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Abstract:  FPGA-based acceleration of molecular dynam-
ics (MD) has been the subject of several recent studies.  
Implementing long-range forces, however, has only re-
cently been addressed.  Here we describe a solution based 
on the multigrid method.  We show that multigrid is, in 
general, an excellent match to FPGAs:  the primary opera-
tions take advantage of the large number of independently 
addressable RAMs and the efficiency with which complex 
systolic structures can be implemented.  The multigrid ac-
celerator has been integrated into our existing MD system, 
and an overall performance gain of 5x to 7x has been ob-
tained, depending on hardware configuration and reference 
code.  The simulation accuracy is comparable to the origi-
nal double precision serial code.   

1. INTRODUCTION 

Molecular Dynamics simulations (MD) are a fundamental 
tool for gaining the understanding of chemical and biologi-
cal systems.  In one of its most impressive applications, the 
complete satellite tobacco mosaic virus was simulated [8].  
The computational cost, however, was over a month of 
compute time on a 256-node cluster.  As this and many 
other studies indicate, accelerating molecular dynamics is 
one of the most important problems in high-performance 
computing. 
 
MD is an iterative technique that runs in phases:  the forces 
on each particle are computed, then applied using equations 
of motion.  In modern MD systems, the force computations 
often involve many terms, including bonded (covalent, hy-
drogen) and non-bonded (van der Waals, Coulombic).  The 
non-bonded force is often partitioned into short- and long-
range components.  The complexity of the motion update 
and the short-range force computations is O(N) in the num-
ber of particles, and generally requires only a small fraction 
of overall compute time. The complexity of the non-bonded 
force computations is O(N2) in the direct implementation, 
and comprises the bulk of the computation.  Complexity 
can be reduced substantially, however.  For the short range 
component, O(N) is obtained by dividing the system into 
cells and/or maintaining lists of particles within a certain 
distance of a given particle.  For the long-range component, 
O(NlogN) or better is obtained with transform- or grid-
based methods. 

Several recent efforts have demonstrated the viability of 
FPGA-based acceleration of MD (FPGA/MD) [1][2][9][10] 
[12][13][18][19].  The FPGA/MD design space defined by 
these studies is spanned by several axes: 
 
• Precision:  Is 53 bits used (double precision), or 24 (sin-

gle precision), or something else?  How is the choice 
motivated? 

• Arithmetic mode:  Is floating point used?  Block float-
ing point?  Scaled binary?  Logarithmic representation?  
A hybrid representation? 

• Base MD code:  Is it a standard production system?  An 
experimental system?  A reference code? 

• Target hardware:  What model FPGA is used?  How is 
it integrated, on a plug-in board, or in a tightly inte-
grated system? 

• Design flow:  How is the FPGA configured?  With a 
standard HDL, or a C-to-gates process, or some combi-
nation? 

• Scope:  MD implementations have a vast number of 
variations – which are supported?  In particular, how is 
the long-range force computation performed?  With cut-
off or a switching function?  Or, is a more accurate, and 
more computationally complex, method used?  Is this 
done on the FPGA or in software? 

 
This study concentrates on the last of these issues: We use 
the multigrid method to implement the long-range force 
computation on the FPGA. 
 
Multigrid for FPGA/MD has two major advantages.  First, 
it is a fast and accurate method for solving boundary value 
problems such as the electrostatic computation that arises in 
MD [3][5][7][11][16][17][20].  Second, it maps extremely 
well to FPGAs.  The primary operations are: applying 
charges onto a 3D grid, performing convolutions on 3D 
grids, and applying a 3D grid back onto the particles.  The 
first and third of these can be implemented to take advan-
tage of the FPGA’s high-performance support of complex 
memory access (as demonstrated, e.g., in [22]); the second 
has often been shown to yield high efficiency.  A further 
advantage of using multigrid is that implementing the 3D 
FFT on the FPGA is avoided, although this is approach has 
also been shown to be viable [14]. 
 



We integrate our long-range force computation into our 
existing ProtoMol-based FPGA/MD system, and show fac-
tors of 5x to 7x speed-ups (on 2004 era hardware) over PC-
only execution while retaining accuracy.  
 
The significance of this work is as follows:  we demonstrate 
an FPGA algorithm for the multigrid grid method; we show 
that multigrid can be used to provide substantial speed-up 
for the MD long-range force computation; and that, there-
fore, substantial acceleration can be obtained for complete 
FPGA/MD simulations. 

2. COULOMB FORCE COMPUTATION AND 
MULTIGRID METHOD 

2.1. MD Force Computation 

In general, the forces being simulated depend on the physi-
cal system under study and can include van der Waals 
(Lennard-Jones or LJ), electrostatic (Coulomb), hydrogen 
bond, and various covalent bond terms: 
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Eq 1 

Because the hydrogen bond and covalent terms (bond, an-
gle, torsion) affect only neighboring atoms, computing 
their effect is O(N) in the number of particles N being 
simulated.  These, as well as the motion update (also 
O(N)), are therefore generally computed on the host.  The 
LJ force for a particle i can be expressed as: 
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where εab and δab are parameters related to the types of 
particles.  The Coulombic force can be expressed as: 
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A standard way of computing the long-range forces is by 
applying a cut-off.  Then the force on each particle is the 
result of only particles within the cut-off radius.  Since this 
radius is typically less than a tenth of the size per dimen-
sion of the system under study, the savings are tremendous, 
even given the more complex bookkeeping required to 
keep track of cell- or neighbor-lists.  The problem with cut-
off is that, while it is often sufficiently accurate for the 
rapidly decreasing LJ force, the error introduced in the 
slowly declining Coulombic force may be unacceptable.  A 
number of methods have been developed to address this 
issue. 
 
The Ewald method computes the long range Coulomb 
force with periodic boundary conditions, i.e., where the 
system is replicated infinitely in all directions.  As the 
Coulomb force on a particle involves interactions with all 
other particles, the result is an infinite summation.  The 
Ewald method solves this by splitting the summation into 

two parts, real and reciprocal.  The real part is fast con-
verging and can be computed accurately with a cut-off in 
O(N); the reciprocal part is also fast converging, but in 
reciprocal space.  The overall complexity, including FFT, 
is O(N3/2).  Various improvements reduce the complexity 
to O(NlogN) [6][7][25]. 
 
An alternative approach is the multigrid method, which can 
operate directly on the Coulomb force rather than the re-
ciprocal part of the Ewald sum.  It therefore does not need 
an FFT.  Also, it does not have to be applied with the peri-
odic boundary condition; and finally, it can be applied to 
systems with non-uniform distributions. 
 
2.2. The Multigrid Method 

Many important computations, from solving systems of 
equations to solving partial differential equations (PDEs), 
can be executed by discretizing to a grid and iteratively 
performing operations in all neighborhoods.  Multigrid al-
gorithms improve the convergence rate of basic finite dif-
ference methods by using a hierarchy of discretizations, 
often reducing complexity to O(N) in the number of grid 
points.  The up and down traversal of the grid hierarchy is 
called a V-cycle.   

 
We now sketch the general multigrid algorithm following 
the presentation by Yavneh [24].  Algorithm 1 is a series of 
recursive V-cycles.  The fine-to-coarse operation is referred 
to as restriction, coarse-to-fine as prolongation. 
 
We begin with qn, the known parameters on the current grid 
(e.g., the charge distribution), and finish with the solution un 
(e.g., the potential distribution) of the PDE un = L*qn.  Step 
1 solves the PDE directly, if the grid is small enough.  Step 
2 does the first relaxation to give a guess of the solution.  
Step 3 computes the residual (error) of the guess.  Step 4 
restricts the known parameters to a coarser grid (having 
fewer grid points and unknown variables) with a basis func-
tion A.  Step 5 specifies the boundary condition, for exam-
ple, by setting ul+1 to zero for a vacuum.  Step 6 calls the V-
cycle recursively to solve the residual.  Step 7 uses function 
I to prolongate the solution of the residual as a correction 
from the coarse grid back to the current grid, and integrates 

Function ul = V-Cycle(ul, ql, l) 
Begin 

1. If this is coarsest grid, solve Ll* ul  = ql 
and return ul. 

2. uh  = Relax0( ul, ql, l ) 
3. rl  = ql-Ll * ul 
4. ql+1  = Al+1

l*rl  
5. ul+1  = 0 
6. ul+1  = V-Cycle( ul+1, ql+1, l+1 ) 
7. u l = ul+Il

l+1* ul+1 
8. ul  = Relax1( ul, ql, l ) 
9. Return ul 

End 

Algorithm 1. The general multigrid V-cycle



the correction with the guess.  Step 8 does another round of 
relaxation.  Step 9 returns the solution.  

 
Figure 1 shows a V-Cycle.  With a constant number of it-
erations per level and a geometric reduction in grid points 
per level, the resulting complexity is O(N). 
 
2.3.  Multigrid for Coulomb Force Computation 

Recall the difficulties with com-
puting the Coulombic force:  it 
converges too slowly to use cell-
lists directly, but using a cut-off 
approximation (shown at right) is 
not highly accurate.  The solution 
is to split the force into two com-
ponents (shown below):  a fast converging part that can be 
solved locally, e.g., with cell lists, and the remainder, 
which is sometimes called the “softened” part. 

This appears to create an even more difficult problem:  the 
softened function converges even slowly than the original.  
The key idea is to pass the softened function on to the next 
coarser level, where it is again split.  This continues until 
the coarsest level is reached.  There, the problem should be 
small enough for the direct solution to be efficient. 
  
More formally (and following the presentation by Skeel, et 
al. [20]), the problem of Coulomb force computation is to 
compute the potential distribution by solving the Green’s 
function for the given charge distribution.  The electro-
static potential is expressed as: 
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For computational accuracy, 1/r is split into two parts with 
a smoothing function ga(r), 
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 declines fast enough to be cut-off beyond dis-
tance a, while ga(r) varies slowly with distance.  Via the 
smoothing function, the high frequency parts of 1/r become 
a short range term that can be computed in the same way 
as the Lennard-Jones force (in O(N) steps).  The choice of 
the smoothing function is beyond the scope of this discus-
sion; it can be a Gaussian distribution, as is used with 
Ewald Sums, or the one applied in this paper and shown 
below.  The smoothing function, i.e., the PDE to be solved, 
can be evaluated precisely on a grid when the wavelength 
of the highest frequency remaining term is equivalent to 
the grid cell size. 
 
Grid-based algorithms map the smoothing function defined 
in the continuous coordinate space to the one defined in the 
discrete grid coordinate space.  This can be described by 
the following energy equation: 
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where qi and qj are particle charges, and qh,m and qh,n are 
charges at points m and n on a grid with spacing h.  There 
are many approaches to solving the smoothing functions 
on a grid, including the Particle Mesh Ewald algorithm, the 
multigrid based algorithms used here, and even (for small 
scale problems) direct computation. 
 
We map the smoothing function problem to the multigrid 
algorithm with the following V-cycle.  Given ga(r) on a 
grid with spacing h, we define a coarser grid with spacing 
2h where ga(r) is smoothed by another smoothing function, 
g2a(r), as shown here: 
 

)())()(()( 22 rgrgrgrg aaaa +−=   Eq 7 
The local correction ga(r)-g2a(r) takes out the high fre-
quency component of ga(r) and becomes short range too.  
The even slower varying g2a(r) can now be approximated 
more efficiently on the even coarser grid and so on until 
the coarsest grid.  This specifies the first half of V-cycle. 
 
After the potential has been computed on the coarsest grid, 
we still need to compute the slowly varying component 
and then to apply it to each particle.  First, the potential on 
the coarsest grid is interpolated back to the finer grids and 
combined with local corrections on each level.  This com-
prises the second half of the V-cycle.  Finally, forces are 
generated by differentiating the potential on the finest grid 
in three dimensions, and interpolating the result to each 
particle’s position.   

Direct solving 

Time steps 

G
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Figure 1.  V-cycle schematic 
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The flow chart of this algorithm is shown in Figure 2.  The 
operations can be classified into two types: particle-grid 
conversion and grid-grid steps.  The particle to grid charge 
assignment (TP1) and the grid to particle potential interpo-
lation (TP2) both apply a basis function Φ(w) and its gra-
dient.  A 3rd order and a 5th order basis function are pro-
posed in [20].  The assignment is computed as: 
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Eq 8 
where Q1(x,y,z) is the charge on finest grid points (x,y,z); 
Qm is the charge of particle m; (xm,ym,zm) are the particle 
coordinates.  The interpolation is computed with: 
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Eq 9 

where Fm.x is the force in x direction, which is interpolated 
from the grid point (x,y,z).  The other operations (AG, 
COR, DIR, IG) can be represented as 3D matrix convolu-

tions.  According to Eq 5, the smoothing function matrix 
on grid Ωl can be expressed as: 
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where Al+1
l is the assignment matrix that anterpolates 

charge from the fine grid Ωl to the coarse grid Ωl+1; Il
l+1 is 

the interpolation matrix that interpolates potential from 

coarse grid to fine grid; and 
lĜ  is the local correction 

matrix.  Given a charge matrix Ql, the potential matrix Vl 
is computed as: 
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On the coarsest grid ΩL, GL denotes the direct computation 
between all grid point pairs. 
 
Eq 11 reveals that, except on the coarsest grid, three con-
volutions are performed on every grid: (i) to assign charge 
distribution to the next coarser grid, (ii) to compute the 
local correction, and (iii) to interpolate the potential from 
the next coarser grid back to current grid.  The coarsest 
grid only has one convolution with GL.  In addition, be-

cause 
LG ,

lĜ , 
1+l

lA  and 
l
lI 1+ are independent of l and 

Tl
l

l
l AI )( 1

1
+

+ = , only three convolution cores need to be 
precomputed.  

3. DESIGN FOR FPGA ACCELERATION 

3.1. Overview 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The overall algorithm is shown schematically in Figure 3.  
Starting at the upper left, the per-particle potentials are par-
titioned into short and long range components.  The short 
range (van der Waals and short range component of the 
Coulombic) is computed directly, e.g. with cell lists, while 
the long range is applied to the finest grid.  Here the force is 
split again, with high-frequency component solved directly 
and the low-frequency passed on to the next coarser grid.  
This continues until the coarsest level where the problem is 
solved directly.  This direct solution is then successively 
combined with the previously computed finer solutions 

T 

T 

TP1: Assign charge from 
particles to the finest grid. 

Start 

AG: Assign charges from a fine 
grid to the next coarsest grid. 

COR: Compute local correc-
tion on grid. 

Move to the next coars-
est grid and check 

whether it is the coarsest 

DIR: Compute all grid point 
pair-wise interactions. 

IG: Interpolate potential from a 
coarse grid to the next finest grid 

Move to the next finest 
grid and check whether 

it is the finest 

TP2: Differentiate potentials on 
the finest grid, interpolate them 
to particles, and multiply them 

with particle charge. 

End 

Figure 2.  Flowchart of multigrid method for the Cou-
lomb force 
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Figure 3. Multigrid method for the Coulomb force



(corrections) until the finest grid is reached.  Here the forces 
are applied directly to the particles. 
 
Following the two types of operations just described, our 
multigrid coprocessor requires two kinds of computation 
modules: a particle-grid converter and a grid-grid convolver.  
Because these operations are executed sequentially, compu-
tation modules can be shared.  On-chip memories are a 
critical part of the multigrid coprocessor:  not only do they 
provide scratch space between operations, they  also merge 
computation models with different data access interfaces.  
In the rest of this section, we describe:  the FPGA-specific 
multigrid method, our computation modules, and the inter-
leaving memory structure.   
 
3.2. Particle-Grid Converter 

The particle-grid converter applies Eq 8 (or Eq 9) to per-
form assignment (or interpolation) between particles and 
their the neighboring grid points. 

 
We scale our coordinates to match the finest grid.  In one 
dimension (see Figure 4), we can partition the particle posi-
tion into two components gi|oi where gi is the index of the 
previous point and oi is the distance from the grid point.  It 
then suffices to use oi alone to compute the contributions of 
q to any surrounding neighborhood of gi’s. 

The basis function Φ(w) (or dΦ(w)) is used.  This takes 3 
steps: (i) scaling the particle coordinates to grid coordinates 
to extract the grid index gi (xm,ym,zm) and offset oi (|xm-
x|,|ym-y|,|zm-z|); (ii) computing the assignment (or interpola-
tion) weights Φ(w) (or dΦ(w)); and (iii) multiplying the 
weights by the charge (or potential) on the grid point.  We 
normalize grid cell sizes to be powers of 2 so that scaling 
particle coordinates to grid coordinates only requires zero-
cost shifting.  The bits to the left of the binary point are then 
gi, those to the right oi.  

For Φ(w) (or dΦ(w)) (we use those derived by Skeel, et al 
[20]), instead of computing Φ(w) directly, we modify the 
basis function to be a set of polynomials of oi for the parti-
cle’s neighboring supporting grid points.  For example, Eq 
12 is the 3rd order basis function applied by our coprocessor, 
and w is the distance between particle and grid points: 
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By substituting w with oi+1, oi, 1-oi, and 2-oi, we have 
four polynomials corresponding to the four neighboring 
grid points (as shown in Figure 4): 
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These polynomials, as well as the four for dΦ(w), are func-
tions of oi, oi2, and oi3.  The basis function pipeline shown 
in Figure 5 computes all eight polynomials from a common 
input. 

 
With a Pth order basis function, one particle is associated 
with P3 grid points.  Performing the assignment (or interpo-
lation) in parallel both speeds up the computation and re-
duces the number of basis function pipelines. Figure 6 
shows one quarter of the tree structure of a 1:43 particle-
grid converter.  Each color circle multiplies its input by 
Φ(w) (or dΦ(w)) from the cube of the matching color in the 
basis function pipeline.  The circles of matching color in the 
last column share the same outputs from a single basis func-
tion pipeline, as do those in the second column (not shown 
here).  This structure has 43-way parallelism with only three 
basis function pipelines for three dimensions. 

Input 

Figure 6.  One quarter of a 1:64 particle-grid converter 
tree structure. 
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Figure 5. Basis function pipeline for Φ(w) and dΦ(w). 
‘switch’ selects the output from Φ(w) and dΦ(w). 
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During charge assignment, the input is the particle charge, 
and the outputs are the charges assigned to neighboring grid 
points.  For interpolation of the potential, the input is the 
constant 1 (see Figure 7), and the ‘switch’ of each basis 
function pipeline (see Figure 5) is set to select differentia-
tion in three dimensions.  The outputs are the weights to be 
multiplied with the potential values from the neighboring 
grid points.  The weighted sum is the potential on a particle.  
Figure 7 shows these two processes. 
 
3.3. Interleaved Memory 

One issue with the particle-grid converter is that a large 
number of grid points must be accessed on every cycle; this 
requires both high bandwidth and highly parallel addressing 
logic.  Fortunately, modern FPGAs, with their hundreds of 
independent Block RAMs, have just such capability.  The 
interleaved memory design described in [22] is one such 
example. 

 
We begin by illustrating the 2D 4x4-way interleaving 
memory used to store the original 2D grid.  Given an ad-
dress reference (x,y), the grid points within a 4x4 window, 
i.e. (x,y), (x,y+1), …, (x+3,y+3), must be accessed.  Obvi-
ously, 16 independent memory accesses are required for 
each interleaved memory access.  As shown in Figure 8, 
when grid points are stored in 16 separate banks marked 
from 00 to 33, any 4x4 access window contains exactly one 
grid points from each bank.  The bank’s index is either the 
same as that of the bank of the reference address, or the one 
greater than that in the X and/or Y dimension, respectively.  
The outputs from memory banks are shifted (with rotation) 

in both X and Y based on the reference address.  In Figure 8, 
processing the reference address (1,3) outputs a rotational 
shift left by 3 mod 4, and up by 1 mod 4.  Inputs are shifted 
the opposite way.  3D interleaving memory is analogous. 
 
3.4. Grid-Grid Convolver 

The grid-grid convolver is extended from our previous 
work [23].  The original design of the systolic array struc-
ture is described by McWhirther and McCanny [21].  The 
extension for the multigrid coprocessor is that both input 
matrices are allowed to be larger than the number of PEs in 
the systolic array, while our previous convolver only al-
lowed one large matrix.  The motivation is that the multi-
plication operator in this convolution requires several HW 
multipliers, which limits the number of PEs in the systolic 
array.  The convolution operations, such as COR and DIR 
(from Figure 2), must therefore be computed in blocks.  
Also, because of the nature of multigrid, the size of input 
matrices varies among operations and iterations.  A flexible 
convolver is thus essential to maintain efficiency. 

 
The 3D-convolver is constructed from 2D-convolvers in 
series with 2D FIFOs.  The 2D-convolvers, in turn, are con-
structed with 1D-convolvers in series with 1D FIFOs.  Con-
figuring the lengths of these FIFOs allows us to adapt the 
logic to handle large input matrices of various sizes.  That is, 
by splitting a big convolution into several small ones and 
routing results to the proper destinations, we can handle 
various large matrices.  As is shown in the example in 
Figure 9, the 2D matrix A is too big to convolve with ma-
trix B directly.  Therefore, it is split into 4 small pieces, A0 
to A3, each of which is convolved with B to produce A0*B 
through A3*B.  These are partial results of A*B and spread 
from the four corners.  Summing them up based on their 
location yields A*B.  

4. IMPLEMENTATION AND RESULTS 

4.1. System Level Design and Interface 

The overall system is that used in previous work [9]:  The 
host PC has a 2.8 GHz Xeon CPU and runs Windows-XP.  
This PC is also used to run the serial reference codes.  The 
FPGA coprocessor is implemented on a WildstarII-Pro PCI 
plug-in board from Annapolis Micro Systems, which has 
two Xilinx Virtex-II-Pro XC2VP70 -5 FPGAs.  Both are 
used and clocked at 75MHz. 

*
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Figure 9.  Splitting a convolution 
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All codes are compiled using Microsoft Visual C++ .NET 
with performance optimization set to maximum.  Commu-
nication between PC and FPGA board is via APIs from 
Annapolis Micro Systems.  At every time-step, particle data 
are DMA’ed back and forth over the PCI bus.  FPGA con-
figurations were created in VHDL; the development flow 
uses Xilinx tools and the Synplify Pro synthesizer. 

The base MD system is ProtoMol 2.03 [15], a high-
performance MD framework designed especially for ease of 
experimentation.  The FPGA accelerator is integrated into 
ProtoMol by swapping the corresponding force calculation 
modules and performing the necessary translations as de-
scribed in [10].  The bonded forces (Angle, Bond, Dihedral, 
and Improper) and motion integration are computed on the 
host PC.  The arithmetic precision is 35 bits, as motivated 
in [10].  The arithmetic mode is semi-floating point, as de-
scribed in [9]. 

 
4.2. Multigrid Implementation 

The overall system design is shown in Figure 11.  The 
short-range forces, with cell list support, are computed on 
one FPGA, while the long-range forces (using multigrid) 
are computed on the other.  These can execute in parallel; a 
system with a single FPGA, however, can operate effi-
ciently by reconfiguring between computations.  The posi-
tion memory and the type memory are duplicated. The con-

verters translate double precision floating point numbers 
into 35-bit semi-floating point format on-the-fly. 

For models larger than about 10K particles, swapping data 
off-chip is required.  The grid-grid convolutions do not 
need much bandwidth, so swapping there does not degrade 
performance.  On the other hand, the particle-grid conver-
sions rely heavily on the on-chip memories.  Our solution is 
to process particles in groups based on their location.  At 
any moment, only particles from one neighborhood are 
processed, which implies that only a small block of the fin-
est grid is being accessed.  Therefore, grid points are 
swapped in only when they are needed.  The cell-lists con-
structed for the short range forces are applied for this pur-
pose.  Given the modest clock rate and the small fraction of 
time spent on these operations, it is not surprising that little 
relative slowdown  results. 

The multigrid implementation is shown in Figure 10.  It 
consists of the particle-grid converter, the grid-grid con-
volver, the interleaved memory interface, control logic, and 
various miscellaneous components.  The control logic 
routes data, according to the algorithm in Figure 2, by pro-
viding appropriate MUX settings and memory addresses; 
the compute modules can thus be re-used in multiple opera-
tions.  Because the grid-grid convolver only inputs and out-
puts one datum per clock cycle, it uses the block RAMs 
directly.  Computations in involving the finest grid, how-
ever, need the complex memory interleaving described 
above.  The Q-store and V-store hold the charges and po-
tentials, respectively.  The Type-Param memory is used to 
translate the particle-type indices into charge.  A low-level 
optimization is that the final vector-product multiplier 
shares HW multipliers with the convolver. 

The 3rd order basis functions (Eq 12) are used.  Adopting 
the 5th order basis functions slightly exceeds the VP70’s 
HW multiplier count, but would not be a problem for the 
VP100.  The finest grid size can be up to 323, and the grid 
cell size can be 1, 2, 4 or 8.  The convolver contains 64 PEs, 
for a sustained throughput of 4.8 GFlops (35 bit precision).  
The system is capable of simulating 256K particles and 32 
particle types. 

Following the ProtoMol reference code, the multigrid co-
processor currently computes the long range term with two 
grid levels.  The finest grid size is 283 with a convolution 
kernel of 133; COR is therefore run for only a single itera-
tion.  This is because the next level is used for computing 
the direct solution (DIR) on a 173 grid.  Only two levels are 
needed because of the relative sizes of grid and kernel:   

Figure 11.  System block diagram 
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another iteration of COR (with a 173 grid and 133  kernel) 
would be similar work to DIR, and leave DIR still to be run. 

It turned out that the particle-grid converter needed to have 
a 1:42 two-level tree structure rather than the preferred 
three-level one.  Consequently, the memory interleaving is 
42-way.  This configuration is a compromise resulting from 
resource balancing on our chip:  the HW multipliers needed 
by a 1: 43 particle-grid converter--plus the attached vector 
multiplier--would have exceeded VP70 chip capacity.  Our 
experiments also showed that a 43-way interleaved memory 
could just fit on a VP70, with the result that few resources 
would have remained for other functions.  Another possibil-
ity would have been a 1: 23 particle-grid converter.  While 
the 23-way interleaved memory is sufficiently small, this 
choice would have reduced performance.  In contrast, the 42 

configuration provides reasonable parallelism, while con-
suming 90% of the HW multipliers. 
 
4.3. Validation 

For validation, we simulated a model of more than 14,000 
particles and 26 atom types (bovine pancreatic trypsin in-
hibitor or BPTI).  After 10,000 time steps running on both 
the original ProtoMol and our accelerated version, we 
measured the total energy fluctuation.  Both versions 
showed roughly 5*10-4 with the FPGA version showing 
slightly lower fluctuation. 

We are also able to validate the quality of the multigrid 
computation directly.  Since the force computation is well-
defined, we are able to evaluate the output with respect to 
an alternative of arbitrarily high accuracy.  Again following 
the methods used by Skeel et al. [20], we evaluate multigrid 
with respect to Favg, the normalized average error of the 
force on every particle: 
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where iF  is the force computed using the reference method 

and iF~  the force computed by the FPGA.  Several other 
measures are suggested, but as our experiments show simi-
lar results for all, we present only those for Favg. 

For the model, we again use 14K particles including water 
and BPTI.  The FPGA multigrid is as described:  2 levels of 
grid, 3rd and 5th order bases functions, smoothing cut-off of 
10Å, and per dimension ratio between grid levels of 2.  We 
used two grid spacings:  2Å and 4Å.  For the serial version 
of ProtoMol we use the same parameters, but add two grid 
sizes, 3Å and 5Å, and use double precision floating point.  
Results are shown below. 
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The most important result is that the difference between the 
serial and accelerated versions of multigrid is negligible, 
with the variation being a few parts in 10,000.  Also inter-
esting is the tradeoff between function order and grid size:  
using 5th order gives a similar result to the third order, but 
with 1/8th the computation. 
 

Table 1. Profile of the multigrid Coulomb force coprocessor.  Fraction of total time spent in each phase in Figure 2. 

Particle-Grid Convolutions Version TP1 TP2 AG IG COR DIR TOTAL 

PC Only 7.5% 12.3% 5.0% 3.6% 43.9% 27.7% 100% 
FPGA Accelerated 1.1% 3.1% 1.3% 2.0% 60.7% 31.8% 100% 

 
Table 2.  Performance:  Time required to run for 1000 time-steps (units in seconds) 

 Short Range 
Forces 

Long Range 
Forces 

Bonded 
Forces 

Motion 
Integration 

Comm. & 
overhead 

Init & 
misc. TOTAL 

FPGA ProtoMol 
Multigrid every cycle 

533.3 75.3 
(Multigrid) 

21.5 20.8 25.6 9.2 589 

PC only ProtoMol 
Multigrid every cycle 

3867.8 234.1 
(Multigrid) 

21.6 21.5 0 12.9 4157 

PC only NAMD 
SPME every cycle 

 177.3 
(SPME) 

    3726 



4.4. Performance 

Table 1 shows execution time profiles of the accelerated 
and unaccelerated versions of the multigrid processor.  For 
both, most of the time is spent on the convolutions.  Pre-
liminary analysis shows that this fraction can be reduced, 
without penalty in accuracy, by reducing the convolution 
core to a size appropriate for the basis functions.  Still, this 
profile indicates that to improve the performance, we 
should improve the performance of the convolver first.  
More PEs is the obvious answer and would require more 
HW multipliers.  The major difference between the PC and 
FPGA profiles is the fraction of time spent performing the 
particle-grid computations; clearly the interleaved memory 
scheme yields excellent performance. 

Performance comparisons of various configurations are 
shown in Table 2.  The model used was Importin Beta 
bound to the IBB domain of Importin Alpha and has 77,000 
particles in a 93Å3 box.  The ProtoMol configurations are 
as just described; NAMD was downloaded from the main 
web site [http://www.ks.uiuc.edu/Research/namd/]  and 
compiled and run on the same PC.  For multigrid, the 
FPGA version shows a speed-up of 3x over the software 
version.  For reference, the NAMD computation of the 
long-range forces using SPME was slightly faster than the 
ProtoMol computation using multigrid.  Izaguirre, et al. [11] 
have performed a more in-depth comparison and found 
multigrid to be faster, especially for parallel systems.  The 
overall performance gain is a factor of 7.3x speed-up over 
unaccelerated ProtoMol.  When compared with NAMD run 
on the same PC, the speed-up is 6.3x. 
 
4.5. MD Performance Discussion 

Benchmarking MD simulations is complex because of the 
number of parameters, configurations, and platforms that 
can be varied.  In this subsection we present some results 
that, although based on post-place-and-route area and tim-
ing estimates, may give a more accurate indication of the 
state-of-the-art of FPGA/MD than those shown in Table 2. 

Most MD simulations only perform the long-range force 
computation on a fraction of time-steps, with every 4th be-
ing typical.  The performance of NAMD run this way im-
proves from 3.7 to 3.2 seconds per time-step.  In the two-
FPGA configuration which we have described here, there is 
no advantage to this because the computations are already 
overlapped.  If, however, both FPGAs are configured to 
compute the short-range force, and then reconfigured to 
compute the long-range force every fourth time-step, then 
the performance per time-step improves from .59 to .39 
seconds.  For comparison, the NAMD web site reports sin-
gle PE times of 2 seconds per time-step for a similar sized 
model. 

Another variable is the FPGA model.  Moving from a VP70 
to the larger VP100 (same V2 generation) allows us to dou-
ble the number of pipelines per chip.  Replacing the dual 
VP70s with a single VP100, and leaving the rest of the con-
figuration fixed, results in slightly better performance – the 
computational capability is the same, but communication 

overhead between the FPGAs is removed.  Our best esti-
mate of performance difference between NAMD and our 
system running ProtoMol accelerated by a VP100 is there-
fore about 5x (2 versus .38 seconds). 

5. SUMMARY AND FUTURE WORK 

This work extends our previous research on FPGA/MD by 
adding support for long-range force computation using the 
multigrid method.  We find that the primary FPGA compu-
tational methods applicable to multigrid are an interleaved 
memory structure and a systolic array convolver.  The 
speed-up obtained, and the opportunity for obvious optimi-
zations, shows this approach to be promising. 

Broader significance follows that of the multigrid method 
itself.  Because of its efficiency, multigrid-based applica-
tions have been developed in various areas.  Compared with 
FFT algorithms, the multigrid algorithms are more flexible 
with respect to boundary condition, data types, and opera-
tors.  The other side of the coin is that multigrid algorithms 
are closely correlated with the problem being solved, such 
as the structure of the PDE, and so are harder to generalize. 

Two features make multigrid an appropriate application for 
FPGAs: 
• Memory bandwidth and access flexibility.  With the 

on-chip block RAMs and configurable connections, 
FPGAs can provide significant bandwidth plus address-
ing logic. 

• Operations.  For the general multigrid algorithm, the 
operators--between continuous space and discrete grid 
space and between grids of different resolution--can be 
more complex than real number multiplication.  It is 
easy to adapt the FPGA to new operators while still 
maintaining (relative) performance. 

The multigrid coprocessor presented here is a reasonable 
prototype for multigrid algorithms:  the control logic exe-
cutes the V-cycle; the particle-grid converter and grid-grid 
convolver are well-isolated modules, ready to be adapted to 
new operators; and the interleaving memory can support a 
variety of access patterns.  We are looking into applying 
this prototype elsewhere. 

As to the entire system, using two FPGAs in such a well-
partitioned application has its obvious advantages.  For 
customers having only one FPGA chip, reconfiguration is a 
feasible solution.  Since the particle coordinates and types 
are identical for both coprocessors, it will be advantageous 
if the chip could be partially reconfigured. 
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