
FPGA-BASED MULTIGRID COMPUTATION
FOR MOLECULAR DYNAMICS SIMULATIONS

Yongfeng Gu Martin C. Herbordt

Computer Architecture and Automated Design Laboratory

Department of Electrical and Computer Engineering
Boston University, Boston, MA 02215

{maplegu|herbordt}@bu.edu

Abstract: FPGA-based acceleration of molecular dynam-
ics (MD) has been the subject of several recent studies.
Implementing long-range forces, however, has only re-
cently been addressed. Here we describe a solution based
on the multigrid method. We show that multigrid is, in
general, an excellent match to FPGAs: the primary opera-
tions take advantage of the large number of independently
addressable RAMs and the efficiency with which complex
systolic structures can be implemented. The multigrid ac-
celerator has been integrated into our existing MD system,
and an overall performance gain of 5x to 7x has been ob-
tained, depending on hardware configuration and reference
code. The simulation accuracy is comparable to the origi-
nal double precision serial code.

1. INTRODUCTION

Molecular Dynamics simulations (MD) are a fundamental
tool for gaining the understanding of chemical and biologi-
cal systems. In one of its most impressive applications, the
complete satellite tobacco mosaic virus was simulated [8].
The computational cost, however, was over a month of
compute time on a 256-node cluster. As this and many
other studies indicate, accelerating molecular dynamics is
one of the most important problems in high-performance
computing.

MD is an iterative technique that runs in phases: the forces
on each particle are computed, then applied using equations
of motion. In modern MD systems, the force computations
often involve many terms, including bonded (covalent, hy-
drogen) and non-bonded (van der Waals, Coulombic). The
non-bonded force is often partitioned into short- and long-
range components. The complexity of the motion update
and the short-range force computations is O(N) in the num-
ber of particles, and generally requires only a small fraction
of overall compute time. The complexity of the non-bonded
force computations is O(N2) in the direct implementation,
and comprises the bulk of the computation. Complexity
can be reduced substantially, however. For the short range
component, O(N) is obtained by dividing the system into
cells and/or maintaining lists of particles within a certain
distance of a given particle. For the long-range component,
O(NlogN) or better is obtained with transform- or grid-
based methods.

Several recent efforts have demonstrated the viability of
FPGA-based acceleration of MD (FPGA/MD) [1][2][9][10]
[12][13][18][19]. The FPGA/MD design space defined by
these studies is spanned by several axes:

• Precision: Is 53 bits used (double precision), or 24 (sin-

gle precision), or something else? How is the choice
motivated?

• Arithmetic mode: Is floating point used? Block float-
ing point? Scaled binary? Logarithmic representation?
A hybrid representation?

• Base MD code: Is it a standard production system? An
experimental system? A reference code?

• Target hardware: What model FPGA is used? How is
it integrated, on a plug-in board, or in a tightly inte-
grated system?

• Design flow: How is the FPGA configured? With a
standard HDL, or a C-to-gates process, or some combi-
nation?

• Scope: MD implementations have a vast number of
variations – which are supported? In particular, how is
the long-range force computation performed? With cut-
off or a switching function? Or, is a more accurate, and
more computationally complex, method used? Is this
done on the FPGA or in software?

This study concentrates on the last of these issues: We use
the multigrid method to implement the long-range force
computation on the FPGA.

Multigrid for FPGA/MD has two major advantages. First,
it is a fast and accurate method for solving boundary value
problems such as the electrostatic computation that arises in
MD [3][5][7][11][16][17][20]. Second, it maps extremely
well to FPGAs. The primary operations are: applying
charges onto a 3D grid, performing convolutions on 3D
grids, and applying a 3D grid back onto the particles. The
first and third of these can be implemented to take advan-
tage of the FPGA’s high-performance support of complex
memory access (as demonstrated, e.g., in [22]); the second
has often been shown to yield high efficiency. A further
advantage of using multigrid is that implementing the 3D
FFT on the FPGA is avoided, although this is approach has
also been shown to be viable [14].

We integrate our long-range force computation into our
existing ProtoMol-based FPGA/MD system, and show fac-
tors of 5x to 7x speed-ups (on 2004 era hardware) over PC-
only execution while retaining accuracy.

The significance of this work is as follows: we demonstrate
an FPGA algorithm for the multigrid grid method; we show
that multigrid can be used to provide substantial speed-up
for the MD long-range force computation; and that, there-
fore, substantial acceleration can be obtained for complete
FPGA/MD simulations.

2. COULOMB FORCE COMPUTATION AND
MULTIGRID METHOD

2.1. MD Force Computation

In general, the forces being simulated depend on the physi-
cal system under study and can include van der Waals
(Lennard-Jones or LJ), electrostatic (Coulomb), hydrogen
bond, and various covalent bond terms:

bondnonbondHtorsionlanglebond FFFFFF −− ++++=
Eq 1

Because the hydrogen bond and covalent terms (bond, an-
gle, torsion) affect only neighboring atoms, computing
their effect is O(N) in the number of particles N being
simulated. These, as well as the motion update (also
O(N)), are therefore generally computed on the host. The
LJ force for a particle i can be expressed as:

ji
ij ji

ab

ji

ab

ab

abLJ
i r

rr
F ∑

≠

⋅

























−













=

814

2 612 σσ
σ
ε Eq 2

where εab and δab are parameters related to the types of
particles. The Coulombic force can be expressed as:

∑
≠

=
ij

ji

ji

j
i

CL
i r

r

q
qF)(3 Eq 3

A standard way of computing the long-range forces is by
applying a cut-off. Then the force on each particle is the
result of only particles within the cut-off radius. Since this
radius is typically less than a tenth of the size per dimen-
sion of the system under study, the savings are tremendous,
even given the more complex bookkeeping required to
keep track of cell- or neighbor-lists. The problem with cut-
off is that, while it is often sufficiently accurate for the
rapidly decreasing LJ force, the error introduced in the
slowly declining Coulombic force may be unacceptable. A
number of methods have been developed to address this
issue.

The Ewald method computes the long range Coulomb
force with periodic boundary conditions, i.e., where the
system is replicated infinitely in all directions. As the
Coulomb force on a particle involves interactions with all
other particles, the result is an infinite summation. The
Ewald method solves this by splitting the summation into

two parts, real and reciprocal. The real part is fast con-
verging and can be computed accurately with a cut-off in
O(N); the reciprocal part is also fast converging, but in
reciprocal space. The overall complexity, including FFT,
is O(N3/2). Various improvements reduce the complexity
to O(NlogN) [6][7][25].

An alternative approach is the multigrid method, which can
operate directly on the Coulomb force rather than the re-
ciprocal part of the Ewald sum. It therefore does not need
an FFT. Also, it does not have to be applied with the peri-
odic boundary condition; and finally, it can be applied to
systems with non-uniform distributions.

2.2. The Multigrid Method

Many important computations, from solving systems of
equations to solving partial differential equations (PDEs),
can be executed by discretizing to a grid and iteratively
performing operations in all neighborhoods. Multigrid al-
gorithms improve the convergence rate of basic finite dif-
ference methods by using a hierarchy of discretizations,
often reducing complexity to O(N) in the number of grid
points. The up and down traversal of the grid hierarchy is
called a V-cycle.

We now sketch the general multigrid algorithm following
the presentation by Yavneh [24]. Algorithm 1 is a series of
recursive V-cycles. The fine-to-coarse operation is referred
to as restriction, coarse-to-fine as prolongation.

We begin with qn, the known parameters on the current grid
(e.g., the charge distribution), and finish with the solution un
(e.g., the potential distribution) of the PDE un = L*qn. Step
1 solves the PDE directly, if the grid is small enough. Step
2 does the first relaxation to give a guess of the solution.
Step 3 computes the residual (error) of the guess. Step 4
restricts the known parameters to a coarser grid (having
fewer grid points and unknown variables) with a basis func-
tion A. Step 5 specifies the boundary condition, for exam-
ple, by setting ul+1 to zero for a vacuum. Step 6 calls the V-
cycle recursively to solve the residual. Step 7 uses function
I to prolongate the solution of the residual as a correction
from the coarse grid back to the current grid, and integrates

Function ul = V-Cycle(ul, ql, l)
Begin

1. If this is coarsest grid, solve Ll* ul = ql
and return ul.

2. uh = Relax0(ul, ql, l)
3. rl = ql-Ll * ul
4. ql+1 = Al+1

l*rl
5. ul+1 = 0
6. ul+1 = V-Cycle(ul+1, ql+1, l+1)
7. u l = ul+Il

l+1* ul+1
8. ul = Relax1(ul, ql, l)
9. Return ul

End

Algorithm 1. The general multigrid V-cycle

the correction with the guess. Step 8 does another round of
relaxation. Step 9 returns the solution.

Figure 1 shows a V-Cycle. With a constant number of it-
erations per level and a geometric reduction in grid points
per level, the resulting complexity is O(N).

2.3. Multigrid for Coulomb Force Computation

Recall the difficulties with com-
puting the Coulombic force: it
converges too slowly to use cell-
lists directly, but using a cut-off
approximation (shown at right) is
not highly accurate. The solution
is to split the force into two com-
ponents (shown below): a fast converging part that can be
solved locally, e.g., with cell lists, and the remainder,
which is sometimes called the “softened” part.

This appears to create an even more difficult problem: the
softened function converges even slowly than the original.
The key idea is to pass the softened function on to the next
coarser level, where it is again split. This continues until
the coarsest level is reached. There, the problem should be
small enough for the direct solution to be efficient.

More formally (and following the presentation by Skeel, et
al. [20]), the problem of Coulomb force computation is to
compute the potential distribution by solving the Green’s
function for the given charge distribution. The electro-
static potential is expressed as:

∑
≠

=
ij ji

jCL
i r

q
V

 Eq 4

For computational accuracy, 1/r is split into two parts with
a smoothing function ga(r),

)())(1(1 rgrg
rr aa +−=

 Eq 5

so that

)(1 rg
r a−

 declines fast enough to be cut-off beyond dis-
tance a, while ga(r) varies slowly with distance. Via the
smoothing function, the high frequency parts of 1/r become
a short range term that can be computed in the same way
as the Lennard-Jones force (in O(N) steps). The choice of
the smoothing function is beyond the scope of this discus-
sion; it can be a Gaussian distribution, as is used with
Ewald Sums, or the one applied in this paper and shown
below. The smoothing function, i.e., the PDE to be solved,
can be evaluated precisely on a grid when the wavelength
of the highest frequency remaining term is equivalent to
the grid cell size.

Grid-based algorithms map the smoothing function defined
in the continuous coordinate space to the one defined in the
discrete grid coordinate space. This can be described by
the following energy equation:

∑∑∑∑ −=−
= = k m

mhkhanhmh

N

i

N

j
ijaji rrgqqrrgqq)()(,,,,

1 1
Eq 6

where qi and qj are particle charges, and qh,m and qh,n are
charges at points m and n on a grid with spacing h. There
are many approaches to solving the smoothing functions
on a grid, including the Particle Mesh Ewald algorithm, the
multigrid based algorithms used here, and even (for small
scale problems) direct computation.

We map the smoothing function problem to the multigrid
algorithm with the following V-cycle. Given ga(r) on a
grid with spacing h, we define a coarser grid with spacing
2h where ga(r) is smoothed by another smoothing function,
g2a(r), as shown here:

)())()(()(22 rgrgrgrg aaaa +−= Eq 7
The local correction ga(r)-g2a(r) takes out the high fre-
quency component of ga(r) and becomes short range too.
The even slower varying g2a(r) can now be approximated
more efficiently on the even coarser grid and so on until
the coarsest grid. This specifies the first half of V-cycle.

After the potential has been computed on the coarsest grid,
we still need to compute the slowly varying component
and then to apply it to each particle. First, the potential on
the coarsest grid is interpolated back to the finer grids and
combined with local corrections on each level. This com-
prises the second half of the V-cycle. Finally, forces are
generated by differentiating the potential on the finest grid
in three dimensions, and interpolating the result to each
particle’s position.

Direct solving

Time steps

G
rid

 si
ze

 Relaxation

Figure 1. V-cycle schematic

“softened” 1/r 1/r – (“softened” 1/r)

original 1/r

Cut-off
approximation

The flow chart of this algorithm is shown in Figure 2. The
operations can be classified into two types: particle-grid
conversion and grid-grid steps. The particle to grid charge
assignment (TP1) and the grid to particle potential interpo-
lation (TP2) both apply a basis function Φ(w) and its gra-
dient. A 3rd order and a 5th order basis function are pro-
posed in [20]. The assignment is computed as:

∑ −−−=
m

mmmm zzyyxxQzyxQ)(*)(*)(*),,(1 φφφ

Eq 8
where Q1(x,y,z) is the charge on finest grid points (x,y,z);
Qm is the charge of particle m; (xm,ym,zm) are the particle
coordinates. The interpolation is computed with:

)(*)(*)(*),,(*, zzyyxxdzyxVQF mmmmxm −−−= φφφ
Eq 9

where Fm.x is the force in x direction, which is interpolated
from the grid point (x,y,z). The other operations (AG,
COR, DIR, IG) can be represented as 3D matrix convolu-

tions. According to Eq 5, the smoothing function matrix
on grid Ωl can be expressed as:

11
1

ˆ ++
++≈ l

l
ll

l
ll AGIGG Eq 10

where Al+1
l is the assignment matrix that anterpolates

charge from the fine grid Ωl to the coarse grid Ωl+1; Il
l+1 is

the interpolation matrix that interpolates potential from

coarse grid to fine grid; and
lĜ is the local correction

matrix. Given a charge matrix Ql, the potential matrix Vl
is computed as:

)(ˆ 11
1

ll
l

ll
l

lll QAGIQGV ⋅+⋅≈ ++
+ , l=1,2,.., L-1 Eq 11

On the coarsest grid ΩL, GL denotes the direct computation
between all grid point pairs.

Eq 11 reveals that, except on the coarsest grid, three con-
volutions are performed on every grid: (i) to assign charge
distribution to the next coarser grid, (ii) to compute the
local correction, and (iii) to interpolate the potential from
the next coarser grid back to current grid. The coarsest
grid only has one convolution with GL. In addition, be-

cause
LG ,

lĜ ,
1+l

lA and
l
lI 1+ are independent of l and

Tl
l

l
l AI)(1

1
+

+ = , only three convolution cores need to be
precomputed.

3. DESIGN FOR FPGA ACCELERATION

3.1. Overview

The overall algorithm is shown schematically in Figure 3.
Starting at the upper left, the per-particle potentials are par-
titioned into short and long range components. The short
range (van der Waals and short range component of the
Coulombic) is computed directly, e.g. with cell lists, while
the long range is applied to the finest grid. Here the force is
split again, with high-frequency component solved directly
and the low-frequency passed on to the next coarser grid.
This continues until the coarsest level where the problem is
solved directly. This direct solution is then successively
combined with the previously computed finer solutions

T

T

TP1: Assign charge from
particles to the finest grid.

Start

AG: Assign charges from a fine
grid to the next coarsest grid.

COR: Compute local correc-
tion on grid.

Move to the next coars-
est grid and check

whether it is the coarsest

DIR: Compute all grid point
pair-wise interactions.

IG: Interpolate potential from a
coarse grid to the next finest grid

Move to the next finest
grid and check whether

it is the finest

TP2: Differentiate potentials on
the finest grid, interpolate them
to particles, and multiply them

with particle charge.

End

Figure 2. Flowchart of multigrid method for the Cou-
lomb force

Apply particles to grid

Anterpolating Grid

Anterpolating Grid
Direct Solution

Correction

Correction

Interpolating Grid

Apply grid to particles

short range force
w/ cell lists

Figure 3. Multigrid method for the Coulomb force

(corrections) until the finest grid is reached. Here the forces
are applied directly to the particles.

Following the two types of operations just described, our
multigrid coprocessor requires two kinds of computation
modules: a particle-grid converter and a grid-grid convolver.
Because these operations are executed sequentially, compu-
tation modules can be shared. On-chip memories are a
critical part of the multigrid coprocessor: not only do they
provide scratch space between operations, they also merge
computation models with different data access interfaces.
In the rest of this section, we describe: the FPGA-specific
multigrid method, our computation modules, and the inter-
leaving memory structure.

3.2. Particle-Grid Converter

The particle-grid converter applies Eq 8 (or Eq 9) to per-
form assignment (or interpolation) between particles and
their the neighboring grid points.

We scale our coordinates to match the finest grid. In one
dimension (see Figure 4), we can partition the particle posi-
tion into two components gi|oi where gi is the index of the
previous point and oi is the distance from the grid point. It
then suffices to use oi alone to compute the contributions of
q to any surrounding neighborhood of gi’s.

The basis function Φ(w) (or dΦ(w)) is used. This takes 3
steps: (i) scaling the particle coordinates to grid coordinates
to extract the grid index gi (xm,ym,zm) and offset oi (|xm-
x|,|ym-y|,|zm-z|); (ii) computing the assignment (or interpola-
tion) weights Φ(w) (or dΦ(w)); and (iii) multiplying the
weights by the charge (or potential) on the grid point. We
normalize grid cell sizes to be powers of 2 so that scaling
particle coordinates to grid coordinates only requires zero-
cost shifting. The bits to the left of the binary point are then
gi, those to the right oi.

For Φ(w) (or dΦ(w)) (we use those derived by Skeel, et al
[20]), instead of computing Φ(w) directly, we modify the
basis function to be a set of polynomials of oi for the parti-
cle’s neighboring supporting grid points. For example, Eq
12 is the 3rd order basis function applied by our coprocessor,
and w is the distance between particle and grid points:














≥

≤≤−−−

≤−+−

=

2,0

21),2)(1(
2
1

1),
2
31)(1(

)(2

2

w

www

wwww

wφ
 Eq 12

By substituting w with oi+1, oi, 1-oi, and 2-oi, we have
four polynomials corresponding to the four neighboring
grid points (as shown in Figure 4):
















−=

++−=

+−=

−+−=

23
3

23
2

23
1

23
0

2
1

2
1)(

2
12

2
3)(

1
2
5

2
3)(

2
1

2
1)(

oioioi

oioioioi

oioioi

oioioioi

φ

φ

φ

φ

 Eq 13

These polynomials, as well as the four for dΦ(w), are func-
tions of oi, oi2, and oi3. The basis function pipeline shown
in Figure 5 computes all eight polynomials from a common
input.

With a Pth order basis function, one particle is associated
with P3 grid points. Performing the assignment (or interpo-
lation) in parallel both speeds up the computation and re-
duces the number of basis function pipelines. Figure 6
shows one quarter of the tree structure of a 1:43 particle-
grid converter. Each color circle multiplies its input by
Φ(w) (or dΦ(w)) from the cube of the matching color in the
basis function pipeline. The circles of matching color in the
last column share the same outputs from a single basis func-
tion pipeline, as do those in the second column (not shown
here). This structure has 43-way parallelism with only three
basis function pipelines for three dimensions.

Input

Figure 6. One quarter of a 1:64 particle-grid converter
tree structure.

oi

oi
oi2

oi3

 Φ0(w) or dΦ0(w)

 Φ1(w) or dΦ1(w)

 Φ2(w) or dΦ2(w)

 Φ3(w) or dΦ3(w)

switch

Figure 5. Basis function pipeline for Φ(w) and dΦ(w).
‘switch’ selects the output from Φ(w) and dΦ(w).

Ф0 Ф1 Ф2 Ф3

oi 1 - oi

gi-1 gi gi+1

Figure 4. Extracting grid index and offset

gi+2

During charge assignment, the input is the particle charge,
and the outputs are the charges assigned to neighboring grid
points. For interpolation of the potential, the input is the
constant 1 (see Figure 7), and the ‘switch’ of each basis
function pipeline (see Figure 5) is set to select differentia-
tion in three dimensions. The outputs are the weights to be
multiplied with the potential values from the neighboring
grid points. The weighted sum is the potential on a particle.
Figure 7 shows these two processes.

3.3. Interleaved Memory

One issue with the particle-grid converter is that a large
number of grid points must be accessed on every cycle; this
requires both high bandwidth and highly parallel addressing
logic. Fortunately, modern FPGAs, with their hundreds of
independent Block RAMs, have just such capability. The
interleaved memory design described in [22] is one such
example.

We begin by illustrating the 2D 4x4-way interleaving
memory used to store the original 2D grid. Given an ad-
dress reference (x,y), the grid points within a 4x4 window,
i.e. (x,y), (x,y+1), …, (x+3,y+3), must be accessed. Obvi-
ously, 16 independent memory accesses are required for
each interleaved memory access. As shown in Figure 8,
when grid points are stored in 16 separate banks marked
from 00 to 33, any 4x4 access window contains exactly one
grid points from each bank. The bank’s index is either the
same as that of the bank of the reference address, or the one
greater than that in the X and/or Y dimension, respectively.
The outputs from memory banks are shifted (with rotation)

in both X and Y based on the reference address. In Figure 8,
processing the reference address (1,3) outputs a rotational
shift left by 3 mod 4, and up by 1 mod 4. Inputs are shifted
the opposite way. 3D interleaving memory is analogous.

3.4. Grid-Grid Convolver

The grid-grid convolver is extended from our previous
work [23]. The original design of the systolic array struc-
ture is described by McWhirther and McCanny [21]. The
extension for the multigrid coprocessor is that both input
matrices are allowed to be larger than the number of PEs in
the systolic array, while our previous convolver only al-
lowed one large matrix. The motivation is that the multi-
plication operator in this convolution requires several HW
multipliers, which limits the number of PEs in the systolic
array. The convolution operations, such as COR and DIR
(from Figure 2), must therefore be computed in blocks.
Also, because of the nature of multigrid, the size of input
matrices varies among operations and iterations. A flexible
convolver is thus essential to maintain efficiency.

The 3D-convolver is constructed from 2D-convolvers in
series with 2D FIFOs. The 2D-convolvers, in turn, are con-
structed with 1D-convolvers in series with 1D FIFOs. Con-
figuring the lengths of these FIFOs allows us to adapt the
logic to handle large input matrices of various sizes. That is,
by splitting a big convolution into several small ones and
routing results to the proper destinations, we can handle
various large matrices. As is shown in the example in
Figure 9, the 2D matrix A is too big to convolve with ma-
trix B directly. Therefore, it is split into 4 small pieces, A0
to A3, each of which is convolved with B to produce A0*B
through A3*B. These are partial results of A*B and spread
from the four corners. Summing them up based on their
location yields A*B.

4. IMPLEMENTATION AND RESULTS

4.1. System Level Design and Interface

The overall system is that used in previous work [9]: The
host PC has a 2.8 GHz Xeon CPU and runs Windows-XP.
This PC is also used to run the serial reference codes. The
FPGA coprocessor is implemented on a WildstarII-Pro PCI
plug-in board from Annapolis Micro Systems, which has
two Xilinx Virtex-II-Pro XC2VP70 -5 FPGAs. Both are
used and clocked at 75MHz.

*

B A0 A1
A2 A3

A0*B A1*B

A2*B A3*B

Figure 9. Splitting a convolution

1

+

Figure 7. Charge assignment (above) and potential
interpolation (below)

X

Y

0302 01 00

1312 11 10

2322 21 20

3332 31 30

03 02 01 00

13 12 11 10

23 22 21 20

33 32 31 30

0302 01 00

1312 11 10

2322 21 20

3332 31 30

03 02 01 00

13 12 11 10

23 22 21 20

33 32 31 30

Figure 8. A 2D 42-way interleaved memory

All codes are compiled using Microsoft Visual C++ .NET
with performance optimization set to maximum. Commu-
nication between PC and FPGA board is via APIs from
Annapolis Micro Systems. At every time-step, particle data
are DMA’ed back and forth over the PCI bus. FPGA con-
figurations were created in VHDL; the development flow
uses Xilinx tools and the Synplify Pro synthesizer.

The base MD system is ProtoMol 2.03 [15], a high-
performance MD framework designed especially for ease of
experimentation. The FPGA accelerator is integrated into
ProtoMol by swapping the corresponding force calculation
modules and performing the necessary translations as de-
scribed in [10]. The bonded forces (Angle, Bond, Dihedral,
and Improper) and motion integration are computed on the
host PC. The arithmetic precision is 35 bits, as motivated
in [10]. The arithmetic mode is semi-floating point, as de-
scribed in [9].

4.2. Multigrid Implementation

The overall system design is shown in Figure 11. The
short-range forces, with cell list support, are computed on
one FPGA, while the long-range forces (using multigrid)
are computed on the other. These can execute in parallel; a
system with a single FPGA, however, can operate effi-
ciently by reconfiguring between computations. The posi-
tion memory and the type memory are duplicated. The con-

verters translate double precision floating point numbers
into 35-bit semi-floating point format on-the-fly.

For models larger than about 10K particles, swapping data
off-chip is required. The grid-grid convolutions do not
need much bandwidth, so swapping there does not degrade
performance. On the other hand, the particle-grid conver-
sions rely heavily on the on-chip memories. Our solution is
to process particles in groups based on their location. At
any moment, only particles from one neighborhood are
processed, which implies that only a small block of the fin-
est grid is being accessed. Therefore, grid points are
swapped in only when they are needed. The cell-lists con-
structed for the short range forces are applied for this pur-
pose. Given the modest clock rate and the small fraction of
time spent on these operations, it is not surprising that little
relative slowdown results.

The multigrid implementation is shown in Figure 10. It
consists of the particle-grid converter, the grid-grid con-
volver, the interleaved memory interface, control logic, and
various miscellaneous components. The control logic
routes data, according to the algorithm in Figure 2, by pro-
viding appropriate MUX settings and memory addresses;
the compute modules can thus be re-used in multiple opera-
tions. Because the grid-grid convolver only inputs and out-
puts one datum per clock cycle, it uses the block RAMs
directly. Computations in involving the finest grid, how-
ever, need the complex memory interleaving described
above. The Q-store and V-store hold the charges and po-
tentials, respectively. The Type-Param memory is used to
translate the particle-type indices into charge. A low-level
optimization is that the final vector-product multiplier
shares HW multipliers with the convolver.

The 3rd order basis functions (Eq 12) are used. Adopting
the 5th order basis functions slightly exceeds the VP70’s
HW multiplier count, but would not be a problem for the
VP100. The finest grid size can be up to 323, and the grid
cell size can be 1, 2, 4 or 8. The convolver contains 64 PEs,
for a sustained throughput of 4.8 GFlops (35 bit precision).
The system is capable of simulating 256K particles and 32
particle types.

Following the ProtoMol reference code, the multigrid co-
processor currently computes the long range term with two
grid levels. The finest grid size is 283 with a convolution
kernel of 133; COR is therefore run for only a single itera-
tion. This is because the next level is used for computing
the direct solution (DIR) on a 173 grid. Only two levels are
needed because of the relative sizes of grid and kernel:

Figure 11. System block diagram

PCI Bus

ProtoMol

WildstarII-Pro Board

Host

Type
Memory

Position
Memory

Se
m

i-F
P

to
D

P

FPGA

Multigrid CP

Acceleration
Memory

D
P

to
Se

m
i-F

PType
Memory

Se
m

i-F
P

to
D

P

FPGA

Short Range
Force CP

Acceleration
Memory

Acceleration
$

Position
Memory

Position
$

D
P

to
Se

m
i-F

P

Dual-port Q
memory

Grid-Grid
Convolver

Dual-port V
memory

Particle-Grid
Converter

Interleaving
Q memory

Interleaving
V memory +Type-Param

memory

Particle
Coordinates

Particle
Type

Particle
Address

Acceleration

Particle
Address

1

oi
gi

Control Logic

Figure 10. Multigrid schematic

another iteration of COR (with a 173 grid and 133 kernel)
would be similar work to DIR, and leave DIR still to be run.

It turned out that the particle-grid converter needed to have
a 1:42 two-level tree structure rather than the preferred
three-level one. Consequently, the memory interleaving is
42-way. This configuration is a compromise resulting from
resource balancing on our chip: the HW multipliers needed
by a 1: 43 particle-grid converter--plus the attached vector
multiplier--would have exceeded VP70 chip capacity. Our
experiments also showed that a 43-way interleaved memory
could just fit on a VP70, with the result that few resources
would have remained for other functions. Another possibil-
ity would have been a 1: 23 particle-grid converter. While
the 23-way interleaved memory is sufficiently small, this
choice would have reduced performance. In contrast, the 42

configuration provides reasonable parallelism, while con-
suming 90% of the HW multipliers.

4.3. Validation

For validation, we simulated a model of more than 14,000
particles and 26 atom types (bovine pancreatic trypsin in-
hibitor or BPTI). After 10,000 time steps running on both
the original ProtoMol and our accelerated version, we
measured the total energy fluctuation. Both versions
showed roughly 5*10-4 with the FPGA version showing
slightly lower fluctuation.

We are also able to validate the quality of the multigrid
computation directly. Since the force computation is well-
defined, we are able to evaluate the output with respect to
an alternative of arbitrarily high accuracy. Again following
the methods used by Skeel et al. [20], we evaluate multigrid
with respect to Favg, the normalized average error of the
force on every particle:

∑
∑
−

− −
=

i
ii

i
iii

avg FmN

FFmN
F

)(

)~(

2/11

2/11

where iF is the force computed using the reference method

and iF~ the force computed by the FPGA. Several other
measures are suggested, but as our experiments show simi-
lar results for all, we present only those for Favg.

For the model, we again use 14K particles including water
and BPTI. The FPGA multigrid is as described: 2 levels of
grid, 3rd and 5th order bases functions, smoothing cut-off of
10Å, and per dimension ratio between grid levels of 2. We
used two grid spacings: 2Å and 4Å. For the serial version
of ProtoMol we use the same parameters, but add two grid
sizes, 3Å and 5Å, and use double precision floating point.
Results are shown below.

Average Force Error

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

1.2E-02

2 3 4 5

Finest Grid Size (A)

A
v
e
r
a
ge

F
o
r
c
e

E
r
r
o
r

DP, 3rd order
DP, 5th order
35 bits Semi-FP, 3rd order
35 bits Semi-FP, 5th order

The most important result is that the difference between the
serial and accelerated versions of multigrid is negligible,
with the variation being a few parts in 10,000. Also inter-
esting is the tradeoff between function order and grid size:
using 5th order gives a similar result to the third order, but
with 1/8th the computation.

Table 1. Profile of the multigrid Coulomb force coprocessor. Fraction of total time spent in each phase in Figure 2.

Particle-Grid Convolutions Version TP1 TP2 AG IG COR DIR TOTAL

PC Only 7.5% 12.3% 5.0% 3.6% 43.9% 27.7% 100%
FPGA Accelerated 1.1% 3.1% 1.3% 2.0% 60.7% 31.8% 100%

Table 2. Performance: Time required to run for 1000 time-steps (units in seconds)

 Short Range
Forces

Long Range
Forces

Bonded
Forces

Motion
Integration

Comm. &
overhead

Init &
misc. TOTAL

FPGA ProtoMol
Multigrid every cycle

533.3 75.3
(Multigrid)

21.5 20.8 25.6 9.2 589

PC only ProtoMol
Multigrid every cycle

3867.8 234.1
(Multigrid)

21.6 21.5 0 12.9 4157

PC only NAMD
SPME every cycle

 177.3
(SPME)

 3726

4.4. Performance

Table 1 shows execution time profiles of the accelerated
and unaccelerated versions of the multigrid processor. For
both, most of the time is spent on the convolutions. Pre-
liminary analysis shows that this fraction can be reduced,
without penalty in accuracy, by reducing the convolution
core to a size appropriate for the basis functions. Still, this
profile indicates that to improve the performance, we
should improve the performance of the convolver first.
More PEs is the obvious answer and would require more
HW multipliers. The major difference between the PC and
FPGA profiles is the fraction of time spent performing the
particle-grid computations; clearly the interleaved memory
scheme yields excellent performance.

Performance comparisons of various configurations are
shown in Table 2. The model used was Importin Beta
bound to the IBB domain of Importin Alpha and has 77,000
particles in a 93Å3 box. The ProtoMol configurations are
as just described; NAMD was downloaded from the main
web site [http://www.ks.uiuc.edu/Research/namd/] and
compiled and run on the same PC. For multigrid, the
FPGA version shows a speed-up of 3x over the software
version. For reference, the NAMD computation of the
long-range forces using SPME was slightly faster than the
ProtoMol computation using multigrid. Izaguirre, et al. [11]
have performed a more in-depth comparison and found
multigrid to be faster, especially for parallel systems. The
overall performance gain is a factor of 7.3x speed-up over
unaccelerated ProtoMol. When compared with NAMD run
on the same PC, the speed-up is 6.3x.

4.5. MD Performance Discussion

Benchmarking MD simulations is complex because of the
number of parameters, configurations, and platforms that
can be varied. In this subsection we present some results
that, although based on post-place-and-route area and tim-
ing estimates, may give a more accurate indication of the
state-of-the-art of FPGA/MD than those shown in Table 2.

Most MD simulations only perform the long-range force
computation on a fraction of time-steps, with every 4th be-
ing typical. The performance of NAMD run this way im-
proves from 3.7 to 3.2 seconds per time-step. In the two-
FPGA configuration which we have described here, there is
no advantage to this because the computations are already
overlapped. If, however, both FPGAs are configured to
compute the short-range force, and then reconfigured to
compute the long-range force every fourth time-step, then
the performance per time-step improves from .59 to .39
seconds. For comparison, the NAMD web site reports sin-
gle PE times of 2 seconds per time-step for a similar sized
model.

Another variable is the FPGA model. Moving from a VP70
to the larger VP100 (same V2 generation) allows us to dou-
ble the number of pipelines per chip. Replacing the dual
VP70s with a single VP100, and leaving the rest of the con-
figuration fixed, results in slightly better performance – the
computational capability is the same, but communication

overhead between the FPGAs is removed. Our best esti-
mate of performance difference between NAMD and our
system running ProtoMol accelerated by a VP100 is there-
fore about 5x (2 versus .38 seconds).

5. SUMMARY AND FUTURE WORK

This work extends our previous research on FPGA/MD by
adding support for long-range force computation using the
multigrid method. We find that the primary FPGA compu-
tational methods applicable to multigrid are an interleaved
memory structure and a systolic array convolver. The
speed-up obtained, and the opportunity for obvious optimi-
zations, shows this approach to be promising.

Broader significance follows that of the multigrid method
itself. Because of its efficiency, multigrid-based applica-
tions have been developed in various areas. Compared with
FFT algorithms, the multigrid algorithms are more flexible
with respect to boundary condition, data types, and opera-
tors. The other side of the coin is that multigrid algorithms
are closely correlated with the problem being solved, such
as the structure of the PDE, and so are harder to generalize.

Two features make multigrid an appropriate application for
FPGAs:
• Memory bandwidth and access flexibility. With the

on-chip block RAMs and configurable connections,
FPGAs can provide significant bandwidth plus address-
ing logic.

• Operations. For the general multigrid algorithm, the
operators--between continuous space and discrete grid
space and between grids of different resolution--can be
more complex than real number multiplication. It is
easy to adapt the FPGA to new operators while still
maintaining (relative) performance.

The multigrid coprocessor presented here is a reasonable
prototype for multigrid algorithms: the control logic exe-
cutes the V-cycle; the particle-grid converter and grid-grid
convolver are well-isolated modules, ready to be adapted to
new operators; and the interleaving memory can support a
variety of access patterns. We are looking into applying
this prototype elsewhere.

As to the entire system, using two FPGAs in such a well-
partitioned application has its obvious advantages. For
customers having only one FPGA chip, reconfiguration is a
feasible solution. Since the particle coordinates and types
are identical for both coprocessors, it will be advantageous
if the chip could be partially reconfigured.

Acknowledgments. This work is supported in part by the
NIH through award #RR020209-01. It was also facilitated
by donations from Xilinx Corporation and from Xtre-
meData, Inc. We would like to thank the ProtoMol group,
first for providing the code under open source license
(http://protomol.sourceforge.net), and also for answering
many questions that arose during this work. Finally, we
thank the anonymous reviewers for their helpful sugges-
tions.

6. REFERENCES

[1] S.R. Alam, P. Agarwal, M.C Smith, J.S Vetter and D.
Caliga, “Using FPGA Devices to Accelerate Biomolecular
Simulations,” IEEE Computer, vol 40, pp.66-73, 2007.

[2] N. Azizi, I. Kuon, A Egier, et al, “Reconfigurable Molecular
Dynamics Simulator,” Proc. FCCM, 2004.

[3] S. Banerjee and J.A. Board, “Efficient Charge Assignment
and Back Interpolation in Multigrid Methods for Molecular
Dynamics,” J. Comp. Chem. vol. 26, 2005.

[4] A. Brandt and C.H. Venner, “Multilevel Evaluation of
Integral Transforms with Asymptotically Smooth Kernels,”
SIAM J Scientific Computing, vol. 19, pp. 468-492, 1998.

[5] E.L. Briggs, D.J. Sullivan, and J. Bernholc, “Real-space
multigrid-based approach to large-scale electronic structure
calculations,” Phys. Rev. B, vol. 54, pp. 14362-14375, 1996.

[6] T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald:
an O(N log N) method for Ewald sums in large systems,” J.
Chem. Phys, vol. 98, pp. 10089-10092, 1993.

[7] U. Essmann, L. Perera, and M.L. Berkowitz, “A smooth
particle mesh Ewald method,” J. Chem. Phys, vol. 103, pp.
8577-8593, 1995.

[8] P.L. Freddolino, A.S. Arkhipov, S.B. Larson, et al,
“Molecular Dynamics Simulations of the Complete Satellite
Tobacco Mosaic Virus,” Structure, vol. 14, pp. 437-49,
2006.

[9] Y. Gu, T. VanCourt, and M.C. Herbordt, “Improved
Interpolation and System Integration for FPGA-Based
Molecular Dynamics Simulations,” Proc. FPL, 2006.

[10] Y. Gu, T. VanCourt, and M. C. Herbordt, “Accelerating
Molecular Dynamics Simulations with Configurable
Circuits,” IEE Proc. CDT, vol. 153 (3), 2006.

[11] J.A. Izaguirre, S.S. Hampton, and T. Matthey, “Parallel
Multigrid Summation for the N-Body Problem,” J. Parallel
Distrib. Comput, vol. 65, pp. 949-962, 2005.

[12] V. Kindratenko and D. Pointer, “A case study in porting a
production scientific supercomputing application to a
reconfigurable computer,” Proc. FCCM, 2006.

[13] Y. Komeiji, M. Uebayasi, R. Takata, et al, “Fast and
Accurate Molecular Dynamics Simulation of a Protein Using
a Special-Purpose Computer,” J. Comp. Chem, vol. 18, pp.
1546-1563, 1997.

[14] S. Lee, An FPGA Implementation of the Smooth Particle
Mesh Ewald Reciprocal Sum Compute Engine (RSCE),
Master’s Thesis, University of Toronto, 2005.

[15] T. Matthey, “ProtoMol, An Object-Oriented Framework for
Prototyping Novel Algorithms for Molecular Dynamics,”
ACM Trans. Mathematical Software, vol. 30, pp. 237-265,
2004.

[16] C. Sagui amd T. Darden, “Multigrid methods for classical
molecular dynamics simulations of biomolecules,” J. Chem.
Phys, vol. 114, pp. 6578-6591, 2001.

[17] B. Sandak, “Multiscale Fast Summation of Long-Range
Charge and Dipolar Interactions,” J. Comput.Chem, vol. 22,
pp. 717-731, 2001.

[18] R. Scrofano and V. Prasanna, “Preliminary Investigation of
Advanced Electrostatics in Molecular Dynamics on
Reconfigurable Computers,” Proc. Supercomputing, 2006.

[19] R. Scrofano and V. Prasanna, “A Hardware/Software
Approach to Molecular Dynamics on Reconfigurable
Computers,” , Proc. FCCM, 2006.

[20] R.D. Skeel, I. Tezcan, and D.J. Hardy, “Multiple Grid
Methods for Classical Molecular Dynamics,” J. Comput.
Chem, vol. 23, pp. 673-684, 2002.

[21] E.E. Swartzlander, Systolic Signal Processing Systems,
Marcel Drekker, Inc. 1987.

[22] T. VanCourt and M.C. Herbordt, “Application-Dependent
Memory Interleaving Enables High Performance in FPGA-
Based Grid Computations,” Proc. FPL, 2006.

[23] T. VanCourt, Y. Gu, and M.C. Herbordt, “FPGA
Acceleration of Rigid Molecule Interactions,” Proc. FPL,
2004.

[24] I. Yavneh, “Why Multigrid method are so efficient,”
Computing in Science & Engineering, vol. 8, pp. 12-22,
2006.

[25] D. York and W. Yang, “The fast Fourier Poisson method for
calculating Ewald sums,” J. Chem. Phys, vol. 101, pp.
3298-3300, 1994.

