRAM
2.1 Overview

A primary consideration in docking is preventing the loss
of near-native solutions (false negatives); as a result, rigid
molecule codes tend to retain a large number (thousands) of
docked conformations for further analysis even though only
a few hundred will turn out to be true hits. “Improving
these methods remains the key to the success of the entire
procedure that starts with rigid body docking [12].” PIPER
addresses this issue by augmenting commonly used scoring
functions (shape, electrostatics) with a desolvation function
computed from pairwise potentials.

A fundamental innovation in PIPER is the finding that
eigenvalue-eigenvector decomposition of the pairwise inter-
action matrix can substantially reduce this added complex-
ity. In particular, “adequate accuracy can be achieved by
restricting consideration to the eigenvectors corresponding
to the P largest eigenvalues where 2 < P < 4, and thus
performing only 2 to 4 forward and one reverse FFT calcu-
lations [12].” In practice, 18 terms are commonly used.



PIPER’s energy-like scoring function is computed for ev-
ery rotation of the ligand (smaller molecule) with respect to
the receptor (larger molecule). It is defined on a grid and is
expressed as the sum of P correlation functions (for each en-
ergy term) for all possible translations «, 3, v of the ligand
relative to the receptor
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where R, (%,j,k) and Ly(i + a,j + B,k + ) are the com-
ponents of the correlation function defined on the recep-
tor and the ligand, respectively. For every rotation, PIPER
computes the ligand energy function L, on the grid and per-
forms repeated FFT correlations to compute the scores for
the different energy functions. For each pose, these energy
functions are combined to obtain the overall energy for each
pose. Finally, a filtering step returns some number of poses
based on score and distribution.

2.2 PIPER Program Flow and Performance
Profile

/ Perform once \
Read Receptor and
Ligand grids from file
Read parameter, rotation and
coefficient files

Compute FFT size based on ligand
and receptor sizes

/ Repeat for each rotation \
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incremental angle and
assign to grid
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Create receptor grids for different energy
functions and assign values to them

L__

Create ligand grids for different
energy functions
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Figure 3: Program flow of Piper. Blocks in dark
green with bold border indicate steps accelerated
on the GPU.

Figure 3 shows the sequence of steps followed by the PIPER

program to perform docking of a ligand to a receptor. The
ligand and receptor atoms are read from input files, along
with certain parameters and coefficients. These are used
in scoring, filtering top scores, rotation, and charge assign-
ment. Next, PIPER determines the size of the padded FFT
grid (based on the sizes of the ligand and receptor) and gen-
erates the receptor and ligand grids for the various energy
functions. Then the receptor grids for the energy functions
are assigned values and their forward FFTs and complex
conjugates are computed. The number of forward FFTs to
be performed equals P + 4. The “4” are the following: at-
tractive van der Waals, repulsive van der Waals, Born com-
ponent of electrostatic energy, and Coulomb component of
electrostatic. The “P” are the top P desolvation terms. In
our accelerated version, we perform the forward FFTs and
complex conjugates on the GPU.

For each rotation, PIPER multiplies the ligand with the

Table 1: PIPER run times for one rotation. Grid
size is 128%. Steps performed once are negligible over
thousands of rations.

Phase Run time | % total
(seconds)
Ligand rotation 0.00 0%
Charge assignment 0.23 2.3%
FFT of ligand grids 4.51 45.4%
Modulation of grid-pairs 0.22 2.2%
IFFT of ligand grids 4.51 45.4%
Accumulation of desolvation terms 0.24 2.4%
Scoring and filtering 0.23 2.3%
Total 9.94 100%

next rotation vector and assigns new values to ligand grids
for different energy functions. We leave these two steps to be
performed on the host. After grid assignment, forward FFTs
of each ligand grid are performed and the transformed grid
is multiplied with the corresponding transformed receptor
grid. The multiplied grid is then inverse transformed. For
the case of the desolvation terms, the inverse transformed
grids are accumulated to obtain the total score for desolva-
tion energy. A weighted sum of the scores for the various
energy functions is then computed and the top scores re-
ported. In our GPU accelerated version, we perform all the
per-rotation steps (except rotation and grid assignment) in
GPU. This accelerates the bulk of the work performed by
PIPER (see Table 1).

3. MAPPING PIPER TO A GPU

3.1 Oveview

From Table 1 we see that the essential tasks to be mapped
to the GPU are the FFTs. We also observe, however, that
while these comprise 91% of the runtime, Amdahl’s law tells
us that this limits speedup to a factor of 11. Therefore as
many of the other (comparatively minor) tasks as possible
must also be addressed. Of these, we find that modula-
tion and accumulation are straightforward, but that filtering
brings up some interesting issues (described in Section 3.4).
Unfortunately, charge assignment is highly complex and is
still done on the host. Rotation takes less than a millisecond.

With respect to the FFT task (actually the use of the
FFT to perform the correlation task): As described in the
introduction, both the FFT and direct correlation are useful
in the overall solution; they are described in the next two
subsections. We find that one key issue is, as expected, the
grid size. We also find, however, that the complexity of the
energy function (i.e., the number of desolvation terms) has
a significant effect on the choice of implementation.

3.2 Direct Correation

To perform correlation on a GPU, the ligand and recep-
tor grids need to be transferred to the device memory. Since
every multiprocessor needs access to both these grids, they
either need to be stored in device’s global memory, accessible



by all the multiprocessors, or duplicated in the local shared
memory of each of the multiprocessor. Since receptor grids
are large and the shared memory per multiprocessor is rel-
atively small, it is not possible to copy these grids to the
shared memories; rather, we store the receptor grids in the
global memory. Since the ligand grids are much smaller, we
tried to store them variously in the device’s shared memory
or constant cache, both of which provide much faster access
compared with global memory. We found that access time
from constant memory and shared memory is identical, un-
less there is a cache miss on the constant memory, in which
case, the data is accessed from global memory.

Both the shared and the constant memory, however, are
small and thus limit the size of the largest ligand that can fit
in its entirety. An important consideration is the complexity
of energy function used. With 4 pairwise potential terms,
we can fit a ligand grid of size up to 7° in shared memory
and 8% in constant memory. For larger ligand grids, we store
the ligand in global memory, degrading the performance.
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Figure 4: Distribution of work on the GPU for direct
correlation: (Left) Each thread block works on part
of every 2D plane, (Right) Different 2D planes are
assigned in their entirety to different thread blocks.

Work assigned to different thread-blocks can be distributed
in many ways. We tried two schemes: In both, we launch
the kernel with a 2D array of thread blocks, each with a 3D
array of threads. In the first scheme, each thread-block is
responsible for computing a part of the 2D result plane for
all the 2D planes in the 3D result grid (see Figure 4(a)).
In the second distribution, we assign different 2D planes to
different thread-blocks. The threads on each of those thread
blocks compute a larger part of the 2D plane, but only for the
planes assigned to the current thread block (see Figure 4(b)).
Both distributions result in similar runtimes, though one or
the other can have better performance for various non-cubic
grids.

Based on our experiments, we noticed the following pecu-
liarities of direct correlation on the GPU with respect to the
PIPER energy functions:

— Only a limited number of pairwise potential terms can be
supported without swapping or storing the ligand on global
memory; more terms would result in larger memory require-
ments for storing the ligand grids. We could support ligand
grid sizes of up to 8 when using 4 pairwise potential terms
(8 correlations in total).

— Unlike FFT-based correlation, where the time to perform
correlation depends on the size of the padded FFT grid

(which is equal to the sum of the ligand and receptor sizes),
the direct correlation time depends mainly on the size of the
ligand. Thus, for the same FFT size, direct correlation can
perform significantly better for smaller ligands whereas FFT
correlation runtimes remain unchanged.

— For smaller ligand grids, we performed a further optimiza-
tion: we store voxels for multiple rotations of the ligand in
constant memory. This allows the correlation inner loop to
compute multiple scores in each iteration. This yields two
benefits - the loop overhead is amortized over multiple rota-
tions. More importantly, each receptor voxel, fetched from
the global memory (which is not cached) gets used multiple
times, thus reducing the overall fetch time by the number
of rotations that can be computed at once. Since access
to global memory has higher latency, reducing accesses to
global memory results in significant performance improve-
ment. For 43 ligand grids, we can perform 8 rotations in
one iteration, achieving a speedup of 2.7x over direct corre-
lation performed one rotation at a time.

— Direct correlation results in a performance improvement
over FFT correlation only for ligand grids which can fit
in the shared or constant memory. Accessing ligand from
global memory results in significant performance loss.

— Direct correlation provides automatic filtering of the top
scores since different multiprocessors, computing different
regions of the result map, can find and report their local
best score. An extra step of finding the best of these local
best scores, as well as flagging the cells for exclusion still
needs to be performed by a master thread (see Section 3.4).

33 FFT

Performing correlation using FFTs involves computing a
forward FEFT of the two grids, modulation (multiplication)
of the transformed grids, and an inverse FF'T of the product
grid. In our GPU-accelerated PIPER code, we perform these
steps, along with accumulation and scoring, on the GPU.
Performing operations on the GPU requires transferring the
data to the device memory, which can sometime more than
offset the benefit achieved from parallel execution. It is thus
important to take transfer time into consideration.

For computing the forward and inverse FFTs, we use
the NVIDIA CUFFT library. While several other excellent
FFTs for GPUs have been reported (see, e.g., [7, 16]), but
we were not able to find another that is both publically avail-
able and superior for this problem. The forward FFT of the
receptor grid is performed only once, since the receptor grid
is held fixed. For each energy function, the receptor grid is
copied to the device and the CUFFT library call is made.
The complex conjugate of the transformed grid is then per-
formed on the GPU (by dividing the grid between different
thread groups and different threads). Note that the trans-
formed grid is already present in the device memory, and
that computing the complex conjugate on the device does
not involve an extra data transfer.

The transformed receptor grid for each energy function is
left in the device memory. This allows us to perform mod-
ulation on the GPU without recopying the grids. This sim-
ple optimization results in significant performance improve-



ments since it avoids the need to transfer large amount of
data from host to device for each rotation. This approach,
however, is possible only if there is enough device memory
to simultaneously store multiple grids of N* complex entries
each. We find that our Tesla C1060 card easily fits all 22
grids (4 + P; P = 18 desolvation grids) for a large grid size
(N = 128).

For each rotation, the host rotates the ligand and com-
putes the new grid values for the various energy functions.
The ligand grids are then copied to the GPU memory and
the forward FFT is performed. The transformed grid is
then multiplied with the corresponding transformed receptor
grid. This multiplication is performed on the GPU, with dif-
ferent threads multiplying different parts of the grids. Since
the transformed grids for both the receptor and the ligand
are present on the device, performing multiplication on the
device does not incur any data transfer. Finally, the product
grid is inverse transformed to obtain the correlation scores.
The above steps are for each of the different energy grids. In
the case of the desolvation grids, the inverse FFT is followed
by an extra step to accumulate the scores of the different de-
solvation energy terms to obtain a total desolvation energy
score. This accumulation is also performed on the GPU,
yielding similar performance benefits as performing modu-
lation on the device.

In contrast with the direct correlation, FFT-based corre-
lation performs individual correlations in serial order. This
enables scalability to any number of correlations, thus al-
lowing any number of pairwise potential terms in PIPER
desolvation energy function. Addition of any new energy
function is also straightforward. Further, unlike direct cor-
relation on the GPU, where the size of the ligand grid is
limited by the size of the constant memory, FFT correlation
can support any ligand grid size, so long as the total FFT
grid fits in global memory.

3.4 Scoring and Filtering

For each rotation, after the correlation scores for the vari-
ous energy functions have been computed, two steps remain:
computing the total score for each translation (goodness of
fit) and selecting the translations with the best scores (fil-
tering). Scoring simply involves computing the weighted
average of the scores for the various energy functions. The
PIPER filtering algorithm selects the top scoring conforma-
tions from different regions of the result map. One compli-
cation is that PIPER computes scores using multiple sets of
weights: the scores returned are the best over all of the sets.
The number of scores returned per rotation is a parameter
with a default of one.

To perform scoring on the GPU, the scoring coefficients
must first be made available to the GPU multiprocessors.
Since the GPU constant memory is cached and provides
faster access, we use it to store the coefficients. Copying
the coefficients from host to constant memory is performed
only once and the transfer time is very small compared to
the total runtime.

The work on the GPU is divided by distributing the K
coefficient sets onto K different multiprocessors, each com-
puting its respective best scores independent of the rest (see
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Figure 5: Scoring and filtering on the GPU: (a)
Different coefficients are distributed among differ-
ent multiprocessors, with each containing (b) one
thread, or (c) multiple threads.

Figure 5(a)). In our initial approach, we assigned just a sin-
gle thread to each thread block (running on each of the K
multiprocessors). Thus, each thread computes N 3 weighted
scores and stores the top score in the device global memory
(see Figure 5(b)). Contrary to our expectations, this version
resulted in significant slowdown compared to the serial code.
This was a clear example of where the multiprocessors are
highly underutilized and the communication cost outweighs
the computation benefit.

In our second scheme, we assigned different coefficient sets
to different thread blocks with each thread block now con-
taining M threads (M = 500 for the results presented). The
correlation grids are divided equally among all the threads,
with each thread computing N3 /M weighted scores and find-
ing the best scores within its subset (Figure 5(c)). For each
thread block, we allocate an array in the device shared mem-
ory. The best score found by each thread and the corre-
sponding score index are stored in this shared array. Once
all the threads finish processing their subset of results, a
master thread (thread 0) processes the shared array to find
the best of these best scores and stores it in the array of top
scores in the device global memory.

If the number of top scores to be reported per rotation
(per coefficient) is greater than 1, then thread 0 performs
an additional task of flagging the cells neighboring the cur-
rent best score and so exclude them from consideration in
the next iteration. This is done to avoid reporting multi-
ple top scores from the same region. In the serial version,
Piper maintains an array of integers, with one entry to flag



each of the N3 result cells. In our GPU version, maintain-
ing such a large array on the GPU shared memory is not
feasible. We first tried to maintain a small array on shared
memory, containing the indices of the cells to be excluded
in the next iteration. This requires each thread to traverse
the entire array to check if the current cell is present and
must be excluded. This leads to significant slowdown, with
GPU filtering performing 2-3x slower than filtering on host.
In our second approach, we tried storing the N® array on
device global memory, with each thread reading only one
array entry to determine exclusion. This improved the per-
formance significantly, with GPU filtering now performing
better than CPU filtering. Note that the size of the array
in global memory increases to K N since all the coefficients
are being processed in parallel. The performance hit due to
accessing global memory is not significantly large and can
be attributed to the memory coalescing support in current
generation GPUs.

The performance improvements obtained by performing
filtering on GPU is two-fold. First, and the more obvious,
performance improvement comes from processing multiple
scores in parallel on the GPU. This is achieved both at
the thread-block level (different coefficients being processed
on different threads) and the thread-level (different parts of
the grids being processed by different threads). The perfor-
mance reported in this paper is for 6 coefficient sets (which
is the default in PIPER). Since each coefficient is assigned
to one multiprocessor, we use only 6 of the 30 multiproces-
sors available on the Tesla C1060 GPU. Somewhat surpris-
ingly, further distributing the work does not significantly
improve performance. There are two reasons: first, in the
above approach the filtering time is already a very small frac-
tion of total runtime. Second, since the CUDA architecture
does not support fine-grained synchronization and requires
each thread-block to be able to execute independently and in
any order, distributing filtering work across multiple thread
blocks is not very straightforward. In future, we plan to
implement this, though it is not a high priority.

The second performance improvement comes from the side
effect of performing filtering on the device. Since grid modu-
lation is performed on the GPU, performing filtering on host
would require transferring 5 modulated grids (each with N3
elements) to the host for every rotation; instead only the
few top scores need to be transferred.

3.5 Latency Hiding

There is an obvious opportunity to hide latency of host
operations during GPU computation. In particular, we hide
the latency of rotation and grid assignment by performing it
on CPU while the FFT and filtering are being computed on
GPU. As a result, the time per rotation reduces from 606ms
to 556ms.

4. RESULTS

Results were generated for four configurations: a single
core of a quad-core CPU, four cores of a quad-core CPU,
GPU accelerated, and FPGA accelerated. The base sys-
tem in all cases was a 2008-era 2GHz quad-core Intel Xeon
processor. GPU results were generated using an NVIDIA

Tesla C1060 GPU card. FPGA results were generated for
an Altera Stratix-IIT EPSL340 through post place-and-route
using Altera design tools.

The base software was the PIPER docking code, which
was compiled using standard optimization settings. PIPER
uses the FFTW package [3]. We used the threaded version
of FFTW to generate the multiple core results. For the
GPU we used the CUFFT library from NVIDIA. For the
FPGA we used direct correlation in all cases; there does not
yet exist a competitive 3D FFT for the FPGA, although
in other work we show that this is plausible (submitted for
publication). We also tried direct correlation for the other
configurations as described below.

For data type, the serial, the multicore, and the GPU ver-
sions all used single precision floating point, while the FPGA
used the original fixed point. All runs were executed using
the default settings of 18 pairwise potential terms for a total
of 22 term. Docking output from the various implementa-
tions is identical.

The major results are as follows:

1. Speedups for the various GPU-accelerated PIPER tasks,

2. Performance comparison of the GPU-accelerated FFT-
based and direct correlations as a function of ligand
size,

3. Performance comparison of all four configurations for
the correlation task, and

4. Performance comparison of all four configurations with
respect to end-to-end performance.

Table 2: CPU times, GPU times, and speedups with
respect to a single core for various steps. Tasks are
done either for every grid in each rotation, or once
per rotation. Total speed-up is given for a single
rotation and includes partial hiding of GPU latency.
All times in ms.

Task (per grid) CPU | GPU | Speedup

Forward FFT 205 9.3 22

Modulation 10 | 0.01 1000

Inverse FFT 205 11.8 17

Task (per rotation)

Complex conjugate 10 | 0.01 1000

Accumulation of 240 | 0.09 2667
desolvation terms

Scoring and filtering 230 | 39.5 6

Total runtime per rotation | 9980 556 17.7

1. Table 2 compares the serial with the GPU-accelerated
runtimes for the various tasks. Correlation on the GPU
is performed using the FFT/IFFT pair. The grid size is
1282 with a ligand size of 32°. Clearly, the complex conju-
gate, modulation, and accumulation tasks afford very high
speedups due to their inherent parallelism. Speedup for the
scoring-and-filtering task is modest due to the utilization is-
sues already described, but does not significantly affect the
total performance. The overall speedup achieved per rota-
tion, including the time for the unaccelerated rotation and



grid assignment tasks, is over 17.7x. Perhaps the most likely
near-term source of further speedup is through continued
improvements in GPU FFTs (see, e.g., [7, 16]).
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Figure 6: Shown is a comparison of direct correla-
tion and FFT for the GPU as a function of ligand
size. For reference, direct correlation on the FPGA
is also shown. Ligand size is 128°.

2. Figure 6 shows a comparison of FFT-based and di-
rect correlation, and the FPGA-accelerated direct correla-
tion. We use the single core FFT as a reference through-
out this graph. The ligand grid size is varied from 43 to
323, but the total correlation size is fixed at 1283, As ex-
pected, the FFT maintains constant performance while the
correlation-based methods drop sharply with ligand size.
For GPUs alone, direct correlation is better for small lig-
ands, while the FFT maintains good performance through-
out. The crossover point is at a ligand size of about 83.
For the FPGA, the crossover point with the GPU FFT is
around 162. For the GPU direct correlation, the drop in per-
formance is due to two factors: the larger inner loop and the
need to access the ligand grid from global memory. For the
FPGA direct correlation, the drop in performance is mainly
due to the inability to fit the entire ligand grid on chip and
thus the need to swap different parts of the ligand grid in
and out of the FPGA pipeline.

3. We now examine the correlation task with respect to the
best method at each ligand size; results are shown in the
left half of Figure 7. We begin by describing results for the
reference systems. For a single core, the time for a 128% FFT
is 360ms. Direct correlation on a single core is faster than
the FFT for a ligand size of 4°, which it executes in 172ms;
otherwise the FF'T version is faster. When all four cores are
used, the time for the FFT is 106ms. Direct correlation on
multicore is again faster than the FFT for a ligand size of
43, which it executes in 44ms; otherwise the FFT version is
faster. With a faster reference time for small ligands, the
speed-ups for the GPU and FPGA are reduced.

4. In the right half of Figure 7 we examine the total end-
to-end speedups of both the GPU- and FPGA-accelerated
codes with respect to the range of likely ligand sizes. For the
GPU we use direct correlation for the smallest ligand and

the FFT for the rest. In this graph we see two phenomena.
The first is that the performance improvement on the small
ligands is brought down to earth by the overhead, but is still
substantial. The second is that the FPGA’s advantage in
small-molecule is diminished somewhat by greater overhead.
It remains substantial, however, in the 8 - 123 range. For
ligands much larger than 16® the GPU dominates.

5. DISCUSSION

In this work we describe a GPU-accelerated production
docking code, PIPER, which achieves an end-to-end speed-
up of at least 17.7x with respect to a single core and 6.1x
with respect to four cores for all commonly used problem
sizes. We find that for small ligands direct correlation is su-
perior to the FFT; the crossover point lies at about 8. The
FPGA remains superior to the GPU for low precision corre-
lations, and so has better performance for ligand sizes less
than about 16%. The performance difference for the correla-
tion alone (for these small ligands) is substantial; when the
rest of the computation is included, however, the difference
in speed-up is more modest (see Figure 7). For all ligands
larger than 163, the GPU version continues to give excellent
performance, while the FPGA stops being cost-effective at
around 253.

Putting these results into the users’ perspective, the GPU-
accelerated version is clearly cost-effective—with respect to
an unaccelerated workstation—for both protein-protein and
small molecule domains. If the user is interested only in
small molecule docking, then the FPGA-accelerated version
could be preferred. The performance difference, however,
might not be great enough to justify the higher cost and the
reduced flexibility of that technology. If, however, some of
the overhead (in particular in charge assignment) can be re-
duced, then the FPGA finds a clear niche. It is also possible
that an efficient 3D FFT could be developed for FPGAs;
this would shrink the performance gap for large molecule
pairs.

The FFT is one of the most widely used tools in embedded
and high performance computing and developing efficient
versions for the GPU has received much attention (see, e.g.,
[7, 15, 16]). We gratefully take advantage of this fine work.
The application of GPU correlation to various signal and
image processing applications has also been widely studied
(see, e.g., [4, 8, 9]). We believe this to be the first published
study of GPU-acceleration of a complete docking code.
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