
Processor/Memory/Array Size Tradeoffs in the

Design of SIMD Arrays for a

Spatially Mapped Workload∗

Martin C. Herbordt Anisha Anand Charles C. Weems

Owais Kidwai Renoy Sam

Department of Electrical and Computer Engineering Department of Computer Science

University of Houston University of Massachusetts

Houston, TX 77204-4793 Amherst, MA 01003

Abstract: Though massively parallel SIMD arrays continue
to be promising for many computer vision applications, they
have undergone few systematic empirical studies. The prob-
lems include the size of the architecture space, the lack of
portability of the test programs, and the inherent complex-
ity of simulating up to hundreds of thousands of processing
elements. The latter two issues have been addressed previ-
ously, here we describe how spreadsheets and tk/tcl are used
to endow our simulator with the flexibility to model a large
variety of designs. The utility of this approach is shown in
the second half of the paper where results are presented as to
the performance of a large number of array size, datapath,
register file, and application code combinations. The con-
clusions derived include the utility of multiplier and floating
point support, the cost of virtual PE emulation, likely dat-
apath/memory combinations, and overall designs with the
most promising performance/chip area ratios.

1 Introduction

It is commonly recognized that the computational character-
istics of many low-level, and even some intermediate-level,
vision tasks map well to massively parallel SIMD arrays of
processing elements. Primary reasons for this are that these
vision tasks typically require processing of pixel data with
respect to either nearest-neighbor or other two-dimensional
pattern exhibiting locality or regularity. Tasks within this
domain often require complex codes. As a consequence,
gauging computational requirements is facilitated by evalu-
ating performance with respect to real program executions.
What we examine here are the effects on both cost and per-
formance of varying the array size (number of PEs), the
datapath, and the memory hierarchy with respect to a set
of computer vision applications.

∗This work was supported in part by an IBM Fellowship; by the

NSF through CAREER award #9702483; by DARPA under contract

DACA76-89-C-0016, monitored by the U.S. Army Engineer Topo-

graphic Laboratory; and under contract DAAL02-91-K-0047, moni-

tored by the U.S. Army Harry Diamond Laboratory.

The design issues are as follows. The first is to rank
datapath and memory designs with respect to performance,
eliminating those with poor cost/performance ratios. The
second is to see how the performance of these designs varies
with array size. This is complicated by the fact that al-
though the effect of the datapath on performance varies pre-
dictably with array size, that of the memory hierarchy does
not. The next issue is to relate the datapath to the memory
designs to find which combinations result in i) well-balanced
systems and ii) systems which could be enhanced with PE
cache. Finally, the overall designs (including array size, dat-
apath, and memory) with the best performance/chip area
ratios are determined.

The constraint that we wish to examine processor de-
signs by running real application programs, together with
the wide variety of designs to be evaluated, clearly requires
that simulation be used. Many problems remain, however,
including how to i) implement a simulator with the flexibility
to emulate large numbers of models without requiring sub-
stantial recoding, ii) achieve throughput given the slowdown
inherent in software simulation, and iii) guarantee fairness
for a wide range of designs that may not share the same
optimal algorithm for any particular task.

These issues are dealt with by the ENPASSANT en-
vironment; the latter two are discussed elsewhere [6, 4], the
former has been addressed recently and is described here.
The key idea is to use spreadsheets coupled with tk/tcl and
C code to specify templates (classes of architectures) relat-
ing design parameters to the performance of virtual machine
constructs. The user then can specify models (specific de-
signs) within those templates from a graphic user interface.

2 Architecture and Application Domains

2.1 Architecture Space

Massively Parallel SIMD Arrays (MPAs) are asymmetric,
having a controller and an array consisting of from a few
thousand to a few hundred thousand processing elements
(PEs). The PEs execute synchronously code broadcast by
the controller. One consequence is that PEs do not have in-
dividual micro-sequencers or other control circuitry; rather

their ‘CPUs’ consist entirely of the datapath. Within this
constraint, however, there are few limitations. See Figure 1.
Here we examine array sizes of from 4K to 64K PEs.

The complexity of current PE datapaths ranges from
the MGAP which does not have even a complete one-bit
ALU [9] to the MasPar MP2 which contains a 32-bit data-
path and extensive floating point support [1]. The particu-
lar features that are examined here are the ALU/datapath
width, the multiplier, and the floating point support. The
effect of other features, such as the number of ports in the
register file, have been found to be second order.

Array

Controller

instructions

global data
and

feedback
Global OR

Global COUNT
feedback

Dedicated Router Network

 1. Packet Switched Combining
 2. Circuit Switched
 3. Reconfigurable Broadcast Mesh

Floating Point
 Coprocessors

Mesh Network

ALU

Registers

Index
Registers

Multiplier

Divider

Barrel
Shifter

Shift
Register

Datapath

PE

InterPE
Communication

Required

Optional

Figure 1: Shown is some the MPA architecture space. Note
that PEs do not have local control and that their number
ranges from the thousands to 100’s of thousands.

Another consequence of SIMD control is on MPA PE
memory configurations: Each array instruction operates on
the same registers and memory locations for each PE.1 In
this case, it is possible to model the memory hierarchy, in-
cluding cache, with a simple serial model. See Figure 2.

Existing MPAs and MPA designs contain on-chip mem-
ory in the range of 32 to 1024 bits.2 Off-chip memory typi-
cally consists of DRAM, although SRAM has also been used.
Although no MPA has yet been built with PE cache, studies
have shown the clear benefits [8]. The particular features we
examine here are the register file size from 128 to 1600 bits
and the cache size. We do not examine very small register
file sizes because our programmer’s model requires at least
three 32 bit registers. We assume enough main memory to
store all the data the programs require, and test caches up
to the sizes necessary to achieve a 99% hit rate.

2.2 Application Space

The fundamental criterion for selecting test suite programs
is that they should be representative of the expected work-
load of the target machine. Since SIMD arrays, however, are
not fully general purpose processors, general purpose bench-
marks such as SPEC [12] are not appropriate. In fact, it is

1An exception is for processors which support a local indexing

mode where the register can be a pointer to a memory location—as

use of this mode is not critical in our current application test suite

we postpone this analysis to a later study.
2We refer to on-chip memory as register file because of its explicit

control.

PE 0

Datapath Register
 File

Cache Main
Memory

PE 0
PE 1 PE 1

PE nPE n

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

Instruction
 Decoder

Register
Decoder

Controller

Memory Address Decoder and
 Cache Controller

Figure 2: Shown is the MPA PE memory design space. Note
that all PEs share the same controllers.

becoming more and more clear that, for many application
domains, evaluation of parallel processors requires using ap-
plication specific test suites. That this has long been the
concensus of the computer vision community is shown in
[10, 11, 13].

Our test suite consists of the parts of the second IU
Benchmark particularly suited to MPAs, plus other impor-
tant vision tasks. These inlude a convolution-based cor-
respondence matcher, a motion-from-correspondence ana-
lyzer, an image preprocessor that uses complex edge model-
ing, and two segmentation-based line finders.

Some general comments are as follows: they are all
non-trivial in that they consist of from several hundred to
several thousand lines of code; they are, with the exception
of the IU Benchmark, in use in a research environment; and
they span a wide variety of types of computations. As an
example of the last point, some are dominated by gray-scale
computation (which is mostly 8 bit integer), others by float-
ing point. They are described in detail in [3].

2.3 Mapping Applications to Architectures: Virtual PEs

The standard MPA programmer’s model maps elements of
parallel variables to individual PEs. It is rarely the case,
however, that a processor has enough PEs to create this
precise mapping; rather, some number of elements must be
mapped to each PE.

In order to align the programmer’s model with physi-
cal machines, the PEs assumed by the programmer’s model
(referred to as virtual PEs or VPEs) are emulated by the
physical PEs. We refer to the number of VPEs each PE
must emulate as the VPE/PE ratio, or VPR. This emula-
tion can either be done entirely in software, through hard-
ware support in the array control unit (ACU), or through
a combination of the two. One of the fundamental goals of
this study is to assess the cost of VPE emulation.

We now briefly describe how VPE emulation is carried
out. VPE variables are mapped VPR elements per PE. We
refer to a single physical slice of a VPE variable across the
array of physical PEs as a tile. For simple non-interacting
instructions such as those for logic, arithmetic, and activity

control, VPR physical instructions must be executed, one for
each tile. Emulating interacting VPE instructions such as
feedback and communication is substantially more complex.

The best performance is achieved when as many in-
structions as possible are executed within each tile; this is
because a change of tile is effectively a context switch. Tiles
must be swapped, however, whenever feedback or commu-
nication instructions are encountered. This is because feed-
back instructions cause control hazards in the controller and
communication instructions inherently involve tile interac-
tion. Compilers, such as that for ICL [4], can schedule in-
structions to minimize tile swapping.

The overhead due to VPE emulation therefore has sev-
eral components: i) a linear component due to VPR tiling,
ii) an increase in working set resulting in a decrease in lo-
cality of reference, iii) a sub-linear increase in working set
size due to instruction scheduling, and iv) further overhead
due to emulations of communication instructions [5].

3 Apparatus: ENPASSANT

There are two fundamental ideas behind our work. The first
is to use only a single programmer’s model, which we call
the MPA virtual machine (VM), to cover the entire class of
MPAs. To make this work without introducing the tremen-
dous inefficiencies that can be caused by a mismatch between
programmer’s model and target machine requires two pieces
of software: one provides emulations of features present on
some, but not all, machines; the other contains critical ap-
plication specific functions.

The second key idea is what we call trace compilation.3

All code is written in a single data parallel language that
defines the MPA VM. That code is not compiled directly
to a target machine instruction set; rather, it is run on an
MPA VM emulator. In the process a ‘coarse-grained’ trace
is generated. This trace is then refined through a series of
transformations wherein greater resolution is obtained with
respect to the details of the target architecture. This process
has two benefits: 1) virtual machine emulation and trace
compilation together are one to two orders of magnitude
faster than simulating an MPA at the instruction level, and
2) once the trace has been generated, it can be reused to
evaluate a large number of design alternatives.

The simulator is perhaps best illustrated through its
usage: these are the basic steps in using the system (see
Figure 3):

1. Write (or select) and compile an application program
in ICL, a data parallel language [2].

2. Execute the program (on any machine which supports
C++) with trace generation turned on.

3. Specify or select a target architecture.

4. Run the trace through the target-architecture-dependent
transformations and trace analysis tools which culmi-
nate with reporting performance data.

The major simulator components follow. The first three
comprise the input constructor.

3Note that trace compilation is not related to the work by Ellis

and Fisher involving trace-scheduling compilers.

Machine
 Type

 Virtual
Machine
 Trace

Machine
 Model ICL

Executable

Performance

Virtual Machine
 Emulator and
Trace Generator

Target Machine
Class Selection

Target Machine
 Specification

Input Constructor
 Target Machine
Model Generator

Trace Compiler
 and Analyzer

Apps
in ICL

Figure 3: Shown are major components of ENPASSANT.

• ICL language. ICL is a data parallel language sim-
ilar to C∗ and MPL. It has been designed specifically
to present the application programmer with the MPA
Virtual Machine. ICL is constructed entirely with
C++ class libraries making it easily extensible should
the VM be changed.

• Operator emulation library. The OEL is a library
of ICL functions that emulate in software those hard-
ware features present in some, but not all, MPAs.
The OEL guarantees that ICL programs are portable
within the class of MPAs.

• Application function library. The AFL is a library
containing a small number of critical ICL application
functions coded using different algorithms. The AFL
is essential when the choice of algorithm is highly ar-
chitecture dependent.

• VM trace generator. Code embedded within ICL
generates the VM trace whenever an ICL program is
executed with the trace generation option turned on.

• Target machine specifier/model generator. These
programs provide a GUI for specifying MPA templates
(i.e. families of machines) and variations within those
templates. The output is the target machine model
used by the trace compiler.

• Trace compiler. Inputs a VM trace and a target
machine model and reconstructs what the application
program trace would have looked like had it been gen-
erated by that particular target machine.

The ideas behind the input constructor and the trace
compiler have been described in detail elsewhere [6, 4]. The
target machine specifier has not, however.

As shown in Figure 4, machine specification is done in
two levels. To create a specification for a family of machines,
the user creates a template. This process consists of select-
ing elements from a menu (with the option of adding new ele-
ments), indicating whether those elements are optional or re-
quired, and providing the legal parameter ranges. Elements

 Machine
 Template
Specification

 Machine
 Parameters
and Features

Machine
 Model

Machine
Template

 Model
Generator

 Template
Generator

Figure 4: Shown is the Target Machine Model Generator.
Templates define classes of target machines which have sim-
ilar relationships among components. The parameters spec-
ify which components are present and their characteristics.

present in all MPAs are things like ALUs, neighbor com-
munication networks and registers. Optional elements in a
template can include, e.g., floating point units and broad-
cast networks. Typical parameters are ALU width, neighbor
communication latency per bit, and number of ports in the
register file. The template must also specify how the ele-
ments are related to each other, to the parameters, and to
the virtual machine.

Figure 5: Shown is a page from an evaluation dialogue. The
user is requesting that a particular target machine specifi-
cation be used for 7 different array sizes.

The particular target machines are specified by choos-
ing from the menu suggested by the template. The template-
based relations and machine specifications are then com-
bined to create target machine models. Since particular
machines can be specified in great detail and because of
the speed of evaluations, users have the option of inputting
ranges of parameters. The following is a typical request.

• a set of application programs
• a set of array sizes (e.g. “256x256, 128x128, 64x64”)
• a set of register file sizes (e.g. “10, 20, 40”)
• a default prespecified datapath (e.g. “MasPar MP1-
like”)

• cache parameters (e.g. “no cache”)
• a default prespecified communication network (e.g. “CM2-
like”)

A page from a similar dialogue is shown in Figure 5.
Template generation is time-consuming and it requires

expertise to create one that is useful. Once created, however,
it can be used to evaluate a huge space of machines. We also

note that templates need to be generated only very rarely:
the entire space of MPAs that we have considered so far in
our research was specifiable using a single template.

4 Experimental Methodology

Complexity ALU Multi- FP Support
Ordering Datapath plier (inverse)

Level 1 1

Level 2a 1 1/32
Level 2b 2

Level 3a 2 1/16
Level 3b 4

Level 4a 4 4
Level 4b 4 1/8
Level 4c 8

Level 5a 8 4
Level 5b 8 1/8

Level 6a 8 8
Level 6b 8 1/4
Level 6c 16

Level 7a 16 4
Level 7b 16 1/8

Level 8a 16 8
Level 8b 16 1/4
Level 8c 32

Level 9a 16 16
Level 9b 16 1/2
Level 9c 32 4
Level 9d 32 1/8

Level 10a 32 8
Level 10b 32 1/4

Level 11a 32 16
Level 11b 32 1/2

Level 12a 32 32
Level 12b 32 1

Table 1: levels of datapath complexity.

The ideal situation is to search the space of possible
designs optimizing for cost/performance, or, given a cost
(or performance) goal, finding the design with the best pos-
sible performance (or cost). The critical problem for this
approach is the difficulty in determining the costs of designs
since there are so many variations in technology, process, etc.
What we have done instead is to rank designs by a rough
measure of complexity and determine the performance of a
large sample of those designs. We believe this is valuable for
two reasons: i) a design whose complexity is not warranted
by its performance can be eliminated, and ii) non-linearities,
or discontinuities, can be found which can help determine
promising areas for detailed study. We also recognize that
these rankings are implementation dependent and are likely
to vary somewhat with changes in technology and design.

The space of designs is daunting due to the number of
axes along which parameters can be varied. In order to make
this study tractable, we have reduced the number of axes to
three: datapath complexity, memory complexity (with and
without cache), and array size. In order to do this, we have
built upon the following assumptions:

• With some exceptions, increases in complexity of most
individual design components improve performance mono-
tonically, though there are some surprises.

• The performance improvement is not always linear:
the effect of working set size in memory hierarchy mea-
surement is one example.

• Some axes are independent, others are not. For ex-
ample, memory hierarchy and array size are related,
while the memory hierarchy and the datapath are in-
dependent.

• Some axes are related by an obvious relationship (e.g.
array size and datapath performance), others have a
non-linear relationship (e.g. memory hierarchy and
array size).

We have several tasks: create an ordering and characteriza-
tion of datapath designs, create an ordering and characteri-
zation of memory hierarchy designs, combine them with the
array size, and combine all three.

Looking at datapath alone is a non-trivial task. We
have reduced the parameters of the datapath to the three
that dominate performance: ALU/datapath width, multi-
plier/divider support, and floating point support.

Multiplier/divider support is given in terms of the size
of the multiplier circuit, if any. This is an approximation
since it does not include the divider or other ways of imple-
menting multiplication. However we believe it is reasonable
since i) it is relatively common for complex PEs to contain
multipliers but not dividers, and, more importantly, since
ii) there are numerous good multiplication-based division
algorithms. This is especially true for less complex datap-
aths since small multipliers make a great deal of sense, while
small dividers do not.

Floating point support is given in terms of number of
PEs sharing a floating point unit. Clearly, this is not the way
every SIMD array implements floating point, but is certainly
valid as a way of characterizing relative floating point sup-
port. We make the further assumption that floating point
support includes fixed point multipliers/dividers and that
these units are available for the integer operations.

We are left with the following parameters:

• ALU/datapath → 1, 2, 4, 8, 16, 32
• Multiplier → 4, 8, 16, 32
• FP Support → 32 bit FP per 32, 16, 8, 4, 2, 1 PEs

We combine them into classes of similar complexity as shown
in Table 1. As our studies of datapath complexity continue,
we expect this list to be refined.

The two primary components of memory hierarchy are
the register file size, which determines the number of loads
and stores, and the cache size, which determines the latency
of the loads and stores. The register file size is varied simply
along a range from 20 to 200 bytes per PE. The cache size
is more problematic.

Although it is easy to vary the cache size in the same
way we varied the register file size, it makes much less sense.
One reason is that the cache is an off-chip system component
and therefore not as closely involved in chip area trade-offs
as the register file. Another reason is that it is unlikely that
a system will be built with PE cache if that cache has not
been designed to have a hit rate of over 90%. We therefore

use two parallel rankings: register file size with no cache,
and register file size with cache. Cache parameters required
for this performance have been presented elsewhere [8].

5 Experimental Results

We have examined seven issues. Two involve the datapath,
two memory, one memory with respect to datapath, and two
overall cost-performance.
1. As more resources are applied to the datapath, what fea-

tures should be given priority?

Performance was measured for each application-datapath-
array size combination. Execution time was plotted versus
datapath complexity with one graph per application and one
line for each array size. The results are shown in Figure 6.
The models referred to on the X axis are shown in Table 1.
The key results are as follows:

• In the two floating point applications, having floating
point support makes a huge difference.

• For the non-floating point applications, very little speed-
up is achieved by increasing the datapath beyond 8. In
the floating point applications, 16 bit ALUs appear to
be sufficient.

• Multipliers are very useful: this is especially appar-
ent in Prewitt where a four bit datapath with a four
bit multiplier gives better performance than an 8 bit
datapath which must execute multiplies in software.

2. How does increasing the array size affect the datapath

component of the performance?

Results from experiment 1 establish the basic relationship
between datapath and performance. Here we see find the
cost of VPE emulation to the datapath. The VPR is in-
versely proportional to the array size. In these experiments,
256x256 has a VPR of 1 and 64x64 has a VPR of 16. Re-
call that VPR physical instructions are required for each
arithmetic or logical VPE instruction, but that increased
overhead is required to emulate NEWS communication.

Execution time was plotted versus array size with one
graph per application and one line for each datapath design
(see Figure 7). We find that the overhead beyond simple em-
ulation is significant: for the IU Benchmark, going from a
VPR of 1 to 2 causes a slowdown of a factor of nearly 4. Suc-
ceeding jumps triple the slowdown. Spiral3, which also has
significant communication, has correspondingly large over-
head.
3. For a given array size, how big should the register file

size be?

Recall that for VPE emulation, the working set size is in-
creased, but that this increase is non-linear due to instruc-
tion scheduling. Execution time was plotted against register
file size with one graph per array size and one line per appli-
cation. See Figure 8. The results are surprisingly consistent:
for 256x256, 128x256, and 128x128 arrays, a register file size
of about 60 bytes seems to be indicated. For 64x128 arrays,
a register file size of about 100 bytes appears appropriate.
For 64x64 arrays, the working set may be too large to fit in
a reasonable sized register file and caching may be required.
4. How does each application’s working set vary with array

size?

L
1

L
2b

L
3b L
4a L
4c

L
5a

L
6a L
6c

L
7a

L
8a L
8c

L
9a L
9c

L
10

a
L

11
a

L
12

a

Datapath models

0x100

2x107

4x107

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

IU benchmark

 64x64

 64x128

 128x128

 128x256

 256x256

L
1

L
2A

L
2B

L
3A

L
3B

L
4A L
4b

L
4C L
5A

L
5B

L
6A

L
6B

L
6C L
7A

L
7B

L
8A

L
8B

L
8C L
9A

L
9B

L
9C L
9d

L
10

A
L

10
B

L
11

A
L

11
B

L
12

A
L

12
B

Datapath models

0x100

5x106

1x107

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

Motion 256

 64x64

 64x128

 128x128

 128x256

 256x256

L
1

L
2b

L
3b L
4a L
4c

L
5a

L
6a L
6c

L
7a

L
8a L
8c

L
9a L
9c

L
10

a
L

11
a

L
12

a

Datapath models

0x100

2x106

4x106

6x106

8x106

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

Klf

 64x64

 64x128

 128x128

 128x256

 256x256

L
1

L
2b

L
3b L
4a L
4c

L
5a

L
6a L
6c

L
7a

L
8a L
8c

L
9a L
9c

L
10

a
L

11
a

L
12

a

Datapath models

0

100000

200000

300000

400000

500000

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

Spiral 3

 64x64

 64x128

 128x128

 128x256

 256x256

L
1

L
2a

L

2b L
3a

L
3b L
4a

L
4b L
4c

L
5a

L
5b L
6a

L
6b L
6c

L
7a

L
7b L
8a

L
8b L
8c

L
9a

L
9b L
9c

L
9d

L
10

a
L

10
b

L
11

a
L

11
b

L
12

a
L

12
b

Datapath models

0x100

2x106

4x106

6x106

8x106

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

Weymouth

 64x64

 64x128

 128x128

 128x256

 256x256

L
1

L
2b

L
3b L
4a L
4c

L
5a

L
6a L
6c

L
7a

L
8a L
8c

L
9a L
9c

L
10

a
L

11
a

L
12

a

Datapath models

0x100

2x106

4x106

6x106

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

Prewitt

 64x64

 128x128

 128x256

 256x256

Figure 6: Experiment 1—execution time is plotted versus datapath complexity (see Table 1) with one graph per application
and one line for each array size.

IU benchmark

100000

1000000

10000000

100000000

64x64 64x128 128x128 128x256 256x256

Array size

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

L1

L2b

L3b

L4a

L4c

L5a

L6a

L6c

L7a

L8a

Motion 256

10000

100000

1000000

10000000

64x64 64x128 128x128 128x256 256x256

Array size

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

L1

L2A

L2B

L3A

L3B

L4A

L4b

L4C

L5A

L5B

L6A

L6B

L6C

L7A

L7B

L8A

L8B

L8C

L9A

L9B

L9C

L9d

L10A

L10B

L11A

L11B

L12A

Klf

10000

100000

1000000

10000000

64X64 64X128 128X128 128X256 256X256

Array size

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

L1

L2b

L3b

L4a

L4c

L5a

L6a

L6c

L7a

L8a

L8c

L9a

L9c

L10a

L11a

L12a

Spiral 3

10000

100000

1000000

64x64 64x128 128x128 128x256 256x256

Array size

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

L1

L2b

L3b

L4a

L4c

L5a

L6a

L6c

L7a

L8a

L8c

L9a

L9c

L10a

L11a

L12a

Weymouth

10000

100000

1000000

10000000

64x64 64x128 128x128 128x256 256x256

Array size

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

L1

L2a

L2b

L3a

L3b

L4a

L4b

L4c

L5a

L5b

L6a

L6b

L6c

L7a

L7b

L8a

L8b

L8c

L9a

L9b

L9c

L9d

L10a

L10b

L11a

L11b

Prewitt

10000

100000

1000000

10000000

64x64 128x128 128x256 256x256

Array size

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

L1

L2b

L3b

L4a

L4c

L5a

L6a

L6c

L7a

L8a

L8c

L9a

L9c

L10a

L11a

L12a

Figure 7: Experiment 2—execution time is plotted versus array size with one graph per application and one line for each
datapath design

0 100 200
Register file size

0x100

2x107

4x107

6x107
E

xe
cu

ti
o

n
 t

im
e

in
 c

yc
le

s

Array size: 64x64

 IU benchmark

 Motion 256

 Klf

 Prewitt

 Spiral 3

 Weymouth

0 100 200
Register file size

0.0x100

5.0x106

1.0x107

1.5x107

2.0x107

2.5x107

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

Array size: 64x128

 IU benchmark

 Motion256

 Klf

 Spiral 3

 Weymouth

0 100 200
Register file size

0x100

5x106

1x107

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

Array size: 128x128

 IU benchmark

 Motion 256

 klf

 Prewitt

 Spiral 3

 Weymouth

0 100 200
Register file size

0x100

1x106

2x106

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

Array size: 128x256

 IU benchmark

 Motion 256

 Klf

 Prewitt

 Spiral 3

 Weymouth

0 100 200
Register file size

0

20000

40000

60000

80000

100000

120000

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

 Array size: 256x256

 IU benchmark

 Motion 256

 Klf

 Prewitt

 Spiral 3

 Weymouth

Figure 8: Experiment 3—execution time was plotted against register file size in bytes with one graph per array size and one
line per application.

0 100 200
Register file size

0x100

2x107

4x107

6x107

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

IU benchmark

 64x64

 64x128

 128x128

 128x256

 256x256

0 100 200
Register file size

0.0x100

5.0x105

1.0x106

1.5x106

2.0x106

2.5x106

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

Motion 256

 64x64

 64x128

 128x128

 128x256

 256x256

0 100 200
Register file size

0.0x100

5.0x106

1.0x107

1.5x107

2.0x107

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

Klf

 64x64

 64x128

 128x128

 128x256

 256x256

0 100 200
Register file size

0x100

2x106

4x106

6x106

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

Spiral 3

 64x64

 64x128

 128x128

 128x256

 256x256

0 100 200
Register file size

0

100000

200000

300000

400000

500000

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

Weymouth

 64x64

 64x128

 128x128

 128x256

 256x256

0 100 200
Register file size

0.0x100

5.0x106

1.0x107

1.5x107

2.0x107

2.5x107

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

Prewitt

 64x64

 128x128

 128x256

 256x256

Figure 9: Experiment 4—execution time is plotted against register file size in bytes with one graph per application and one
line per array size.

These are the same results as in 3. but plotted by appli-
cation rather than array size. See Figure 9. Again, if VPE
emulation were as simple as repeating each instruction VPR
times, then we would expect the working apparent working
set of each application to rise proportionally with the VPR.
However, that is not the case: rather, VPE emulation is car-
ried out by having each physical PE emulate a VPE for as

long as possible. The result is seen as, e.g., the working set
size for the IU Benchmark appears to go roughly from 40 to
60 to 100 to 150 instead of doubling each time.
5. How should resources be partitioned between memory

and datapath to achieve system balance?

The assumption made here is that to the first order, good
system design presupposes the removal of bottlenecks, or
equivalently, good system balance. To find systems that
meet these criteria, we examined performance versus both
datapath complexity and register file size for each appli-
cation and array size. The result was a set of 3D graphs
with execution time on the Z axis and datapath complex-
ity and register file size on the other two axes. From these
graphs, points were extracted where memory references con-
tributed 10% of the total cycles, the assumption being that
in that case memory accesses would not be considered a bot-
tleneck. For designs where memory references contribute
significantly, enhancements such as PE cache might be con-
sidered.

These data are illustrated in a plot of register file size
versus datapath model shown in Figure 10. For each level
of datapath complexity in each application, only the best
design was selected. Some observations are as follows:

• The expected result—that as VPR increases the im-
portance of the memory hierarchy increases as well—is
indeed borne out.

• Also as expected, as the datapath complexity increases,
the amount of register file required to maintain system
balance usually increases as well.

• In situations where increased datapath complexity does
not significantly improve performance, the graphs are
flat.

• The volatility in the Weymouth (and to a lesser extent
Motion) graph appears to be a sensitivity issue: the
surface is nearly flat and small performance differences
can result in large movements in the isobars.

• Graphs where the larger arrays ‘fall off the bottom’
and smaller arrays ‘burst out the top’ (e.g., Spiral has
both) indicate situations where cache is never or al-
ways needed, respectively.

6. For each array size, which designs give the best perfor-

mance per chip area?

For experiments 6 and 7 we have estimated PE area by
synthesizing components such as register files, ALUs, and
multipliers of various sizes. Since there were problems in
synthesizing directly to the gate level, the area is given in
terms FPGA cells. Work continues here and obviously these
results should only be used for grossest comparison.

Figure 12 shows execution time versus estimated chip
area for various array sizes for the IU Benchmark. Only
the most promising datapath- register file combinations are

0 2 4 6 8 10 12
Area/ Cost

5.0x105

1.0x106

1.5x106

2.0x106

2.5x106

3.0x106

E
xe

cu
ti

o
n

 t
im

e
(c

yc
le

s)

IU benchmark:

 128x256 Array size

Figure 11: Experiment 6—shown is a plot of chip area versus
IU Benchmark execution time for all 128 x 256 PE designs
described here.

array datapath reg. file Est. chip Execution
size model size area (000s) time (000s)

64x64 4a 20 1417 67457

64x64 2b 100 3629 41181

64x64 4a 100 4039 34950

64x128 2b 60 4637 16703

128x128 2b 40 6652 6256

64x128 4a 100 8077 5701

128x128 2b 60 9273 3646

128x128 4a 80 13531 1892

128x256 4a 40 16580 814

128x256 5a 40 20054 722

128x256 5a 100 35783 553

256x256 5a 40 40108 165

Table 2: This table depicts the most promising array de-
signs in terms of performance-chip area tradeoff for the IU
Benchmark application. The data are shown graphically in
Figure 13.

plotted. Figure 11 shows a plot where all possible datapath-
register file combinations are included.
7. Normalizing for array size, which designs give the best

performance per chip area?

Here the most promising designs in terms of cost-performance
have been selected from Figure 12, normalized for array size,
and plotted in Figure 13. The points are described further
in Table 2. Since only the IU Benchmark has been plotted so
far, none of the datapath selections contained floating point
support.

6 Conclusion

We have run numerous experiments and derived results re-
lating to datapath, support by the datapath of VPE emula-
tion, working set sizes and how they relate to VPE emula-
tion, points in the memory hierarchy/datapath design space
at which system balance is roughly achieved, and, for one
application, determined the most promising designs in terms
of performance-chip area ratio. Further work continues in
automatic synthesis of these designs for the more accurate
determination of actual hardware cost.

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
10

L
11

L
12

Datapath models

0

70

140

210

R
eg

is
te

r
fi

le
 s

iz
e

IU Benchmark

 64x64

 64x128

 128x128

 128x256

 256x256

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
10

L
11

L
12

Datapath models

0

70

140

210

R
eg

is
te

r
fi

le
 s

iz
e

Motion 256

 64x64

 64x128

 128x128

 128x256

 256x256

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
10

L
11

L
12

Datapath models

0

50

100

150

200

R
eg

is
te

r
fi

le
 s

iz
e

Klf

 128x128

 128x256

 256x256

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
10

L
11

L
12

Datapath models

40

60

80

100

120

R
eg

is
te

r
fi

le
 s

iz
e

Spiral 3

 64x128

 128x128

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
10

L
11

L
12

Datapath models

0

50

100

150

200

250

R
eg

is
te

r
fi

le
 s

iz
e

Weymouth

 64x64

 64x128

 128x128

 128x256

 256x256

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
10

L
11

L
12

Datapath models

0

50

100

150

200

R
eg

is
te

r
fi

le
 s

iz
e

Prewitt

 128x128

 128x256

 256x256

Figure 10: Experiment 5—each line represents the limit in register file size (in bytes) above which adding cache is not likely
to significantly improve performance. One line is plotted per array size with one graph per application.

0 500 1000 1500 2000 2500 3000
Estimated area/PE (no. of cells)

0x100

2x107

4x107

6x107

8x107

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

IU benchmark

 256x256

 128x256

 128x128

 64x128

 64x64

0 500 1000 1500 2000 2500 3000
Estimated area/PE (no. of cells)

1x105

1x106

1x107

1x108

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

(l
o

g
 s

ca
le

)

IU benchmark

 256x256

 128x256

 128x128

 64x128

 64x64

Figure 12: Experiment 6—shown are plots of chip area versus IU Benchmark execution time for selected PE designs of various
array sizes.

0x100 1x107 2x107 3x107 4x107 5x107

Estimated total chip area (no. of cells)

0x100

2x107

4x107

6x107

8x107
E

xe
cu

ti
o

n
 t

im
e

in
 c

yc
le

s

IU benchmark

0x100 1x107 2x107 3x107 4x107 5x107

Estimated total chip area (no. of cells)

1x105

1x106

1x107

1x108

E
xe

cu
ti

o
n

 t
im

e
in

 c
yc

le
s

(l
o

g
 s

ca
le

)

IU benchmark

Figure 13: Experiment 7—shown are plots of chip area (normalized for array size) versus IU Benchmark execution time for
selected PE designs. The data points are described in Table 2.

References

[1] Blank, T. The MasPar MP-1 architecture. In Proc.

35th IEEE Comp. Conf. (1990), pp. 20–24.

[2] Burrill, J. H. The Class Library for the IUA: Tuto-

rial. Amerinex Artificial Intelligence, Inc., Amherst,
MA 01003, 1992.

[3] Herbordt, M. C. The Evaluation of Massively Parallel

Array Architectures. PhD thesis, Dept. of Comp. Sci.,
U. of Mass. (also TR95-07), 1994.

[4] Herbordt, M. C., Burrill, J. H., and Weems, C. C. Mak-
ing a dataparallel language portable for massively par-
allel array computers. In Proc. of Computer Architec-

tures for Machine Perception (1997).

[5] Herbordt, M. C., Corbett, J. C., Spalding, J., and
Weems, C. C. Practical algorithms for online routing on
fixed and reconfigurable meshes. J. Par. Dist. Comp.
20, 3 (1994), 341–356.

[6] Herbordt, M. C., Kidwai, O., and Weems, C. C. Pre-
protyping simd coprocessors using virtual machine em-
ulation and trace compilation. Performance Evaluation
Review 25, 1 (1997), 88–99.

[7] Herbordt, M. C., and Weems, C. C. An environment
for evaluating architectures for spatially mapped com-
putation: System architecture and initial results. In
Proc. of Computer Architectures for Machine Percep-

tion (1993).

[8] Herbordt, M. C., and Weems, C. C. Experimental anal-
ysis of some SIMD array memory hierarchies. In Proc.
of the 1995 Int. Conf. on Parallel Processing (1995),
vol. 1: Architecture, pp. 210–214.

[9] Owens, R. M., Irwin, M. J., Nagendra, C., and Bajwa,
R. S. Computer vision on the MGAP. In Proc. Comp.
Arch. for Machine Perception (1993), pp. 337–341.

[10] Preston, K. The Abington Cross benchmark survey.
IEEE Computer 22, 7 (1989), 9–18.

[11] Rosenfeld, A. A report on the DARPA Image Under-
standing Architectures Workshop. In Proc. Image Un-
derstanding Workshop (1987), pp. 298–301.

[12] Systems Performance Evaluation Cooperative. SPEC

Newsletter: Benchmark Results. Waterside Associates,
Freemont, CA, 1990.

[13] Weems, C. C., Riseman, E. M., Hanson, A. R., and
Rosenfeld, A. The DARPA image understanding bench-
mark for parallel computers. JPDC 11 (1991).

