
An Efficient ���� Priority Queue for
Large FPGA-Based Discrete Event Simulations of

Molecular Dynamics��

Martin C. Herbordt Francois Kosie� Josh Model�

Computer Architecture and Automated Design Laboratory
Department of Electrical and Computer Engineering

Boston University; Boston, MA 02215

Abstract: Molecular dynamics simulation based on
discrete event simulation (DMD) is emerging as an
alternative to time-step driven molecular dynamics
(MD). Although DMD improves performance by sev-
eral orders of magnitude, it is still compute bound. In
previous work, we found that FPGAs are extremely
well suited to accelerating DMD, with speed-ups of
���� to ���� being achieved. Large models, how-
ever, are problematic because they require that most
predicted events be stored in off-chip memory, rather
than on the FPGA. Here we present a solution that
allows the priority queue to be extended seamlessly
into off-chip memory, resulting in a throughput equal
to the hardware-only priority queue, or about ���

faster than the best software-only algorithm. The
solution is based on the observation that—when an
event is predicted to occur far in the future—not only
can its processing be imprecise, but the time when
the processing itself occurs can also be substantially
delayed. This allows numerous optimizations and re-
structurings. We demonstrate the resulting design on
standard hardware and present the experimental re-
sults used to tune the data structures.

1 Introduction
Molecular dynamics (MD) simulation is a fundamen-
tal tool for gaining understanding of chemical and bi-
ological systems; its acceleration with FPGAs has re-
ceived much recent attention [1, 3, 8, 9, 10, 11, 20,
23]. Reductionist approaches to simulation alone,
however, are insufficient for exploring a vast array

�This work was supported in part by the NIH through awards
#R21-RR020209-01 and and #R01-RR023168-01A1, and facili-
tated by donations from XtremeData, Inc., SGI, and Xilinx Corpo-
ration. Web: http://www.bu.edu/caadlab.

�EMail: �herbordt�kosief�jtmodel�@bu.edu
�Currently at Teradyne, Inc.
�Currently at MIT Lincoln Laboratory

of problems of interest. For example, with tradi-
tional time-step-driven MD, the computational gap be-
tween the largest published simulations and cell-level
processes remains at least 12 orders of magnitude
[6, 22].

In contrast, intuitive modeling is hypothesis driven
and based on tailoring simplified models to the phys-
ical systems of interest [5]. Using intuitive models,
simulation length and time scales can exceed those
of time-step driven MD by eight or more orders of
magnitude [6, 21]. The most important aspect of
these physical simplifications, with respect to their ef-
fects on the mode of computation, is discretization:
atoms are modeled as hard spheres, covalent bonds
as hard chain links, and the van der Waals attraction
as square wells. This enables simulations to be ad-
vanced by event, rather than time step: events occur
when two particles reach a discontinuity in interparti-
cle potential.

Even so, as with most simulations, discrete event
simulation (DES) of molecular dynamics (DMD) is
compute bound. A major problem with DMD is that,
as with DES in general [7], causality concerns make
DMD difficult to scale to a significant number of pro-
cessors [14]. Any FPGA acceleration of DMD is
therefore doubly important: not only does it multiply
the numbers of computational experiments or their
model size or level of detail, it does so many orders of
magnitude more cost-effectively than could be done
on a massively parallel processor, if it could be done
that way at all.

In recent work [15] we presented an FPGA-based
microarchitecture for DMD that processes events with
a throughput equal to a small multiple of clock fre-
quency, with a resulting speed-up over serial imple-
mentations of ���� to ����. The critical factor en-
abling high performance is an ���� hardware imple-

1

mentation of common associative operations. In par-
ticular, the following standard DES/DMD operations
are all performed in the same single cycle: global tag
comparisons, multiple (but bounded) priority queue
insertions, multiple (unbounded) priority queue inval-
idations, and priority queue dequeue and advance.

This event-per-cycle performance, however, de-
pends on a pipelined hardware priority queue, which
in turn appears to indicate that the entire simulator
must reside on a single FPGA. While such a system
is adequate for some important cases—i.e., for mod-
els with up to a few thousand particles through meso-
time-scales—it is also severely limited. The problem
addressed here is how to extend FPGA acceleration
of DMD to support large models. In the process, we
also address the wider-ranging problem of creating
large efficient ���� priority queues, where by “large”
we mean too big to be done solely in hardware on
a single chip, and by “efficient” we mean with a very
small constant factor within the Big-O.

The issues are that in any realistic FPGA-based
system, much of the queue will necessarily reside
in off-chip memory, and that the well-known prior-
ity queue software algorithms require data structures
whose basic operations often have ���	
�� com-
plexity [19]. A recent improvement yields ���� com-
plexity [17], but remains a factor of ��� slower than
the hardware. The goal here is therefore to prevent
the off-FPGA memory accesses, needed to support
simulation of large models, from reducing the overall
throughput to the level of software.

The solution is based on the observation that
when an event is predicted to occur far in the future,
then not only can its processing be imprecise (an idea
already used by Paul [17]), but that the time when the
processing itself occurs can also be substantially de-
layed. This allows us to optimize the data structures,
reorganize the queue operations, trade off bandwidth
for latency, and allow the latency of queue operations
to be completely hidden. The result is that the hard-
ware priority queue can be extended off-chip while
retaining full performance. We demonstrate this on
standard hardware and present the experimental re-
sults used to tune the data structures.

2 Discrete Molecular Dynamics

2.1 DMD Overview

One simplification used in DMD models is the aggre-
gation of physical quantities such as atoms, entire

(d)(c)

(b)(a)

Figure 1: DMD force models: Force versus interparti-
cle distance for a) hard spheres, b) hard spheres and
hard chain link, c) simple LJ square well, and d) LJ
with multiple square wells.

residues, or even multiple residues into single sim-
ulation entities. These are often referred to as beads,
a term originating from the simulation of polymers as
“beads on a string.” Forces are also simplified: all in-
teractions are folded into step-wise potential models.
Figure 1a shows the infinite barrier used to model a
hard sphere; Figure 1b an infinite well for a covalent
bond (hard chain); and Figures 1c and 1d the van der
Waals model used in MD, together with square well
and multi-square-well approximations, respectively. It
is through this simplification of forces that the com-
putation mode shifts from time-step-driven to event-
driven.

Time-Ordered
Event Queue

arbitrary insertions
and deletions

Event
Processor

Event
Predictor

(& Remover)

System
State

events

new state
infostate

info events &
invalidations

Figure 2: Block diagram of a generic discrete event
simulator.

Overviews of DMD can be found in many standard
MD references, particularly Rapaport [19]. A DMD
system follows the standard DES configuration (see
Figure 2) and consists of the

� System State, which contains the particle char-
acteristics: velocity, position, time of last update,
and type;

� Event Predictor, which transforms the par-
ticle characteristics into pairwise interactions
(events);

� Event Processor, which turns the events back
into particle characteristics; and

� Event Priority Queue, which holds events wait-
ing to be processed ordered by time-stamp.

Execution progresses as follows. After initializa-
tion, the next event (processing, say, particles � and
�) is popped off the queue and processed. Then,
previously predicted events involving � and �, which
are now no longer valid, are invalidated and removed
from the queue. Finally, new events involving � and �

are predicted and inserted into the queue.

To bound the complexity of event prediction, the
simulated space is subdivided into cells (as in MD).
Since there is no system-wide clock advance during
which cell lists can be updated, bookkeeping is fa-
cilitated by treating cell crossings as events and pro-
cessing them explicitly. Using a scheme proposed
by Lubachevsky [12], each event execution causes at
most four new events to be predicted. The number of
invalidations per event is not similarly bounded.

3 Priority Queue Background

3.1 Software Priority Queues

The basic operations for the priority queue are as
follows: dequeue the event with the highest priority
(smallest time-stamp), insert newly predicted events,
and delete events in the queue that have been invali-
dated. A fourth operation can also be necessary: ad-
vancing, or otherwise maintaining, the queue to en-
able the efficient execution of the other three opera-
tions. The data structures typically are

� an array of bead records, indexed by bead ID;
� an event priority queue; and
� a series of linked lists, at least one per bead, with

the elements of each (unordered) list consisting
of all the events in the queue associated with that
particular bead (see, e.g., [19]).

Implementation of priority queues for DMD is dis-
cussed by Paul [17]; they “have for the most part been
based on various types of binary trees,” and “all share
the property that determining the event in the queue
with the smallest value requires ���	
�� time [13].”

Using these structures, the basic operations are per-
formed as follows.

1. Dequeue: The tree is often organized so that
for any node the left-hand descendants are events
scheduled to occur before the event at the current
node, while the right-hand descendants are sched-
uled to occur after [19]. The event with highest priority
is then the left-most leaf node. This dequeue opera-
tion is therefore either ���� or ���	
�� depending on
bookkeeping.

2. Insert: Since the tree is ordered by tag, insertion
is ���	
��.

3. Delete: When an event involving particles � and �

is processed, all other events in the queue involving �

and � must be invalidated and their records removed.
This is done by traversing the beads’ linked lists and
removing events both from those lists and the priority
queue. Deleting all events invalidated by a particu-
lar event is ���� on average as each bead has an
average of slightly less than two events queued, in-
dependent of simulation size.

4. Advance/Maintain: Binary trees are commonly
adjusted to maintain their shape. This is to pre-
vent their (possible) degeneration into a list and so a
degradation of performance from ���	
�� to ����.
With DMD, however, it has been shown empirically
by Rapaport [18] and verified here (see Section 6),
that event insertions are nearly randomly (and uni-
formly) distributed with respect to the events already
in the queue. The tree is therefore maintained with-
out rebalancing, although the average access depth
is slightly higher than the minimum.

3.2 Paul’s Algorithm

In this subsection we summarize work by G. Paul [17]
which leads to a reduction in asymptotic complexity
of priority queue operations from ���	
�� to ����,
and a performance increase of �� to �� for small and
large simulations, respectively.

The observation is that most of the ���	
�� com-
plexity of the priority queue operations is derived from
the continual accesses of events that are predicted to
occur far in the future. The idea is to partition the pri-
ority queue into two structures. A small number of
events at the head of the queue, say 20, are stored in
a fully ordered binary tree (as before), while the rest of
the events are stored in an ordered array of small un-
ordered lists. To facilitate further explanation, let �����
be the time of the last event removed from the queue

and � be the time of the event to be added to the
queue. Each of these unordered lists contains exactly
those events predicted to occur within its own interval
of �� � � � �� ��� where �� is fixed for all lists. That is,
the �th list contains the events predicted to occur be-
tween ��������� ���� and ��������� ��������.
The interval �� is chosen so that the tree never con-
tains more than a small number of events.

Also retained from before are the bead array and
the per-bead linked lists of bead events.

Using these structures, the basic operations are
performed as follows.
1. Dequeue: While the tree is not empty, operation is
as before. If the tree is empty, a new ordered binary
tree is created from the list at the head of the ordered
array of lists.
2. Insert: For �� � ������ 	 ��, the event is inserted
into the tree as before. Otherwise, the event is ap-
pended to the �th list, where �� �� � ������
���.
3. Delete: Analogous to before.
4. Advance/Maintain: The array of lists is con-
structed as a circular array. Steady state is main-
tained by continuously “draining” the next list in the
ordered array of lists whenever a tree is depleted.

For the number of lists to be finite there must exist
a constant ���� such that for all � , ��������� 	 ����.
In practice, most of the lists are small until they are
about to be used.

Performance depends on tuning ��. The smaller
��, the smaller the tree at the head of the queue,
but the more frequent the draining and the larger the
number of lists. For serial implementations, Paul finds
that choosing �� so that the lists are generally 	 ��

maximizes performance. It also makes the number
of lists very large, in the millions for large simula-
tions. We describe bounding the number of lists in
Section 6.

3.3 Hardware-Only Priority Queue

We briefly describe our hardware implementation of
the DMD priority queue [15]. While not the subject
of this paper, some background is necessary to see
what we need to interface to.

To effect event-per-cycle throughput, the event pri-
ority queue must, on every cycle: (i) deliver the next
event in time order, (ii) invalidate an unbounded num-
ber of events in the queue, (iii) correctly insert up
to four new events, and (iv) advance and maintain
the queue. The queue is composed of four single-

<

>
Comparator

Network

DeQ

Logic

To

Event

Processor

Routing

Randomizer

Invalidations

New Elements

From Event

Predictor

Figure 3: Four insertion event priority queue.

insertion shift register units, as seen in Figure 3. The
event predictor presents two to four new elements to
the routing randomizer network at each cycle. One of
the 24 possible routes is pseudo-randomly selected
and each of the four shift register units determine the
correct location to enqueue its new element. Simul-
taneously, the dequeueing decision is generated by
examining the heads of each of the four shift register
units, and choosing the next event.

The shift register units themselves are an ex-
tension of the hardware priority queue described in
[16], with shift control logic completely determined
by the comparator results in the current and neigh-
boring shift register unit cells. With up to four en-
queue operations per clock cycle and only a sin-
gle dequeue, the event priority queue would quickly
overflow. Steady-state is maintained, however, as
on average an equal number of events are inserted
as removed and deleted. Invalidations are broad-
cast to each element of the queue every clock cy-
cle. The issue now becomes dealing with the “holes”
thus opened in the queue; these are filled through
“scrunching,” a mechanism that allows events to con-
ditionally shift forward by two slots.

4 Off-Chip Queue Design

4.1 Constraints and Specifications

Hardware system overview
The FPGA-based system is assumed to consist of a
host computer and an FPGA board. The host com-
puter can be a PC or other microprocessor-based
computational unit such as a node in a cluster or
board in an SMP. The FPGA board should have an
at-least moderately high-performance interface to the
host. The interface is not critical, however, and a
PCI connection is adequate. The FPGA board is as-

Figure 4: Partial block diagram of the Annapolis Mi-
crosystems Wildstar-II/PCI [2].

sumed to have a high-end FPGA at least of the Virtex-
II/Stratix families, plus several 32-bit SRAM banks
that are accessible independently and in parallel. The
number and bandwidth of these banks is somewhat
flexible: we compute below the minimal configura-
tion for optimal performance and the potential per-
formance loss of having less than that. The total
SRAM size is assumed to be in the small number of
MBs. FPGA boards like this are commonly available
from the major vendors such as XtremeData, SGI,
Annapolis Microsystems, SRC, DRC, and Nallatech
(see Figure 4 for an example).

Software system overview
The DMD computation requires little partitioning. The
entire application as described is self-contained. Host
intervention is only required for initialization, display,
periodic recalibration of temperature and/or energy,
and fault recovery.

Design specification
The overall specification is to create an extension to
the priority queue described in Section 3.3 that pro-
vides extra size with no performance loss. The follow-
ing are the critical performance numbers.

� The cycle time is between 5ns and 10ns and is
assumed to be roughly equal to the SRAM ac-
cess time. While this is likely to scale with tech-
nology in the near-term, longer term changes in
the ratio of on chip cycle time to off-chip SRAM
access will change the resource requirements,
but not the overall design.

� Events are processed at the rate of = .65 events
per cycle. The ideal throughput is one event per

cycle, but hazards [15] reduce the effective per-
formance to the number indicated. The simu-
lation of more complex force models is likely to
reduce this throughput further (although not the
acceleration factor).

� The event record size is 96 bits. This includes
two time-stamps of 32 bits each, one each for
the event time and for the time it was predicted,
and up to two bead IDs of 16 bits each.

� The maximum number of events that need to be
queued off-chip is 128K. This is because other
design constraints limit the total number of beads
to fewer than 64K beads, and because we are
guaranteed to have less than two events per
bead (as discussed previously). For reference,
this translates into simulations of up to about
250K particles for typical intuitive models. These
numbers can be increased substantially, how-
ever, without requiring any changes in the priority
queue design presented here.

� The empirically determined enqueue rate
for the off-chip part of the queue is 1.6
events/processed event, or about one event
per cycle. Because of the uniform distribution
of queue insertion position, this number is only
slightly below the generation rate.

� The empirically determined dequeue rate for the
off-chip part of the queue is .5 events/processed
event or about .3 events/cycle. The dequeue
rate is substantially less than the overall through-
put because insertions and invalidations cause
events to advance more slowly the farther away
they are from the head of the queue.

� The total bandwidth required is therefore about
1.3 events/cycle or about 4 32-bit transfers per
cycle.

The remaining problem
We have tested Paul’s Algorithm by appending it to
Rapaport’s highly efficient DMD simulator [4, 19] and
running it on a Dell Workstation with an Intel 2.5GHz
Xeon E5420 Quad Core processor. For simple mod-
els, Rapaport’s original DMD code requires an aver-
age of 4.4us per event of which 1.8us involves queue
operations. Paul’s algorithm reduces the time re-
quired for queue operations to less than 0.5us. The
hardware FPGA queue, however, processes events
with a throughput of one per 15ns. Assuming that the
best software implementation could be interfaced di-
rectly to the hardware, this still leaves more than a
factor of ��� (0.5us to 15ns) to be made up.

4.2 Design

Basics
Paul’s algorithm is the obvious starting point. Us-
ing this algorithm directly, however, is not practicable
since too much performance would be lost in pointer
following: most of the available memory bandwidth
would be wasted on overhead references, rather than
on transferring the data itself. The key to the design
is to eliminate this overhead and so fully utilize the
available bandwidth.

Motivating observation
The performance gain in Paul’s algorithm is based on
the observation that we should concentrate our queue
computation on the events that are about to happen.
This results in the execution of quick, but only par-
tially precise, queue operations for the vast majority
of events. Queue processing for an event is only com-
pleted, i.e., a total ordering of events created, just be-
fore the event is actually executed.

We take this a step further: not only can the ini-
tial queue operations be imprecise, but the time when
these queue operations occur can also be imprecise.
In fact the time at which a queue operation is per-
formed can be delayed almost until the event is about
to be executed. This idea allows us to apply two com-
putational advantages of being able to create pro-
cessing logic (versus software): dedicated parallel
functions and trading off latency for bandwidth.

Design sketch
Since the number of memory accesses per cycle is
fixed, we need to use virtually all of them for data
transfer. This precludes use of pointer following, dy-
namic structures, and dynamic memory allocation.
Instead, we rely solely on array operations.

Use of arrays in place of linked-lists leads to
its own inefficiencies that must be addressed: the
amount of SRAM is limited (in comparison to, say, a
PC’s DRAM) and likely to be a constraint on simula-
tion size. In particular, unlike the software-only im-
plementation, supporting millions of lists may not be
viable. Rather, we need to keep the number of lists
small and fixed. Also, the lists themselves must all
have the same fixed size. This fixed list size (actu-
ally a bound), however, does not mean that all of the
lists have the same number of elements; most are
rarely more than half full. This is discussed further in
Section 6. Also, because the ordering mechanism (of
events in the list on draining) is much more efficient
in hardware than in software, the average number of
events per list can be targeted to be much larger than

in software. Some other basic ideas are as follows.

� We trade off latency for bandwidth in two ways:
with FIFO event queues at the output ports (the
memory banks), and by periodic round-robin
streaming onto the FPGA for list draining.

� No deletions of invalidated events are performed
while the events are off-chip. Rather we accu-
mulate the appropriate information on-chip and
perform invalidations during draining.

� Also, we perform on-the-fly sorting of events dur-
ing draining using the existing priority queues.

Data structures
We use the ordered array of unordered lists as the
starting point.

� The ordered array has fixed size and resides on
the FPGA. Each entry has a pointer to the be-
ginning of its list, the list’s memory bank number,
and the list’s current event count.

� Each list also has fixed size. Lists are interleaved
among the memory banks.

� Bead memory is on-chip and represents the
global system state. Each record has the bead’s
motion parameters, particle type, and the time-
stamp of the last event in which it was involved.

� Unlike the software implementations, there are
no bead-specific event lists. Rather, we use the
time-stamps to process invalidations.

� To keep the number of lists fixed and moderate,
the interval covered by the last list must be much
less than ����. As is shown in Section 6, the
number of events that are “beyond current lists”
(BCL) is small and can therefore be handled sep-
arately and efficiently.

Operations
Dequeue/Advance. Rather than continuously de-
queueing single events, we successively drain lists
by streaming them onto the chip. The timing is such
that a list is virtually always being drained. Since the
lists are interleaved among the memory banks, the
memory bank being read rotates. Events are checked
for validity as they are loaded by checking their time-
stamps against those in bead memory. Events are
sorted after they are loaded onto the FPGA using an
extension to the hardware priority queue mechanism.

Insert. Up to four insertions can be generated per cy-
cle but, on average, 1.5 need to go off-chip. For each
event, the interval is computed and then converted
into memory bank and location. The list count is in-
cremented and the event routed to the appropriate
write queue. Appended to the event is the time-stamp

SRAM controllers

System
State
(Bead

Memory)

Validity
Check

Lists (1D fixed size arrays)
in external SRAM banks

FPGAFPGA

SRAMsSRAMs

Readback Controller

Figure 5: Block diagram of the queue advance part of the off-chip priority queue interface.

of when the event was predicted. If the memory bank
is free (not being read), then the event is written.

Invalidate. Invalidations are performed as needed as
lists are drained onto the FPGA. The records of both
beads are checked: if an event involving either bead
has occurred since the event was queued, then the
event is invalidated.

5 Queue Implementation

The high-level block diagrams for a DMD off-chip con-
troller are shown in Figures 5 and 6. The implemen-
tation is for a configuration as shown in Figure 4, but
can be mapped with little change to other high-end
FPGA-based systems.

Overall, there are six memory controllers for the
six SRAM memory banks. Lists are distributed
among the banks in round-robin fashion. Because
a drain of one of these banks is almost always in
progress, writes must be queued. Also, up to four
events per cycle are generated, which need to have
their destinations computed and then must be routed
to the appropriate output queue. Some complications
are the time required for enqueueing and dequeue-
ing, and the handling of BCL events. A description of
the components follows.

Readback Controller: Shown in Figure 5, it handles
reading back events from the off-chip lists. Events
are pulled out of the priority queue when a trigger is
fired by the main on-chip logic. Puts events that have

been read back into a small priority queue for validity
checking, buffering, and partial sorting.

Memory (SRAM) Controllers: Shown in Figures 5
and 6, they perform the actual reads and writes to and
from the memory banks. This is the only component
that is platform specific.

The remaining components are shown in Figure 6.

Memory Bank Selector: Inputs events from the pre-
dictors and the BCL queue and determines the mem-
ory bank, the list, and the position to which they
should be enqueued. Once the list has been com-
puted, the bank and address are found in the off-chip
list state.

Offchip List State: A global repository for list state;
contains the number of the current base list (head
of the circular queue) and the number of events cur-
rently in each list. Used to determine destination ad-
dresses of events to be written, and the next list to be
drained. Requires the use of block RAMs.

Off-chip Router: Routes each event from the mem-
ory bank selector logic to the correct memory bank
write queue. Since latency is not critical here, the
router logic can be simplified by carrying it over a
number of stages.

BCL Controller: Inserts events into a priority queue
that were predicted to occur beyond the time covered
by the current lists when they were generated. Han-
dles deciding when to read back events from the BCL
queue and forward them to the off-chip router.

Lists (1D fixed size arrays)
in external SRAM banks

SRAM controllers

Bank write queues

Off-chip Router

Events from predictors

Address generators
and bank selectors

BCL priority queue
and controller

Off-chip
list state
(array of

lists)

FPGAFPGA

SRAMsSRAMs

Figure 6: Block diagram of the enqueue part of the off-chip priority queue interface.

6 Performance Tuning

As with many efficient FPGA-based applications,
DMD requires changes in structure from the serial
version. As such, its success depends on certain crit-
ical application-dependent factors. In this section, we
examine whether (i) the fixed size bound of the lists
that can, with very high probability, keep them from
overflowing, (ii) the number of lists necessary to keep
small the number of events that are “beyond current
lists,” and (iii) the fraction of events that are invalidated
while they are off-chip.

To determine these factors, software modeling
was performed on a large number of list configura-
tions (number of lists and list sizes). The results are
now given for a design that is close to optimal for the
hardware previously described. The following param-
eters were used:

� On-chip priority queue holds 1000 events
� 512 off-chip lists
� Scaling factor of 50 (see [17]) for a target number

of events per list of 128 at draining
� List size (maximum possible number of events in

any list) = 256
� Initial transient of 10,000 cycles

Distribution of maximum event count per list
Figure 7 shows a histogram of the number of events in
the first off-chip list prior to that list being drained onto

Figure 7: Histogram showing distribution of events
per list for list about to be drained.

the FPGA. The distribution is tightly grouped around
the target size and has a strict upper bound. That
is, in our experiments, no list ever contained 200 or
more events. For these physical simulations, a list
size of 256 is sufficient with high probability. For differ-
ent physical simulations, the average list size varies,
but the variance of event counts remains small.

Figure 8: Graph showing average and maximum list
sizes versus list number (distance from the list about
to be drained).

Distribution of events through lists
Figure 8 shows the maximum and average number
of events in all the lists as a function of distance of
the list from the current time. Again, the distribution
decreases quickly so that only a very small number
of events is “beyond current lists.” We also measured
the number of events in the BCL queue for this con-
figuration and found that a BCL queue size greater
than 10 was never needed. We therefore conclude
that a BCL queue size of 20 is sufficient, with high
probability.

Proportion of events invalidated
For the invalidation-during-drain scheme to work, a
large fraction of events must still be valid (not inval-
idated) when they are brought on-chip. For exam-
ple, if 90% of the events have been invalidated, then
that fraction of the transfer bandwidth will have been
wasted. We find that from 58% to 62% of events have
been invalidated, depending on the on-chip queue
size. This means that the actual amount of “drain”
bandwidth must be .75 events/cycle. This increases
the total bandwidth from about 1.3 events/cycle to
1.75 events/cycle and the total bandwidth required
from about 128 bits/cycle to about 170 bits/cycle. This
translates to keeping our 6-bank design running at
88% capacity.

7 Discussion and Future Work

We have presented a priority queue design that al-
lows for the seemless extension of the hardware
queue into off-chip memory. Its significance is first

that this allows high-acceleration, FPGA-based, DMD
to work for models with sizes into the hundreds of
thousands of particles. Further significance is that
this design should work just as well for other applica-
tions of DES, and for other places where large priority
queues are needed.

Several more optimizations are possible. One is
to be more aggressive with number of lists and list
size. This would make faults such as list overflow a
regular occurrence. As long as their frequency re-
mains at, say, less than 1 per ten million events, then
implementing an external fault recovery mechanism
could be cost-effective. For example, overflow detec-
tion logic could easily be added to the queues. In
these rare cases events could be queued in neighbor-
ing lists since the hardware priority queue is tolerant
of partially ordered insertions. Another optimization is
to have multiple list sizes. As can be seen in Figure 8,
only the last hundred lists are likely to have more than
50 elements. This optimization also requires another
level of intervention, but would certainly enable more
efficient storage.

Overall, our work in DMD continues in supporting
more complex force models.

Acknowledgments. We thank the anonymous re-
viewers for their many helpful comments and sugges-
tions.

References

[1] Alam, S., Agarwal, P., Smith, M., Vetter, J., and Caliga,
D. Using FPGA devices to accelerate biomolecular
simulations. Computer 40, 3 (2007), 66–73.

[2] Annapolis Micro Systems, Inc. WILDSTAR II PRO for
PCI. Annapolis, MD, 2006.

[3] Azizi, N., Kuon, I., Egier, A., Darabiha, A., and
Chow, P. Reconfigurable molecular dynamics simu-
lator. In Proceedings of the IEEE Symposium on Field
Programmable Custom Computing Machines (2004),
pp. 197–206.

[4] Dean, T. Parallelizing discrete molecular dynamics
simulations. Master’s thesis, Department of Electrical
and Computer Engineering, Boston University, 2008.

[5] Ding, F., and Dokholyan, N. Simple but predictive pro-
tein models. Trends in Biotechnology 3, 9 (2005), 450–
455.

[6] Dokholyan, N. Studies of folding and misfolding using
simplified models. Current Opinion in Structural Biol-
ogy 16 (2006), 79–85.

[7] Fujimoto, R. Parallel discrete event simulation. Com-
munications of the ACM 33, 10 (1990), 30–53.

[8] Gu, Y., and Herbordt, M. FPGA-based multigrid
computations for molecular dynamics simulations.

In Proceedings of the IEEE Symposium on Field
Programmable Custom Computing Machines (2007),
pp. 117–126.

[9] Gu, Y., VanCourt, T., and Herbordt, M. Improved
interpolation and system integration for FPGA-based
molecular dynamics simulations. In Proceedings of the
IEEE Conference on Field Programmable Logic and
Applications (2006), pp. 21–28.

[10] Kindratenko, V., and Pointer, D. A case study in porting
a production scientific supercomputing application to a
reconfigurable computer. In Proceedings of the IEEE
Symposium on Field Programmable Custom Comput-
ing Machines (2006).

[11] Komeiji, Y., Uebayasi, M., Takata, R., Shimizu, A., It-
sukashi, K., and Taiji, M. Fast and accurate molecu-
lar dynamics simulation of a protein using a special-
purpose computer. Journal of Computational Chem-
istry 18, 12 (1997), 1546–1563.

[12] Lubachevsky, B. Simulating billiards: Serially and in
parallel. Int. J. Comp. in Sim. 2 (1992), 373–411.

[13] Marin, M., and Cordero, P. An empirical assessment
of priority queeus in event-driven molecular dynam-
ics simulation. Computer Physics Communications 92
(1995), 214–224.

[14] Miller, S., and Luding, S. Event-driven molecular dy-
namics in parallel. Journal of Computational Physics
193, 1 (2004), 306–316.

[15] Model, J., and Herbordt, M. Discrete event simula-
tion of molecular dynamics with configurable logic. In
Proceedings of the IEEE Conference on Field Pro-
grammable Logic and Applications (2007), pp. 151–
158.

[16] Moon, S.-W., Rexford, J., and Shin, K. Scalable
hardware priority queue architectures for high-speed
packet switches. IEEE Transactions on Computers
TC-49, 11 (2001), 1215–1227.

[17] Paul, G. A complexity ���� priority queue for event
driven molecular dynamics simulations. Journal of
Computational Physics 221 (2007), 615–625.

[18] Rapaport, D. The event scheduling problem in molec-
ular dynamics simulation. Journal of Computational
Physics 34 (1980), 184–201.

[19] Rapaport, D. The Art of Molecular Dynamics Simula-
tion. Cambridge University Press, 2004.

[20] Scrofano, R., and Prasanna, V. Preliminary investi-
gation of advanced electrostatics in molecular dynam-
ics on reconfigurable computers. In Supercomputing
(2006).

[21] Sharma, S., Ding, F., and Dokholyan, N. Multiscale
modeling of nucleosome dynamics. Biophysical Jour-
nal 92 (2007), 1457–1470.

[22] Snow, C., Sorin, E., Rhee, Y., and Pande, V. How
well can simulation predict protein folding kinetics and
thermodynamics? Annual Review of Biophysics and
Biomolecular Structure 34 (2005), 43–69.

[23] Villareal, J., Cortes, J., and Najjar, W. Compiled code
acceleration of NAMD on FPGAs. In Proceedings of
the Reconfigurable Systems Summer Institute (2007).

