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ABSTRACT

Molecular Dynamics (MD) is of central importance to com-
putational chemistry. Here we show that MD can be imple-
mented ef£ciently on a COTS FPGA board, and that speed-
ups from 31× to 88× over a PC implementation can be ob-
tained. Although the amount of speed-up depends on the
stability required, 46× can be obtained with virtually no
detriment, and the upper end of the range is apparently vi-
able in many cases. We sketch our FPGA implementations
and describe the effects of precision on the trade-off between
performance and quality of the MD simulation.

1. INTRODUCTION

Molecular Dynamics (MD) is a fundamental part of compu-
tational chemistry. In the last few years MD has become, if
anything, even more critical as it has been applied to model-
ing molecular interactions in drug design (see e.g. [1]), and
to predicting molecule structure with applications to home-
land security.

MD is an iterative technique that runs in phases: the
forces on each atom (bzw. molecule) are computed, then
applied using equations of motion. Although modern force
computations have become highly sophisticated (with 10 or
more terms in some cases), the complexity generally resides
in computing the van der Waals (Lennard-Jones or LJ) and
Coulombic terms. These long-range forces are O(N 2) in
the number of particles N , while the motion updates are
O(N), and the other forces–which only look at bonds–are
also O(N). Here we describe work in accelerating MD us-
ing FPGAs. We restrict our attention to the motion updates
and the O(N2) force terms.

MD is an obvious candidate for acceleration with special
purpose hardware (see e.g. [2, 3]). In the study by Azizi, et
al. [2], 2001-era FPGA technology was used to obtain per-
formance similar to that of a 2004-era PC; this was extrapo-
lated to a 20x speed-up by assuming hardware updates.
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Our work differs from previous approaches in that we
combine the following: on the hardware side, that we use
a COTS board; on the implementation side, that we model
the Coulombic as well as the LJ term, and that we support
the simultaneous modeling of multiple types of molecules.
Perhaps most interesting for continued FPGA investigations,
we also have investigated precision/accuracy trade-offs.

Our primary result is that FPGA-based MD acceleration
is likely to be many times more effective than previously in-
dicated. We have obtained speed-ups of between 31× and
88× depending on the stability required, and the model of
the FPGA hardware used: 46× can be obtained with virtu-
ally no detriment, and the upper end of the range is appar-
ently viable in many cases. This is while using signi£cantly
more detailed force and particle models.

The primary signi£cance is that a speed-up of two or-
ders of magnitude is the oft-cited minimum for initial ac-
ceptance of non-standard computing technology. Also sig-
ni£cant is that this can be achieved using a ¤exible COTS
board; that it is FPGA-based means that the hardware can
ride the technology curve for commodity chips and that the
con£gured algorithms can be updated as new discoveries are
made. Also interesting is that use of con£gurable hardware
may allow the use of precision as a design-space parameter
for MD practitioners.

2. MOLECULAR DYNAMICS OVERVIEW

Molecular Dynamics simulations generally proceed in phases,
alternating between force computation and motion integra-
tion. For motion integration, we use the Verlet method (de-
scribed, e.g. by Frenkel and Smit [4]).

In general, the forces depend on the physical system
being simulated and may include van der Waals (Lennard-
Jones or LJ), Coulomb, hydrogen bond, and various cova-
lent bond terms. Because the hydrogen bond and covalent
terms affect only neighboring atoms, computing their ef-
fect is O(N) in the number of particles N being simulated.
In coprocessor-based systems they are therefore generally
computed by the host, or in the case of coprocessors based
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on Xilinx Virtex-Pro FPGAs, by the on-board microproces-
sor. The LJ force for particle i can be expressed as:
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where the εab and σab are parameters related to the types of
particles, i.e. particle i is type a and particle j is type b. The
Coulombic force can be expressed as:
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We implement both Coulombic and LJ forces; we also im-
plement multiple atom types.

The LJ force quickly goes to zero with distance; this is
not the case with the Coulombic force. There are many ways
to set the boundary conditions to deal with the long range ef-
fect; these can be classi£ed as being either non-periodic or
periodic. If one of the former is chosen, the Coulombic force
is computed in a manner analogous to the LJ force; if the lat-
ter, then FFT-based or multigrid methods can be used. We
brie¤y describe the issues involved; this is necessary to jus-
tify the utility of our selection of the simpler method, albeit
the one with the higher asymptotic complexity.

The choice of boundary condition is a tradeoff between
error and speed. Generally the quality of the choice is de-
termined by the seriousness of the simulation artifacts intro-
duced, something to which both periodic and non-periodic
methods are susceptible. A recent summary by Hansson et
al. [5] argues that although periodic methods are an elegant
solution, the competing methods are also accurate as they
show by referencing a number of recent studies.

The issue of boundary conditions is important in the
present work because the relative computational complexity
of the methods differs when implemented on an FPGA from
when implemented on a PC or a supercomputer. In partic-
ular, algorithms are not equally effective across computing
platforms. On a supercomputer, FFT-based techniques ap-
pear usually to be preferable; on an FPGA, the problem size
where transform-based techniques are preferable to direct
computation may be much higher or even non-existent [6].

3. DESIGN

The high-level design is shown in Figure 1. As is common
in MD hardware implementations, £xed point is used. Our
use of £xed point should not be confused with the use of
the integer data type, however. By appropriate initial selec-
tion of the units and by scaling the data as it ¤ows through
the hardware, the precision of the computation remains very
close to the width of the datapath.

At the highest level, the computation core (shown in Fig-
ure 1) is itself wrapped by a communication layer to facil-
itate data transfer between the FPGA and the host PC via
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Fig. 1. Block diagram of the FPGA parts of the system.

a PCI interface. Within the computation core, the Force
Pipeline Array and the Verlet Pipeline Array are responsi-
ble for computing the forces on each particle and the motion
updates, respectively. The two arrays, in turn, each con-
tain a number of pipelines (described below). Because of
the inherent two-phase structure of the algorithm, the ar-
rays work consecutively. There is therefore some sharing
of hardware, especially multipliers, between the arrays. The
various memories hold data as indicated. The Force Pipeline
Array contains a pair-controller which, during each itera-
tion, generates the addresses of the particle pairs and also
accumulates the forces on each particle. On the Verlet side,
each pipeline, on each iteration, takes the position, velocity,
and acceleration data of one particle and outputs the updated
motion parameters of another.
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Details of the Force Pipeline Array are shown in Fig-
ure 2. We £rst describe how data¤ow is orchestrated and



Y. Gu, T. VanCourt, M.C. Herbordt / Proc. IEEE Conf. on Field Programmable Logic and Applications (2005) 3

then the details of the force computation itself. The number
of force pipelines N varies with the precision of the compu-
tation and the technology (as described further below) and is
currently either 4 or 8. With N force pipelines, we can ini-
tiate computation for N pairs simultaneously, meaning that
the data of N pairs must be fetched and stored each cycle.
The data fetch of the computation pairs can be viewed as a
pair of nested loops with the inner loop unrolled N times
and parallelized. The inner loop particle data are fed into
the Pj registers and the outer loop data into the Pi register.
The i = j case is inhibited.
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Fig. 3. Detail of a single force pipeline.

Details of the individual force pipelines are shown in
Figure 3. Each pipeline has 28 stages that can be grouped
into 8 functions:

1. Compute the displacement in each dimension.

2. Perform periodic boundary refolding if necessary.

3. Compute the square of the distance between particle
pairs.

4. Check the distance. If the distance squared is out of
range, a special index is used for table lookup.

5. Divide the distance squared by the bin size to get the
index for the force table. The division is done by mul-
tiplying the reciprocal of the bin size.

6. Look up the force parameter based on the types of the
particles and the distance squared.

7. Do linear interpolation on the force parameter.

8. Multiply the interpolated force parameter by the dis-
placement vector of the particle to get the force.

The Verlet update pipeline is shown in Figure 4. For
computational simplicity, the standard equations are reordered
into the following:

vel(t+ 1) = vel(t) + acc(t) ∗ dt
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Fig. 4. Shown is a Verlet update block.

pos(t+ 1) = pos(t) + vel(t+ 1) ∗ dt

However, in the implementation, the mass is not taken into
account until the update phase so in the £rst equation, ve-
locity is actually the momentum and acceleration the force.
Rewriting, we obtain:

momentum(t+ 1) = momentum(t) + force(t)

dp = momentum(t+ 1) ∗ 1/mass

position(t+ 1) = position(t) + dp

Since there is no interaction between particles in this phase,
the implementation is straightforward with an eight stage
pipeline.

4. PRECISION

It is well known that for particular applications, FPGA im-
plementations can achieve speed-ups of 1000× or more. These
applications are characterized by high parallelism which can
be translated into high circuit utilization. They are usually
also characterized by low-precision data where the FPGA
implementation can trade off datapath width for an increased
number of function units. Probably for this reason, researchers
have avoided applications that are “canonically” double pre-
cision ¤oating point, including MD. Recent exceptions in-
clude [2, 7].

However, we believe that a central area of research in
FPGA-based acceleration is analyzing applications to see
whether double precision ¤oating point is actually needed,
or whether it is simply used because it has little marginal
performance cost on contemporary microprocessors [8, 6].
A well-known study by Amisaki, et al. [9] investigated pre-
cision required for MD; they showed that certain important
measures relevant to MD simulation quality do not suffer
when precisions of various intermediate data are reduced
from 53 bits to 25, 29, and 48 bits, respectively. A more ex-
treme observation was made by La Penna, et al. who write
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Total Energy Fluctuation vs Precision
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Fig. 5. Shown is the effect of precision on two metrics for simulation accuracy: (a) Fluctuation of total energy and (b) the
ratio of the ¤uctuations in total and kinetic energies. Simulations were carried out with two different time-steps.

that “in our very long simulations we did not see signs of
instabilities nor of any systematic drift” due to using sin-
gle, rather than double precision ¤oating point [10]. Clearly,
though, this last reference is not the consensus.

However, it is also the case that the issue of exactly how
much precision is required for which particular MD sim-
ulations has not been well-studied.1 This is precisely be-
cause MD implementations are nowadays almost universally
run on machines where there is little incentive to not using
double precision. However, for implementations on con£g-
urable circuits, the situation is quite different. If it is pos-
sible to reduce the precision without appreciably changing
the quality of the simulation, then it is possible to increase
the computational resources that can be applied. This in turn
should result in substantially better overall performance. To
us, therefore, this is an important problem – we present our
initial results here.

One classic check for simulation quality is to measure
the ¤uctuation of physical quantities that should remain in-
variant, such as energy. The relative rms ¤uctuation in total
energy is de£ned as:

√

|〈E2〉 − 〈E〉2|

|〈E〉|

We ran a set of experiments based on two versions of
serial reference code, reproducing as closely as possible the
experiments done by Amisaki et al. [9]. The £rst used dou-
ble precision ¤oating point, the second tracked the hardware
implementation, e.g. in varying precision. When the pre-
cision of the £xed point code was set at 50 bits, the results
precisely matched that of the ¤oating point code.

1Of course the opposite question of what to do when double precision
appears to be inadequate is a fundamental issue (see e.g. [11]). The general
solution is to increase the resolution of the time steps.

We ran a large number of experiments to £nd the rela-
tionship between energy ¤uctuation and precision. In agree-
ment with [9], we found that the various function units can
be tuned independently to derive the optimal FPGA circuits
that retain minimal energy ¤uctuation. For simplicity, how-
ever, we present results where the precision of the entire dat-
apath is varied in unison. We use two different simulation
time scales: time steps were set to E-15 seconds and E-16
seconds, respectively. A graph showing the results from this
set of experiments is shown in the left part of Figure 5. One
observation is that, in this experiment, a 40-bit datapath re-
sults in a similarly low energy ¤uctuation as a full 53-bit
datapath.

However, ¤uctuation of total energy is not the only check
that a system is “well-behaved.” Another is the ratio of the
¤uctuations between total energy and kinetic energy R =
∆Etotal/∆Ekinetic. R should be less than .05 [12]. We plot
R in the right half of Figure 5. Note that by this measure,
31 bits are suf£cient for time-steps of E-15 seconds and 30
bits are suf£cient for time-steps of E-16 seconds. Although
greater precision results in “better” behavior, that better be-
havior may not be needed.

At this point we inject into the discussion the reality of
the target technology, a high-end 2004-era FPGA. A num-
ber of implementation factors (such as the number of block
RAMs and hard multipliers, indexing issues, etc.) lead to
the observation that there are two sweet spots in the design
space: (1) 4 force pipelines with nearly full precision (51-
bit), or (2) 8 force pipelines with 35-bit precision. In the
£rst implementation, behavior is equivalent to double pre-
cision ¤oating point. In the second implementation, quality
depends on the metric. The 35-bit design has from a factor
of 10x to 50x more energy ¤uctuation than the best case,
but between 100x and 500x lower R than what has been
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Table 1. Results related to various MD implementations. “VP70 AMS” refers to actual timing from the Annapolis Microsys-
tems Wildstar board with a Xilinx Virtex-II-Pro XC2VP70 -5 FPGA. “VP100 sim” refers to timing derived from simulation
only, assuming a Xilinx Virtex-II-Pro XC2VP100 -6 FPGA. Speed-up is with respect to a PC with a 2.4GHz Xeon CPU.

Platform Precision Pipe-lines HW mult’s used Block RAMs used Delay Speed-up
(bits) (% of usage) (% of usage) (ns)

VP70 AMS 35 4 176(53%) 214(65%) 11.1 50.8×
VP70 AMS 40 4 264(80%) 251(77%) 12.2 46.4×
VP70 AMS 45 4 288(88%) 285(87%) 13.2 42.7×
VP70 AMS 51 4 288(88%) 317(97%) 18 31.3×
VP70 AMS 35 8 256(78%) 326(99%) 22.2 51.0×
VP100 sim 51 4 288(65%) 317(77%) 13.6 41.5×
VP100 sim 35 8 256(58%) 334(75%) 12.8 88.5×

regarded as minimal to indicate “good behavior.” Perhaps
this is a case where there is a very large difference between
“good enough” and “best possible”?

Until now, MD users have almost never had the choice
of precision: either double precision was good enough or
it was not. If it was not, then some other quantity, such
as time-step, needed to be varied. With implementations on
con£gurable circuits it is possible to do the reverse: trade off
unneeded precision for computing resources. Further study
will show whether 35 bits, or some other implementation
dependent precision, is indeed suf£cient.

5. IMPLEMENTATION, VALIDATION, AND
RESULTS

The design was implemented on a WildstarII-Pro board from
Annapolis Micro Systems, which has two Xilinx Virtex-II-
Pro XC2VP70 -5 FPGAs (referred to as VP70 AMS in Ta-
ble 1). However, only one of the FPGAs is currently used.
Some designs were also implemented in simulation-only on
a Xilinx Virtex-II-Pro XC2VP100 -6 FPGA (referred to as
VP100 sim in Table 1).

The critical path originally ran through the hard multi-
pliers but this has now been optimized. For example, for
the 40-bit multipliers, instead of using three hard multipli-
ers with 25ns latency, we use nine hard multipliers with 9ns
pipelined latency. The fact that 35 and 51 bit datapaths are
preferred on the Virtex-II-Pro FPGAs is an artifact of the
hard multiplier format.

The VP70 implementations all hold 8K particles on chip.
Larger simulations require off-chip memory access. How-
ever, the deterministic nature of the computation and the
tremendous off-chip memory bandwidth of the Virtex-II-
Pros should make running these larger simulations with no
slowdown straightforward. We are currently implementing
this extension.

The LJ force is computed with look-up table and linear
interpolation. The look-up table is indexed in three dimen-

sions: Pi type, Pj type, and distance squared. Two memories
are used, one for the even index entries, one for the odd in-
dex entries. Following the serial reference code, the table
has 2K entries. The precision of the entries matches the pre-
cision of the datapath. The resolution of the table appears to
be adequate, given the measurements shown in Figure 5.

Look-up tables for two particle types currently £t on-
chip. For more particle types, tables must be swapped as
needed. However, since the particle types are known and
the particles can be ordered a priori, this swapping should
usually be possible without requiring stalls.

Overall, the critical resources are the hard multipliers
and, in particular, the block RAMs. Harder to gauge is the
relationship between slices used and design complexity. The
Synplicity synthesis tool, which we used, appears to be ex-
cellent at trading off slices for performance as a large frac-
tion of slices were used in every implementation.

The design was validated against two serial reference
codes, an external double precision ¤oating point code (see
[13]) and our own code that tracked the hardware implemen-
tation. Against the hardware tracker, the match was exact.
Against the double precision ¤oating point code there was a
very close match as to be expected from the analysis in [9]
and the previous section. Both reference codes ran at about
9.5s per MD time-step on a PC with a 2.4GHz Xeon CPU.
This is similar to the 10.8s for a 2.4GHz P4 described in [2].

We have created several variations of these designs; three
are of particular interest: 35-bit with eight pipelines, 40-bit
with four pipelines, and 51-bit with four pipelines. The rea-
soning is as follows. Recall from the previous section that
datapath sizes of 30 bits, 40 bits, and 51 bits are required to
obtain adequate R, best Efluct, and performance virtually
indistinguishable from double precision ¤oating point, re-
spectively. We replace the 30-bit datapath with a 35-bit dat-
apath because it uses virtually the same hard resources and
substantially improves R and Efluct. On the other hand, go-
ing from a 51-bit datapath to a 53-bit datapath (to equal the
precision of double precision ¤oating point) requires sub-
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stantially more hard multipliers, but for little bene£t.
Results are shown in Table 1. The 51-bit four-pipeline

and the 35-bit eight-pipeline implementations are aggressive
for the VP70. They use such a high fraction of the chip re-
sources that there is a substantial reduction in operating fre-
quency. We therefore also synthesized these for the VP100:
the numbers shown are post place and route.

Neither the serial code, nor the FPGA codes were opti-
mized beyond taking care to follow good design procedures.
However, the serial code does perform the force computa-
tion using a table look-up, saving many ¤oating point oper-
ations over a direct implementation.

6. OPTIMIZATIONS AND EXTENSIONS

As always when measurements are done with respect to ra-
pidly advancing technology, all numbers reported here are
transient. However, FPGAs appear to be following Am-
dahl’s law just as much as are microprocessors. For the
current study, this is probably to the bene£t of the FPGA
designs: increased resources can be immediately applied to
the computation by adding pipelines.

Another axis of variation is design effort. Given a few
months effort by experienced FPGA designers and assem-
bly language programmers, both FPGA and reference codes
could perhaps be improved substantially. We believe, how-
ever, that this would not change the basic fact that nearly
two orders of magnitude speed-up can be obtained.

The most important next task is to integrate our MD im-
plementations into a production code. We are investigating
several alternatives.

An obvious extension involves using completely differ-
ent algorithms, in particular those based on Ewald sums or
FFT-based methods: with the current work being done on
FFTs for FPGAs, this might happen soon. However, as per
our discussion above, it is far from certain that this will re-
sult in improved results. Intriguing is the possibility of using
the second FPGA on our Wildstar board for this computa-
tion while retaining most of the original design on the £rst.
Finally, this work is part of a larger project involving the
acceleration of applications in computational biochemistry
(e.g. [14]) and will be integrated into that.
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