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ABSTRACT
The acceleration of molecular dynamics (MD) simulations
using high performance reconfigurable computing (HPRC)
has been much studied. Given the intense competition from
multicore and GPUs, there has been a question whether MD
on HPRC can be competitive. We concentrate here on the
MD kernel computation: determining the short-range force
between particle pairs. In particular, we present the first
FPGA study on the filtering of particle pairs with nearly zero
mutual force, a standard optimization in MD codes. There
are several innovations, including a novel partitioning of the
particle space, and new methods for filtering and mapping
work onto the pipelines. As a consequence, highly efficient
filtering can be implemented with only a small fraction of
the FPGA’s resources. Overall, we find that, for an Altera
Stratix-III EP3ES260, 8 force pipelines running at 200MHz
can fit on the FPGA, and that they can perform at 95% effi-
ciency. This results in a 80-fold per core speed-up for the
short-range force, which is likely to make FPGAs highly
competitive for MD.

1. INTRODUCTION

Acceleration of MD is a critical problem with a many order-
of-magnitude gap between the largest current simulations and
the potential physical systems to be studied. As such it has
received attention as a target for supercomputers, clusters,
and dedicated hardware, as well as coprocessing using GPUs,
Cell, and FPGAs. The last of these is our focus here.

We concentrate on the MD kernel computation: deter-
mining the short-range force between particle pairs. In par-
ticular, we study the filtering of particle pairs with nearly zero
mutual force, a standard optimization in MD codes. When
coupled with our recent work on the optimization of MD
force pipelines [1], this has the potential to improve perfor-
mance of our previous full MD implementation [2] four-fold.

The issue of filtering particle pairs emerges from the geo-
metric mismatch between two shapes: (i) the cubes (or other
polyhedrons) into which it is convenient to partition the sim-
ulation space and (ii) the spheres around each particle in
which the short-range force is non-zero. If this mismatch
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is not addressed (e.g., only the standard cell-list method is
used), then 85.5% of the particle pairs that are run through
the force pipelines will be superfluous. While filtering is a
critical issue, we believe that the only previously published
results related to hardware implementations are from D.E.
Shaw; these are with respect to their Anton processor [3].

Here, we find filtering implementation on FPGAs to pro-
vide a rich design space. Its primary components are:

• Filter algorithm and precision,
• Method of partitioning the cell neighborhood to bal-

ance load with respect to the Newton’s-3rd-Law opti-
mization,

• Method of mapping particle pairs to filter pipelines,
and

• Queueing and routing between filter and force pipelines.

We present new algorithms or methods for filtering, load bal-
ancing, and mapping, and find that nearly perfect filtering
can be achieved with only a fraction of the FPGA’s logic,
and with a tolerable fraction of its BRAMs.

Our basic result is that for the Stratix-III EP3SE260, and
for the best (as yet unoptimized) designs, 8 force pipelines
running at about 200MHz can fit on the FPGA. Moreover,
the force pipelines can be run at high efficiency with 95% of
cycles providing payload. As a result, the short-range force
for the standard 90K NAMD benchmark can be computed in
under 22ms, or about a factor of 80 times faster than its per-
core execution time. Contributions are two-fold: (i) demon-
strating that FPGAs are highly competitive for MD and (ii)
presenting the first study of particle-particle filtering on FP-
GAs and with it a number of innovations. The last of these
may have implications to MD beyond HPRC.

The rest of this paper is organized as follows. In the next
section, we review the applicable parts of MD simulation.
There follows the presentation of the filtering methods, after
which come results and some discussion.

2. MD PRELIMINARIES

2.1. MD review
MD simulation is an iterative application of Newtonian me-
chanics to ensembles of atoms and molecules. It proceeds
in phases, alternating between force computation and mo-
tion integration. The forces may include van der Waals (LJ),



Coulomb, hydrogen bond, and various covalent bond terms:

Ftotal = F bond+F angle+F torsion+FHBond+Fnon−bonded

(1)
Because the hydrogen bond and covalent terms (bond, angle,
and torsion) affect only neighboring atoms, their complex-
ity is O(N) in the number of particles N being simulated.
The motion integration computation is also O(N). Although
some of these O(N) terms are easily computed on an FPGA,
their low complexity makes them likely candidates for host
processing, which is what we assume here. The LJ force for
particle i can be expressed as:
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where the εab and σab are parameters related to the types of
particles, i.e., particle i is type a and particle j is type b. The
Coulombic force can be expressed as:

FC
i = qi

∑
j �=i

(
qj

|rji|3
)

rji (3)

A standard way of computing the non-bonded forces (LJ
and Coulombic) is by applying a cut-off, i.e., by requiring
that the force on each particle is the result of only particles
within the cut-off radius rc. Since this radius is typically less
than a tenth of the size per dimension of the system under
study, the savings are tremendous, even given the more com-
plex bookkeeping required.

The problem with cut-off is that, while it may be suffi-
ciently accurate for the rapidly decreasing LJ force, the er-
ror introduced in the slowly declining Coulombic force may
be unacceptable. A solution is to split the Coulombic force
into short- and long-range components. The short-range is
then computed together with the LJ to form the short-range
force. The long-range component of the Coulombic force is
the long-range force. Since the long-range force computa-
tion is generally a small fraction of the total [2, 4], our focus
here is on the short-range force. Given a particle pair i and j:
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where Aab, Bab, and QQab are distance-independent coeffi-
cient look-up tables indexed with atom types a and b, and g ′

is a smoothing function for splitting the Coulombic force.

2.2. Filtering particle pairs
While MD in general involves all-to-all forces among parti-
cles, a cut-off is commonly applied to restrict the extent of
the short-range force to a fraction of the simulation space.
Two methods are used to take advantage of this cut-off: cell
lists and neighbor lists (see Figure 1). With cell lists, the sim-
ulation space is typically partitioned into cubes with edge-
length equal to rc. Non-zero forces on the reference particle

P

rc

rc

Fig. 1. P’s two dimensional cell neighborhood is shown in
white; cells have edge size equal to the cut-off radius. Parti-
cles within the P’s cut-off circle are in P’s neighbor list.

P can then only be applied by other particles in its home
cell and in the 26 neighboring cells (the 3x3x3 cell neighbor-
hood). We refer the second particle of the pair as the partner
particle. With neighbor lists, P has associated with it a list
of exactly those partner particles within rc. We now compare
these methods.

• Efficiency. Neighbor lists are 100% efficient: only
those particle pairs with non-zero mutual force are eval-
uated. Cell lists as just defined are 15.5% efficient with
that number being the ratio of the volumes of the cut-
off sphere and the 27-cell neighborhood.

• Storage. With cell lists, each particle is stored in a
single cell’s list. With neighbor lists, each particle is
typically stored in 400-1000 neighbor lists.

• List creation complexity. Computing the contents of
each cell requires one pass through the particle array.
Computing the contents of each neighbor list requires,
naively, that each particle be examined with respect
to every other particle: the distance between them is
then computed and thresholded. In practice, however,
it makes sense to first compute cell lists anyway. Then
the neighbor lists can be computed using only the par-
ticles in each reference particle’s cell neighborhood.

From this last point, it appears that the creation of neigh-
bor lists involves not only cell lists, but also a fraction of the
force computation itself. At this point, why not finish com-
puting the forces of those particles that are within the cut-off?
Why save the neighbor list?

Most MD codes reuse the neighbor lists for multiple iter-
ations and so amortize the work in their creation. But because
particles move during each iteration, particles can enter and
exit the cut-off region leading to potential error. The solution
is to make the neighborlist cut-off larger than the force cut-
off, e.g., 13.5Å versus 12Å. There is a trade-off between the
increase in neighborhood size (and thus the number of par-
ticle pairs evaluated) and the number of iterations between
neighbor list updates.



3. FILTERING – HIGH LEVEL ISSUES

3.1. Coprocessor-specific preliminaries
With MD coprocessing there are additional considerations.
The cell list computation is very fast and the data generated
small so it is generally done on the host (along with the mo-
tion integration): the cell lists are downloaded to the copro-
cessor every iteration along with the new particle positions.
The neighbor list computation, however, is much more ex-
pensive: if done on the host it could mitigate any advantage
of coprocessing. Moreover, the size of the aggregate neigh-
bor lists is hundreds of times that of the cell lists, which
makes their transfer impractical. As a consequence, neigh-
bor list computation, if it is done at all, must be done on the
coprocessor. But even on the coprocessor storage is still a
concern.

We look first at MD with cell lists. For reference and
without loss of generality we examine the NAMD bench-
mark NAMD2.6 on ApoA1. It has 92,224 particles, a bound-
ing box of 108Å×108Å×78Å, and a cut-off radius of 12Å.
This yields a simulation space of 9×9×7 cells with an aver-
age of 175 particles per cell with a uniform distribution. On
the FPGA, the working set is typically a single (home) cell
and its cell neighborhood for a total of (naively) 27 cells and
about 4,725 particles.

In actuality, Newton’s 3rd Law (N3L) is used to reduce
this number. That is, since each particle-particle interaction
is mutual, it is calculated once per particle pair and recorded
for both particles. To effect the reduction in work, home cell
particles are only matched with particles of part of the cell
neighborhood (see Section 5 for two options), and with, on
average, half of the particles in the home cell. We refer to the
subset of cells in the cell neighborhood that are processed to-
gether with (and including) the home cell as the cell set. For
the 14- and 18-cell sets presented below, the average num-
ber of particles to be examined (for each particle in the home
cell) is 2,450 and 3,150, respectively. Given current FPGA
technology, any of these cell sets (14, 18, or the original 27
cells) easily fits in the on-chip BRAMs.

Neighbor lists for a home cell do not fit on the FPGA.
For example, the aggregate neighbor lists for 175 home cell
particles is over 64,000 particles (one half of 732 for each of
the 175 particles; 732 rather than 4,725 because of increased
efficiency of neighbor lists over cell lists).

The memory requirements are therefore very different for
the two methods. For cell lists, we swap cells onto and off of
the FPGA as needed. Because of the high level of reuse,
this is easily done in the background. In contrast, neigh-
bor list particles must be streamed from off-chip. This has
worked when there are one or two force pipelines operating
at 100MHz [5, 4], but is problematic for current and future
high-end FPGAs. For example, the Stratix-III/Virtex-5 gen-
eration of FPGAs supports at least 8 force pipelines operat-
ing at 200MHz leading to a bandwidth requirement of over
20 GB/s.

From this discussion, it follows that use of neighbor lists
calls for an “on-FPGA” solution, but that this itself appears to
be impracticable due to memory and transfer requirements.
At the same time, however, the 6x potential increase in effi-
ciency cannot be abandoned.

One way to improve efficiency is to reduce the cell size:
the smaller the cell size, the finer the granularity, and the
larger the fraction of the cell neighborhood volume guaran-
teed to be useful. With a cell edge of rc/2 and a 53 set,
efficiency increases to 26.8%. With more aggressive clip-
ping of the corner cells, efficiency increases a bit more but so
does the control complexity. More important is that reducing
cell size also reduces reuse and still leaves much inefficiency.
While reducing cell size is viable, there are better options.

3.2. Overall design and board-level issues
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Fig. 2. Schematic of the HPRC MD system.

The solution is to use neighbor lists, but to compute them
every iteration, generating them continuously and consuming
them almost immediately. In this scenario, the use of neigh-
bor lists can be viewed as filtering out the zero-force particle
pairs: the filter pipelines feed the force pipelines with min-
imal buffering in between (see Figure 2). The next several
sections present designs and tradeoffs for this solution.

We now describe the execution flow. Processing is built
around the home cell. Position and acceleration data of the
particles in the cell set are loaded from board memory into
on-chip caches, POS and ACC, respectively. When the pro-
cessing of a home cell has completed, focus shifts and a
neighboring cell becomes the new home cell. Its cell set is
now loaded; in our current scheme this is nine new cells.

Acceleration data differs from position data in that it is
read/write. That is, each particle’s acceleration accumulates



over this and other home cells. It is not complete for any
given home cell until all 27 cells in its cell neighborhood
have also been the home cell. Therefore the nine cells of
acceleration data are swapped rather than just overwritten.

One design constraint is that each force pipeline should
handle at most a small number of reference particles P i at
a time. This enables the total forces on the Pis to be ac-
cumulated in registers. Accumulating the mutual forces on
the Pis’ N3L partner particles, however, is more complex as
their positions span the cell set. To prevent BRAM access
contention, the following strategy is used. Partner updates
are written to BRAMs associated uniquely with each force
pipeline. When processing of a home cell is completed, the
partner data from the various pipeline-specific BRAMs are
merged. This operation is performed during swapping out,
so latency is completely hidden.

The time to process a home cell Tproc is generally greater
than the time Ttrans to swap cell sets with off-chip memory.
Assume that a cell has edge length = rc and contains on av-
erage Ncell particles. Then Ttrans = 324×Ncell/B (9 cells,
32-bit data, 3 dimensions, 2 reads and 1 write, and transfer
bandwidth of B bytes per cycle). To compute Tproc, assume
P pipelines and perfect efficiency. Then Tproc = N2

cell ×
π/2P cycles. This gives the following bandwidth require-
ment: B > 206 ∗ P/Ncell. For P = 10 and Ncell = 175,
B > 12 bytes per cycle. For many current FPGA processor
boards B ≥ 16. Some factors that increase the bandwidth
requirement are faster processor speeds, more pipelines, and
lower particle density. A factor that reduces the bandwidth
requirement is better cell reuse.

4. FILTERING METHODS

We begin by assuming cell lists with processing concentrat-
ing on one home cell at a time. With no filtering or other
optimization, forces are computed between all pairs of par-
ticles i and j, where i must be in the home cell but j can
be in any of the 27 cells of the cell neighborhood, includ-
ing the home cell. By filtering we mean the identification of
particle pairs where the mutual short-range force is zero. A
perfect filter successfully removes all such pairs. The effi-
ciency of the filter is the fraction of undesirable particle pairs
removed. The extra work due to imperfection is the ratio of
undesirable pairs not removed to the desirable pairs.

We evaluate three methods, two existing and one new,
which trade off efficiency for hardware resources. As moti-
vated elsewhere [1], we store particle positions in three Carte-
sian dimensions, each in 32-bit integer. There are two param-
eters, precision and geometry.

1. Full Precision: Precision = full, Geometry = sphere
Computes r2 = x2 +y2 +z2 and compares whether r2 < r2

c

using full 32-bit precision. Filtering quality in this case is
nearly 100%. Except for the comparison operation, this is

the same computation that is performed in the force pipeline.

2. Reduced: Precision = reduced, Geometry = sphere
This filter, used by D.E. Shaw [3], also computes r2 = x2 +
y2 + z2, r2 < r2

c , but uses fewer bits and so substantially
reduces the hardware required. Lower precision, however,
means that the cut-off radius must be increased (rounded up
to the next bit) so filtering efficiency goes down: for 8 bits of
precision, it is 99.5%. In our reference example, each particle
is now matched with about 378 particles, rather than the 366
for perfect filtering, for about 3% extra work.
3. Planar: Precision = reduced, Geometry = planes
A disadvantage of the previous method is its use of multi-
pliers, which are the critical resource in the force pipeline.
This issue can be important because there are likely to be 6
to 10 filter pipelines per force pipeline. In this method we
avoid multiplication by thresholding with planes rather than
a sphere. The formulae are as follows:

• |x| < rc, |y| < rc, |z| < rc

• |x| + |y| <
√

2rc, |x| + |z| <
√

2rc, |y| + |z| <
√

2rc

• |x| + |y| + |z| <
√

3rc

With 8 bits, this method achieves 97.5% efficiency, or about
13% extra work.

Analysis
Table 1 summarizes the resource cost and quality (efficiency
and extra work) of the three filtering methods. Since multi-
pliers are a critical resource, we also show the two “sphere”
filters implemented entirely with logic. The cost of a force
pipeline (from [1]) is shown for scale.

The most important result is the relative cost of the filters
to the force pipeline. Depending on implementation, each
force pipeline needs between 6 and 10 filters to keep it run-
ning at full utilization. We refer to that set of filters as a filter
bank. Table 1 shows that a full precision filter bank takes
from 80% and 170% of the resources of its force pipeline.
The reduced and planar filter banks, however, require only
a small fraction: between 17% and 40% of the logic of the
force pipeline and no multipliers at all. Since the latter is
the critical resource, the conclusion is that the filtering logic
itself (not including interfaces) has negligible effect on the
number of force pipelines that can fit on the FPGA.

We now compare the reduced and planar filters. The
Extra Work column in Table 1 shows that for a planar filter
bank to obtain the same performance as logic-only-reduced,
the overall design must have 13% more throughput. This
translates, e.g., to having 9 force pipelines when using pla-
nar rather than 8 for reduced. The total number of filters
remains constant. The choice of filter therefore depends on
the FPGA’s resource mix.

5. BALANCING NEIGHBOR LIST SIZES

For efficient control and particle-memory access, and for smooth
interaction between filter and force pipelines, it is preferred
to have each force pipeline handle the interactions of a single



Table 1. Comparison of filtering schemes for quality and
resource usage. A force pipeline is shown for reference. Per-
cent utilization is for the Altera Stratix-III EP3SE260.

Filtering LUTs/ Multi- Filter Extra
Method Registers pliers Eff. Work

Full prec. 341/881 0.43% 12 1.6% 100% 0%
(logic only) 2577/2696 1.3% 0 0.0% 100% 0%
Reduced 131/266 0.13% 3 0.4% 99.5% 3%
(logic only) 303/436 0.21% 0 0.0% 99.5% 3%
Planar 164/279 0.14% 0 0.0% 97.5% 13%
Force pipe 5695/7678 5.0% 70 9.1% NA NA

reference particle at a time. This preference becomes critical
when there are a large number of force pipelines and a much
larger number of filter pipelines. Moreover, it is highly desir-
able for all of the neighborlists being created at any one time
(by the filter banks) to be transferred to the force pipelines
simultaneously (buffering mechanisms are described in Sec-
tion 6). It follows that each reference particle should have a
similar number of partner particles (neighbor list size).
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rc rc

rc

1 2

3

4

Home

5rc
a) b)

Fig. 3. Shown are two partitioning schemes for using New-
ton’s 3rd Law. In a), 1-4 plus home are examined with a full
sphere. In b), 1-5 plus home are examine, but with a hemi-
sphere (shaded part of circle).

The problem addressed in this subsection is that the stan-
dard method of choosing a reference particle’s partner parti-
cles leads to a severe imbalance in neighbor list sizes. How
this arises can be seen in Figure 3a, which illustrates the stan-
dard method of optimizing for N3L. So that a force between
a particle pair is computed only once, only a “half shell” of
the surrounding cells is examined (in 2D, this is cells 1-4 plus
Home). For forces between the reference particle and other
particles in Home, the particle ID is used to break the tie,
with, e.g., the force being computed only when the ID of the
reference particle is the higher. In Figure 3a, particle B has a
much smaller neighborlist than A, especially if B has a low
ID and A a high.

In fact neighborlist sizes vary from 0 to 2L, where L is
the average neighborlist size. The significance is as follows.
Let all force pipelines wait for the last pipeline to finish be-
fore starting work on a new reference particle. Then if that
(last) pipeline’s reference particle has a neighborlist of size
2L, then the latency will be double that if all neighbor lists

were size L. This distribution has high variance meaning that
neighbor list sizes greater than, say, 3

2L are likely to occur.
A similar situation also occurs in other MD implementations,
with different architectures calling for different solutions [6].

One way to deal with this load imbalance is to overlap
the force pipelines so that they work independently. While
viable, this leads much more complex control.

An alternative is to change the partitioning scheme. Our
new N3L partition is shown in Figure 3b. There are three new
features. The first is that the cell set has been augmented
from a half shell to a prism. In 2D this increases the cell
set from 5 cells to 6; in 3D the increase is from 14 to 18.
The second is that, rather than forming a neighbor list based
on a cutoff sphere, a hemisphere is used instead (the “half-
moons” in Figure 3b). The third is that there is now no need
to compare IDs of home cell particles.

We now compare the two partitioning schemes. There are
two metrics: the effect on the load imbalance and the extra
resources required to prevent it.

1. Effect of load imbalance. We assume that all of the force
pipelines begin computing forces on their reference particles
at the same time, and that each force pipeline waits until the
last force pipeline has finished before continuing to the next
reference particle. We call the set of neighbor lists that are
thus processed simultaneously a cohort. With perfect load
balancing, all neighbor lists in a cohort would have nearly
the same size, the average. The effect of the variation in
neighbor list size is the number of excess cycles—before a
new cohort of reference particles can begin processing—over
the number of cycles if each neighborlist were the same size.
The performance cost is therefore the average number of ex-
cess cycles per cohort. This in turn is the average size of the
biggest neighbor list in a cohort minus the average neighbor
list size. We find that, for the standard N3L method, the aver-
age excess is nearly 50%, while for the “half-moon” method
it is less than 5%.

2. Extra resources. The extra work required to achieve
load balance is proportional to the extra cells in the parti-
tion: 18 versus 14, or an extra 29%. This drops the frac-
tion of neighbor list particles in the cell neighborhood from
15.5% to 11.6%, which in turns increases the number of fil-
ters needed to keep the force pipelines fully utilized (over-
provisioned) from 7 to 9. For the reduced and planar filters,
this is not likely to reduce the number of force pipelines.

6. FILTER PIPELINE DESIGN

6.1. Mapping particle pairs to filters
From the previous sections we converge on an efficient de-
sign for filtering particle pairs:

• During execution, the working set (data held on the
FPGA) consists of the positions and accelerations of
particles in a cell set; i.e., a single home cell and its 17
neighbors (in the “half moon” scheme);
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• Particles from each cell are stored in a set of BRAMs:
this is currently one or two BRAMs per coordinate,
depending on the cell size, for a total of 108-216;

• The N3L partition specifies 7-9 filters per force pipeline;
• FPGA resources indicate 8-10 force pipelines; and
• Force pipelines handle at most a small number of ref-

erence particles at a time (and their N3L partners).

We now address the mapping of particle pairs to filter
pipelines. There are a large number of ways to do this; find-
ing the optimal mapping is in some ways analogous to opti-
mizing loop interchanges with respect to a cost function. Fig-
ure 4 shows two possibilities. In particle mapping (a), each
filter is responsible for a different reference particle. Each
cycle, a single partner particle from the cell set is broadcast
to all of the filters (and also to the other filter banks). In cell
mapping (b), each filter bank is collectively responsible for
a different reference particle. Each filter within a bank pro-
cesses the reference particle with respect to partners from its
own subset of 2 or 3 cells. The issues are as follows.

Force pipeline efficiency. Overall performance is propor-
tional to the efficiency of the force pipelines, i.e., the fraction
of cycles that they deliver “payload” (non-zero forces). Since
there are no stalls, the efficiency is proportional to the frac-
tion of cycles that they input payload particle pairs.

Payload generation rate. Given sufficient filters, a filter
bank will generate payload pairs at an average rate of greater
than one per cycle. The variance may be high, however,
which can substantially degrade efficiency.

Distribution of payload particle pairs. While the number
of payload particle pairs from a given cell set—or a given
reference particle—has small variance, the number and dis-
tribution of payload pairs generated by any particular filter
can vary wildly. For example, in Figure 3b, let two filters (in
a bank) each handle the same reference particle, but let the
partner particles be from different cells, say 3 and 5. Each
filter examines the same number of pairs, but the first filter

passes most of its input while the second passes almost none.

Queueing particle pairs. A simple (but costly) solution is
to: (i) append a large queue to each filter and (ii) implement
a flexible router from these queues to the force pipeline.

The two mappings lend themselves to multiple queueing
methods, the choice of which depends on resources available
on the FPGA. In the next two subsections we present two
queueing strategies, whole neighborlist and continuous. We
evaluate them with respect to the two particle mapping strate-
gies for performance (force pipeline efficiency) and hardware
cost (queue size and complexity).

6.2. Queueing whole neighborlists
If there are sufficient BRAMs, then particle mapping can be
used to generate neighborlists in their entirety and consumed
in the same way. Details are as follows; we assume particle
mapping, but the logic is similar for cell mapping.

• A phase begins with a new and distinct reference par-
ticle being associated with each filter.

• Then, on each cycle, a single particle from the 18-cell
set is broadcast to all of the filters.

• Each filter’s output goes to its own set of BRAMs.
• The output of each filter is exactly the neighborlist for

its associated reference particle.
• Double buffering enables neighborlists to be generated

by the filters at the same time that the previous phase’s
neighborlists are being drained by the force pipelines.

Advantages of this method include:
• Nearly perfect load balance among the filters (from the

“half-moon” partition);
• Little overhead: each phase consists of over 3000 cy-

cles before a new set of reference particles must be
loaded;

• Nearly perfect load balancing among the force pipelines:
each operates successively on a single reference parti-
cle and its neighborlist; and

• Simple queueing and control: neighborlist generation
is decoupled from force computation.



A disadvantage is that this queueing method requires hun-
dreds of BRAMs. Although there are a thousand or more on
some high-end FPGAs, this is still a concern.

6.3. Continuous Queueing
Figure 4 shows the basic queueing used in both mappings:
Some number of filters F in a filter bank feed a single force
pipeline. As described in Section 3.2 the force pipelines
should be as independent as possible. This is to constrain
the complexity of the routing between filter and force stages
and between force stage and ACC Cache.

At a high-level, this is a typical queueing problem with
F servers where each has known arrival and departure rates.
Also, the goal is to minimize idle time (when all queues are
empty) and hardware cost. The latter includes queue size, but
also complexity of the control and of the concentrator logic
that routes from the filters to the force pipeline.

There are also a number of differences, however. These
restrict the utility of stochastic analysis, but also point to im-
plementation methods.

1. Execution proceeds in phases: For particle mapping,
the filter bank processes F reference particles in a phase.
For cell mapping, it processes 1.

2. Uniformity: The total number of arrivals per reference
particle varies only slightly within a phase (for particle
mapping) and among phases (for both mappings).

3. Non-uniformities. The F queues can have highly non-
uniform departures and/or high variation in departures
during a phase. Depending on the position of the ref-
erence particle in the home cell and on the cell of its
partner, the a priori probability of a departure can be
anything from 0 to 1.

Some design considerations are as follows. To minimize
queue size, there are several mechanisms including under
provisioning (by keeping F small) and throttling (when queues
are full). Even if these are used, however, performance is im-
proved by smoothing and balancing the departure rates (ar-
rivals at the force pipelines). Here are three ways that help
do this.

Fetch order. Especially for particle mapping, departure rates
for each filter vary widely during a phase. For example,
in Figure 3b, the departure rate for the filter of the particle
shown will be near 0 when cell 4 is processed, but greater
than .5 for cell 3. This variation can be smoothed by ran-
domizing the order in which the partner particles are fetched
from the cell set. A simple way to approximate this is to fetch
particles from cells round-robin, rather than cell-at-a-time.

Cell mapping. For cell mapping, different cells in the cell set
vary widely in the probability that their particles will be part
of a neighbor list. For example, in Figure 3b, the Home cell
and cell 3 are much more likely to provide partner particles
than the corner cells (2 and 4). Pairing cells appropriately

helps smooth the arrival rates.

Concentrator logic. Complex logic can completely smooth
non-uniformities among filter queue arrivals (within a cy-
cle) by transferring them to the queues with the most space.
Logic that provides a good balance between effectiveness
and hardware cost is as follows: Round-robin among queues
with priority given first to those that are full and second to
those that are non-empty.

Table 2. Queue size requirement and utilization are shown
for various configurations with no throttling.

particle mapped cell mapped
# of filters 6 7 8 9 6 9
Queue size 10 18 36 80 6 36
Utilization 69.7% 81.2% 92.5% 99.3% 69.6% 98.3%

Table 2 shows various configurations with no throttling.
The maximum queue size is that required to prevent over-
flow with very high probability. The utilization is the av-
erage fraction of cycles that the force pipelines are busy.
“Cell mapped” requires smaller queues because it has shorter
phases: each filter bank processes one reference particle at a
time rather than F . Even the largest queues require much
less storage than the neighborlist queueing method from the
previous section.
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Fig. 5. Graph shows the effect of queue size on utilization for
various numbers of filters (queues) and mappings of particles
onto filters. PM is particle mapped, CM is cell mapped.

We now examine the effect of throttling. In this design,
the filters all halt when any is in danger of overflow. Since
the force pipelines consume every cycle, this happens when
multiple queues are within one of full. Figure 5 shows the
effect of queue size, number of filters (queues), and mapping
on utilization. Even with over provisioning, utilization can
be less than 100% because of non-uniformities in arrivals,
and because of start-up and tear-down effects. The key re-
sult is that with slight over provisioning, i.e., 9 filters, parti-
cle mapped yields 99.2% utilization for a (very small) queue
size of 8. Particle mapped is slightly better than cell mapped
because of its more uniform arrivals and longer phase.



7. RESULTS

We use NAMD [7] and ProtoMol [8] as reference codes, both
to determine the number of short-range particle-particle in-
teractions computed per iteration as well as the time per it-
eration per core. NAMD scales well with multiple cores and
multiple processors up to hundreds of processors.

We refer to the NAMD benchmark NAMD2.6 on ApoA1.
It has 92,224 particles, a bounding box of 108 Å × 108Å ×
78Å, and a cut-off radius of 12Å. By instrumenting the
codes, we determine that on average 33.4M non-trivial particle-
particle computations are performed per iteration. This agrees
very closely with the 33.75M computations expected from
Section 3. According to a study by Stone, et al. [7], this
benchmark is executed at 1.78 seconds per iteration on a sin-
gle core of an Intel core 2 quad-core 2.66 GHz processor.

We use the force pipeline specified in a previous study
[1]. It uses a mix of 32-bit integer (extended for accumula-
tion) and single precision floating point. We find that there is
little change in simulation quality over full double precision.

Our implementations are currently running in simulation.
They have also been validated with serial reference codes.
Results are through post place-and-route (PaR) using the stan-
dard Altera tool chain and assume the Stratix-III SE260 or
SL340. PAR is sufficient to give precisely the resource us-
age and the number of pipelines. For operating frequency we
currently achieve 200MHz; physical implementations are of-
ten slightly lower. On the other hand, the floating point cores
(and code compiled using the Altera Floating Point Compiler
or FPC) are specified to run at more than 250MHz, so with
some optimization higher performance could be realized.

Our base design uses reduced filtering, “half-moon” par-
titioning, particle mapping, and has 9 filters per force pipeline.
For other FPGAs, planar filtering may be preferred. For
queueing, the method depends on the balance between BRAMs
on the one hand and logic and DSP units on the other. For
the Stratix-III SL340 (more BRAMs), queueing full neighbor
lists (Section 6.2) is preferred. This configuration fits 8 force
pipelines. For the Stratix-III SE260 (more DSP blocks), us-
ing concentrator-based queueing (queue size = 8 with throt-
tling) is preferred. This configuration also fits 8 force pipelines.
The force pipelines run at over 95% efficiency.

This design can execute the short-range force for the ApoA1
benchmark in under 22ms. This represents an 80-fold per-
core speed-up over the result shown in [7]. Since NAMD
scales well, this represents a 20-fold speed-up over a full
quad core implementation. While this benchmark result is a
little dated, its microprocessor is comparable in process tech-
nology to the Stratix-III that we use here.

In our previous work we completely overlap the short-
range force computation with host work; in [2] we found
host overhead to be around 40ms on a single core. This code
must now be parallelized to keep it off of the critical path.
Also essential, as for all accelerators, is efficient communi-
cation between host and coprocessor. For simulations of less

than a few hundred thousand particles, conventional I/O bus
interfaces should be sufficient.

8. DISCUSSION AND FUTURE WORK

We have presented a study of filtering that we believe is the
first for FPGAs and one of only very few for hardware im-
plementation. The resulting designs, coupled with previous
work in force pipeline design, show that FPGAs are highly
competitive for MD simulation.

Specific contributions are as follows. We find that high
quality filtering can be achieved with only a small amount of
logic. We present a geometric filtering scheme that is prefer-
able for some FPGA implementations. We also present a
new partitioning method for optimizing with respect to New-
ton’s 3rd Law. This is essential for the design presented here,
but could also find application in other hardware implemen-
tations. And finally, the particle-mapping variation for map-
ping particle pairs to filter pipelines also appears to be new.
We also present methods for sizing components and for inte-
grating sections of the overall processing pipeline.

The performance results show that achieving 78-fold per
core speed-ups are plausible (19-fold over a quadcore), even
over optimized code on same generation multicore proces-
sors. With the Stratix-IV we can fit 16 pipelines (rather than
8) for a proportional speed-up of the short-range force.
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