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Abstract: A key goal in language design is to simultane-

ously achieve portability and efficiency. Achieving a general

solution to this problem is quite difficult: virtually all at-

tempts have emphasized one or the other requirement by

restricting either the architecture domain, the application

domain, or both. In this study we present i) a framework

that explains why meeting these requirements simultane-

ously is so difficult, and ii) our approach, which, though it

may not be the final word on this subject, implements a

new set of trade-offs that may come closer to a balanced

solution than has been previously achieved. Our solution

includes an easy to use language based on the dataparallel

programmer’s model, a compiler that hides as many ma-

chine variations as possible, a library with emulations of

constructs that map directly to hardware on some but not

all machines, and a library with different versions of those

critical application functions for which a single algorithm

is not optimal across all hardware configurations. We have

found the programmer cost for the application and archi-

tecture domains considered here to be quite reasonable.

1 Introduction

It has been apparent since the late 1950’s that SIMD
arrays are well suited for image-to-image computing
[37]. By the early 1960’s it had been discovered that
they were also excellent for extracting features from
images: for example, the Illiac III was built specifi-
cally to extract tracks in bubble chamber images [26].
Several decades of further study have found SIMD ar-
rays useful in an increasingly wide variety of computer
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vision applications including region and line segmen-
tation, line finding through perceptual organization,
hough transforms, graph matching, extraction of struc-
ture from motion, and in solving many problems from
computational geometry. For a sample of this work see
[31, 25, 28, 18] and the references in [14]. Even so,
SIMD designs have never converged to a particular set
of attributes, at least not nearly to the same extent as
have serial computers or even shared memory multipro-
cessors. Many fundamental design questions including
granularity, datapath design, memory hierarchy, and,
especially, routing network remain open.

The languages supporting these SIMD arrays have
been equally varied, usually being directly related to
the particular machine for which they were written.
At first, high-level languages were a luxury so all cod-
ing was done in native assembly language. The next
step was machine-specific high-level languages such as
Glypnir for the Illiac IV [23]. Later languages were
more general but still retained machine dependent re-
strictions, typically limits on array size related to phys-
ical machine size [30]. More recently, languages have
been written for families of machines having a vari-
able number of PEs; for example, codes written in C∗
were required to be able to run on all members of the
CM2/200 family whether they have 1K or 256K pro-
cessors [36]. Even with this progress, however, porta-
bility has received relatively little attention in SIMD
languages in comparison to languages intended for se-
rial and even MIMD machines: efficiency, then ease of
coding, have always been the primary concerns.

What we consider here are the issues involved
with creating a single language for the class of SIMD
arrays, especially for coding computer vision applica-
tions, without giving up efficiency. We will see that as
a bonus we will have created a language that is also
useful for running these applications on multiprocessor
and multicomputer systems. The requirements of such
a language are as follows: It must
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1. be easy to use and lend itself to a natural program-
ming style,

2. hide architectural features that are not essential
to the programmer’s model,

3. allow access to architectural features on particular
machines that are essential in using those machines
to their fullest potential,

4. discourage the programmer from using constructs
that will result in poor performance, and

5. be source-code portable.

Although careful language design and a good compiler
can get us a ways towards achieving these goals, it is
also quite clear that as long as there are major vari-
ations in SIMD architectures, especially with respect
to local indexing and communication network, these
requirements are fundamentally incompatible. The es-
sential issue is the inherent difficulty of achieving both
portability and consistent efficiency across a variety of
parallel architectures.

Achieving a general solution to this problem is
quite difficult: virtually all attempts have emphasized
one or another of the requirements by restricting ei-
ther the architecture domain, the application domain,
or both. For example, Apply achieves portability at the
cost of restricting the applications to be image-image
[13], while C∗, though quite general, is still not suit-
able for running on arrays with reconfigurable broad-
cast buses. In fact, just the premise of a language for
computer vision tasks on SIMD arrays restricts both
architecture and application domains.

In this study we do not present a complete solu-
tion to these problems; what we do present i) a frame-
work that explains why meeting these requirements si-
multaneously is so difficult (and in the process explains
why previous attempts fall short), and ii) our approach,
which, though it is not a complete success, implements
a new set of trade-offs that may come closer to a bal-
anced solution than has been previously achieved.

Our approach contains the following components:

• Careful language design that presents the pro-
grammer with an easy to use dataparallel pro-
grammer’s model,

• Use of compilers to hide as many machine varia-
tions as possible (e.g. array size) while retaining
functionality such as automatic code optimization,

• Including constructs in the language to support
all significant and unique hardware features in the
class of SIMD arrays plus the capability to add
others relatively easily,

• Providing a library with emulations of constructs
that map directly to hardware features on some
but not all machines, and

• Providing a library with different versions of those
critical software functions for which a single algo-
rithm is not optimal across all hardware configu-
rations.

We discuss these components in turn, but begin by
describing the architecture domain.

2 Architectural Assumptions

In this section we specify what we mean by SIMD array
architecture. The required features are as follows:

• Controller and array of PEs

• Controller is a general purpose computer

• Controller broadcasts instructions and scalars to
the array

• Array feeds back OR to controller

• I/O system to transfer data to/from array

• PEs have at least enough register file to hold three
32 bit operands or can efficiently emulate that ca-
pability

• PEs have sufficient ALUs and, if necessary, scratch
space, to perform standard arithmetic and logical
operations including floating point

• PEs know their own unique ID and whether they
are on an edge or not

• PEs have activity control to conditionally execute
instructions

• The array has communication capability sufficient
to implement, or emulate efficiently, neighbor com-
munication

• PEs have access to enough memory (on and off
chip) to be able to store data required by signif-
icant computer vision codes and a mechanism to
transfer data on and off chip.

The optional features, that is, the features that may
or may not be in the machine and still have it be a part
of the class, are as follows:

• Local indexing within each PE

• Array feeds back COUNT to controller

• Permutation routing network

• Permutation routing network with combining for
reductions



• Segmented scan network

• Reconfigurable broadcast network

These lists were created to match the architec-
ture space spanned by machines such as the MasPar
MP1/2 [3], the Thinking Machines CM2/200 [35], the
Cambridge Systems DAP [27], the MCNC Blitzen [4],
the UMass/Hughes CAAPP [39], the Current Technol-
ogy MM32k [11], the MIT Abacus [5], and numerous
other similar machines. Considering first the list of re-
quired hardware features, there are three items where
we are somewhat stricter than the common definition
of SIMD arrays: the register file size, the memory size,
and the mesh routing capability. The exact criteria
for their inclusion is discussed in a later section, for
now we simply state that we are attempting to define
a class of computers that are no more different from
one another than the class of serial machines; i.e. a
class of machines for whose members compilers could
be expected to generate similarly efficient object code
from any appropriate input program.

The minimum register file size of 96 bits is derived
from the register transfer language model: we assume a
load-store machine where the register instructions have
the form (OPCODE,out,in1,in2) and operands in1, in2,
and out can have up to 32 bits. These tuples can be
efficiently emulated on machines with only 64 bits of
register file such as the Abacus, or on machines such as
the CM2 and DAP with no register file at all, but which
are designed to run as memory-memory machines.

The memory size and access capability is neces-
sary, again, because of the load-store model. Machines
where the data flows primarily from PE to PE, (e.g.
the SPLASH [2]) rather than primarily between mem-
ory and datapath of each PE are also applicable here.

The mesh routing capability is required due to the
prevalence of window-based algorithms in low-level vi-
sion. However, due to granularity and chip I/O consid-
erations, many SIMD processors have only 1-D connec-
tions [1, 9, 10, 20, 21, 22]. Where these machines can
efficiently emulate mesh processors, they are included,
where they have primarily a systolic or pipelined pro-
grammer’s model they are not.

The list of optional features is not as critical and
only the capability of executing multiple threads simul-
taneously is explicitly disallowed. We will include in
the discussion section with the implications of adding
features to either list.

Another note: the features listed above are not
sufficient to specify all architectures on which the codes
discussed here can run efficiently. If a machine does
have additional features such as local control (i.e. it
is a MIMD machine) the codes are still likely to run

efficiently. However, there is no guarantee that features
on such machines can be used to their potential by
codes written in our language. In the terminology of
this article we say that requirement 3 has not been met
for that architecture/application combination.

3 First Order Solution:

Supporting Required Features

We discuss creating a portable, efficient, high-level lan-
guage for the class of machines specified by the required
features presented above. We do this by presenting a
the appropriate subset of the language ICL as an ex-
ample [6]. The operators and methods are summarized
in Table 1.

ICL uses C++ as a base, adding a class called
Plane to represent data stored in a slice across PE
memories. There are Plane types corresponding to all
the standard C types except double and long. Planes
can be operated upon using the same arithmetic and
logical operators as are available for the scalar data
types (int, float, etc.). Arithmetic and logical Plane
instructions denote element-element computations. No
restriction is placed on the size of the Planes, although
they must be two dimensional (this is currently being
generalized). Plane sizes do not need to specified until
run time, although more efficient code is generated if
they are known at compile time. Plane elements can
be permuted with NEWS nearest neighbor shifts and
summarized with the ANY (global OR) method. Writ-
ing to a subset of elements can be restricted with the
Select Active method. Various ID and Edge methods
return Planes wherein each element has a value corre-
sponding to its ID or whether it is on a Plane edge,
respectively. See Figure 1 for an example of an ICL
procedure that uses some of these constructs.

Mapping these ICL language constructs to the re-
quired set of SIMD array hardware features is straight-
forward. ICL is a dataparallel language and as such
presents a single thread of control: this is executed on
the host or controller. Instructions involving Planes are
broadcast to the PE array. All scalar instructions are
executed by the host while Plane instructions are ex-
ecuted by the PE array. In expressions with mixed
scalar/Plane operands, scalars are broadcast by the
controller to all PEs and used as immediates in PE
instructions. Other language constructs, such as OR,
NEWS, Select Active, etc. map as expected to the cor-
responding hardware features. Since the Plane size is
not restricted, mapping Planes to physical PE arrays
can involve storing several Plane elements in each PEs
memory. In that case, instructions involving Planes do



Language Construct Comment

————————————————————————
Dyadic Operators

+, − , ∗, /, %,
&, |, ∧, <<, >>

Monadic Operators

−, ¬, ++, −−

Assignment Operators

=, +=, −=, ∗=,
/=, %=, &=, |=,
<<=, >>=, ¬=

Assignment Methods

Convert cast PlaneType to another
Resize change size of Plane

Conditional Operators

==, ¬=, <, <=, >, >=

Type Cast Methods

BitPlane, CharPlane, UCharPlane, ShortPlane,

UShortPlane, IntPlane, UIntPlane, FloatPlane

Bit Manipulation Methods

Insert move i BitPlanes starting at
j in input to the i BitPlanes
starting at k in output

Bit return the ith BitPlane

Read or Alter PE Status Methods
Edge, NEdge, SEdge, return edge status in BitPlane

WEdge, EEdge

RowIndex, ColIndex return row/col index in ShortPlane

Index return index in IntPlane

Activity set activity to BitPlane input

Inter-PE Communication Methods
North, South, 2D mesh interPE communication
East, West

Array/Controller Interaction Methods

Any return scalar OR of input BitPlane

Access return scalar OR of BitPlane

i of input
ToArray converts a Plane to a scalar array
FromArray converts a scalar array to a Plane

Plane I/O Methods

Read, Write input or output a Plane

Display send plane to display device

Table 1: Shown is the part of the ICL virtual machine
that corresponds to the required hardware feature set.

gradient(IntPlane Image, FloatPlane Magnitude,
FloatPlane Orien)

{
IntPlane Xsobel(Image.Size()), Ysobel(Image.Size());
IntPlane Temp(Image.Size());
IntPlane Square(IntPlane input);
FloatPlane Sqrt(FloatPlane input);
FloatPlane Arctan(FloatPlane Y, FloatPlane X);

Temp = Image + (Image.East() + Image.West())/2;
Ysobel = Temp.North() - Temp.South();
Temp = Image + (Image.North() + Image.South())/2;
Xsobel = Temp.East() - Temp.West();
Magnitude = Sqrt(FloatPlane(Square(Xsobel)

+ Square(Ysobel));
Orien = Arctan(FloatPlane(Ysobel),FloatPlane(Xsobel));

}

Figure 1: Shown is an ICL function that uses constructs
mapping to the required feature set to compute the
gradient magnitude and orientation of an image.

not map 1-1 to PE array instructions, but rather a level
of emulation must be added; this is discussed below.
Extending ICL to implement new language constructs
simply requires writing additional C++ methods.

Using a high level language such as ICL which
hides much of the physical processor from the program-
mer satisfies requirements 1 and 2 stated in the intro-
duction. How it does so without giving up a great deal
of efficiency is discussed in the next two sections.

4 Second Order Solution:

Supporting Optional Features

The third requirement of a portable/efficient language
is that it allow access to architectural features that
are essential in using a machine to its potential. In
order to meet this requirement, ICL has a number
of additional methods that operate on Planes: these
perform permutations, reductions, scans, and broad-
casts. These methods map directly to: permutation
networks such as those in the Connection Machine [35]
and MasPar MP1/2 [3], combining/scanning networks
as in the Connection Machine, and broadcast networks
as in the Polymorphic Torus [24], Clip-4 [8], DAP [19],
and CAAPP [39]. Local indexing, as in the MasPar
and Blitzen [4], is supported by indexing an array of
Planes with an index Plane to return a Plane. Ex-
tending ICL to support more hardware features simply
requires adding the appropriate C++ methods. See
Table 2 for a summary of the language constructs that
support the optional hardware feature set.



Language Construct Comment

————————————————————————
Index Operator

[ Plane ] local address autonomy

Feedback Method
Count return scalar count of input BitPlane

Read or Alter PE Status Method
Coterie set reconfigurable broadcast bus

switches according to CharPlane input

InterPE Communication Methods
Route one-to-one interPE communication
RouteOP many-to-one combining

interPE communication
RegionBroadcast one-to-many transfers,

only within regions
RegionSelectOP return BitPlane of all min

or max values in each region
RegRouteOP same as RouteOP but destination

must be within region
ScanOP, scans and segments scans
ScanRowOP,ScanColOP

Table 2: Shown is the part of the ICL virtual machine
that corresponds to the optional hardware feature set.

The fifth requirement is that programs be source
code portable. In other words a program written,
say, for the Connection Machine, should also run on
the DAP. We achieve this ‘second order’ portability
through emulation: programs for a particular target
machine that include language constructs intended to
support an optional hardware feature not present on
that target machine have those constructs replaced by
the appropriate emulation routines. These emulation
routines use constructs that map to features that are
present on the target machine. For communication op-
erations, the language constructs which require emula-
tion on various architectures are shown in Table 3.

The emulations mentioned here have been writ-
ten for ICL: we call them, collectively, the Operator
Emulation Library. For local indexing, the emulation
routine is trivial, for the communication functions they
are more complex. For example, permutation routing
and reduction on meshes and meshes with broadcast
are implemented with the neighbor connections and by
having each PE emulate a switch [15]. Region opera-
tions on machines with reduction networks are imple-
mented with repeated segmented scans [25].

The operator emulation library addresses the ba-
sic portability problem stated in requirement 5: pro-
grams written in ICL will run on any machine in the
domain. Programs written specifically for a particu-

MPA Communication Instruction

Perm- RegRoute Scan Region
Network utation (non-unif. (Seg- Broad-

Route reduction) mented) cast

Mesh need need need need
emul. emul. emul. emul.

Mesh + need need need direct
Broadcast emul. emul. emul. support

Mesh + direct need need need
Circuit support emul. emul. emul.
Switched

Mesh + direct direct direct need
Packet support support support emul.
Switched

Table 3: Table shows which communication instruc-
tion/network combinations are supported entirely by
the hardware architecture and which must be emulated
through a combination of software and hardware.

lar processor will do so very efficiently, within the skill
of the programmer and the normal coding efficiency of
a standard compiler. The problem that is not solved
is requirement 4, which is that the programmer is dis-
couraged from using constructs that result in poor per-
formance. This issue is discussed in later sections.

If new optional features appear within our do-
main, e.g. a novel routing network, further emulation
routines will need to be written. In the past, however,
writing these routines has proved to be far less time
consuming than what is typically spent writing a com-
piler back-end.

5 ICL Compiler Implementation

There were several major issues in implementing an
ICL compiler for the CAAPP; compilers for other ma-
chines in the class are analogous:

• integration of the two threads of execution, those
of the controller and the array,

• code optimization,

• virtual PE emulation,

• conformability, i.e. checking Plane variables for
matching dimensions.

Three ICL compilers have been implemented for
the CAAPP. One version is a straight-forward imple-
mentation using C++methods to generate instructions
to be sent to the CAAPP. The second version aug-
ments the first with a run-time CAAPP register allo-
cation procedure to minimize loads and stores. The
third version uses a modified Gnu compiler to perform



code optimization and compile time register allocation.
This last version is now briefly described; see [7] for de-
tails and a comparison of run-time versus compile time
register allocation.

The first two issues are addressed by using a Gnu
C++ compiler as a base and modifying it so that it
treats Plane variables just as it does scalars such as
ints and floats. This was done by i) adding logic so
that Plane types are treated analogously to those stan-
dard in C, ii) defining the necessary operations on those
types, and iii) modifying the code generator to send
the appropriate PE instructions to the PE array when
those Plane operations are encountered. The result is
that ICL takes advantage of much of the optimization
code provided by the Gnu C++ compiler. One exam-
ple is that the compiler allocates Planes to PE registers
using the same optimizing register allocation procedure
used for scalar variables. Another example is that com-
mon subexpression elimination is extended to include
expressions involving Planes.

Since the Gnu compiler has no concept of virtu-
alization, support was added for that as well. Planes
larger than the physical array are partitioned into tiles.
Most Plane operations require that a physical instruc-
tion be executed for each tile, although feedback and
communication instructions require physical instruc-
tions across tiles. The compiler maximizes performance
by scheduling as many physical instructions per tile as
possible before swapping in the next one. This is done
by detecting the multi-tile instructions and using them
as ‘barriers.’

Perhaps the biggest problem to be overcome was
conformability: two Planes are conformable if they
have the same dimensions. Operations may only be
performed on conformable Planes. The first two ICL
compilers generate code which checks conformability
at run-time resulting in significant controller overhead.
The third compiler checks conformability at compile
time through pattern matching on the abstract syn-
tax tree. This does not completely eliminate all run-
time checking, however. Since ICL does not require the
programmer to hardwire Plane size, the information is
sometimes simply not be available to the compiler.

The third ICL compiler has allowed us to create
a language based on C++, without non-standard ex-
tensions, and without sacrificing the optimizations and
high-quality code generation expected of a native com-
piler.

6 Portability, Efficiency, and

Type Architectures

This section follows from arguments presented by Larry
Snyder in his classic paper [33].

Creating an executable image from an application
specification requires at least three transformations: i)
the specification is formulated into a single or a se-
ries of algorithms, ii) the algorithms are encoded in a
programming language, and iii) the programming lan-
guage is compiled into executable code. For serial ma-
chines the steps are usually independent: when think-
ing about how to do a sort, a programmer considers
quick-sort or merge-sort independently of whether to
code it in Lisp or Fortran and, usually, independently
of whether the target machine is a Sun or an HP.

We borrow terminology from Snyder by calling
any set of machines where we can largely ignore differ-
ences in hardware during the algorithm development
phase a type architecture. Putting it another way, a
type architecture encompasses a set of architectures
that are related closely enough so that their compilers
can do a similarly good job producing executable code
for a particular application, given no other information
about the application besides the code itself. For exam-
ple, machines that vary only in number of registers or
pipeline depth are probably members of the same type
architecture. In fact, one could make a good case that
most serial architectures are members of the same type
architecture: this is why the SPEC benchmark can be
based on program codes, rather than task specifications
as is common in vision benchmarks [29, 31, 40]. Simi-
larly, for SIMD arrays, machines that differ only in PE
ALU complexity or array size are also probably in the
same type architecture.

On the other hand, massively parallel computers
with significantly different routing networks are very
likely to be members of different type architectures.
For example, different topologies have different opti-
mal data movement algorithms (see e.g. [34]). While
this alone is not enough to place machines into differ-
ent type architectures—data movement constructs are
likely to be supplied by the compiler through routines
such as those in our operator emulation library—this
principle extends to algorithms for innumerable prob-
lems involving communication. One need only to con-
sider the myriad papers with titles such as “Optimal
Algorithms for X on the Y Network” to verify this
statement.

Accordingly, SIMD machines with our required
feature set are in the same type architecture. Also,
a set of SIMD machines is part of the same type ar-
chitecture if they contain the required feature set, have



similar router networks, and all either have or do not
have local indexing capability. If any one of these fac-
tors changes, however, then membership in the same
type architecture is no longer assured.

As a concrete example, assume that the low level
parts of the IU benchmark are to be coded as efficiently
as possible in ICL for the CM2 and the CAAPP. The
pertinent information here is that the IU benchmark
specification contains a convex hull and connected com-
ponents labeling. To produce the efficient codes, the
programmer does not need to know about the number
of PEs on each machine, the type of floating point sup-
port, or the amount of on-chip storage. Granted this
information might be helpful, but no more so than it
would be to a programmer of a serial computer try-
ing to maximize performance by bypassing a compiler.
The difference in router network, however, is critical:
while the CM2 has a routing-combining network, the
CAAPP has a reconfigurable broadcast mesh. Both
of these networks are directly accessible through ICL
language constructs. The difference in networks, how-
ever, results in fundamentally different codes being op-
timal: while the convex hull for the CM2 code uses
a Jarvis March, the that for the CAAPP is based on
the Graham Scan. The connected components label-
ing similarly requires different algorithms. Because the
algorithm selection differed due to architectural differ-
ences, we say that the CAAPP and the CM2 are not
members of the same type architecture.

From the previous example it is also apparent
that it makes sense for membership in a type archi-
tecture to depend on the application set. If the tasks
for which two target architectures are to be used do
not require different algorithms, then those machines
are effectively in the same type architecture for that
set of tasks.

In the introduction, we stated as a goal a language
that was both portable and efficient for all machines in
the class of SIMD arrays, including those with both re-
quired and a mix of optional features. We now consider
several language design alternatives with respect to the
requirements in the introduction and the discussion on
type architectures. For all of these alternatives, we as-
sume that emulation routines of the kind discussed in
the previous section are available so that requirement
5 is not an issue.

1) Create a compiler which can spot a task in the ap-

plication code that is using a suboptimal algorithm and

create or select the appropriate algorithm for the target

architecture.

This is the ideal solution but, unfortunately, it is still
far beyond current compiler technology. Research con-

tinues in this area, however. Here all machines belong
to the same type architecture.

2) Create a language which includes only constructs

supporting a single type architecture where that type

architecture is the intersection of the features in the set

of target architectures.

Given the set of target architectures in this study, this
choice results in a language that supports only the re-
quired features. Programs will still run on machines
with optional features—they just will not be able to use
them. Although not intended specifically for this set
of processors, an example of such a language is Apply
which does not contain general communication prim-
itives such as permutations. This choice violates re-
quirement 3 that all important hardware features be
accessible. Here a language supporting one type archi-
tecture is being compiled to machines in another.

3) Create a language that only includes constructs sup-
porting a single type architecture where that type archi-

tecture includes some subset of optional features.

This is what virtually all current SIMD languages do.
Since some hardware features on some machines are not
accessible, this choice violates requirement 3 as above.
It also violates requirement 4 that the programmer be
discouraged from using constructs not well supported
on the target machine. Again, a language supporting
one type architecture is being compiled to machines in
another.

4) Create a language that includes constructs support-
ing all the optional hardware features.

This is what ICL does. This choice also violates re-
quirement 4. Here the language supports multiple type
architectures.

5) Create a language that includes constructs support-
ing features that are not in the set of either required or

optional features.

Examples of this would be control parallel languages,
which assume local PE control, and also Fortran 90
which has some constructs that do not map well onto
any existing communication network. This choice vi-
olates requirement 4. Again, the language supports
multiple type architectures, but this time some are not
even physically realizable.

6) Restrict the set of applications to those that run

optimally on machines with the minimal set of features.

This is what some image processing languages do. The
result is similar to option 2). For example, if the only
operations to be done are convolutions, it is possible
to be both portable and efficient: machines with, say,
complex router networks do not need them and so it



does not matter whether they are supported by con-
structs in the language or not. Restricting the set of
applications, in and of itself, is not bad if that is what
is intended: in fact it is something to be taken advan-
tage of. It does mean, however, that machines where
features are going unused are perhaps not being used
to their fullest potential. Also, computer vision tasks
often can take advantage of complex features such as
sophisticated router networks so this restriction is ar-
tificial. Here all machines are effectively in the same
type architecture with respect to the application set.

As we stated earlier, the problem lies with simul-
taneously achieving requirements 3 and 4. Violating
either 3 or 4 can cause a substantial slowdown over
code written in a language for the appropriate type
architecture as we will now show.

7 Dealing with Type

Architecture Mismatches

The solutions in the previous section are all less than
ideal because of type architecture mismatches. When
precisely does a type architecture mismatch cause a
problem? Whenever a task has different optimal algo-
rithms for different type architectures. It does not take
a long search through the literature to finds dozens if
not hundreds of examples: just comparing some ar-
ticles about computational geometry on meshes and
RMeshes will yield many such examples.

What is the consequence of running the wrong al-
gorithm? We have run some experiments and found
that they can be dramatic. One example is with
the task of labeling connected components. The al-
gorithm used by the CM-2 uses either pointer jump-
ing or segmented-grid-scan based algorithms [25], while
that on the CAAPP uses multi-associative leader elec-
tion via region broadcast [18]. We coded these algo-
rithms in ICL and ran them each on both CM-2 and
CAAPP machine models using ENPASSANT [16]. In
the ‘mismatch’ cases, networks needed to be emulated
(the router network on the one hand and the broadcast
network on the other). The slowdown resulting from
using the incorrect algorithm on the CM2 model was
a factor of 13.5. The slowdown of using the incorrect
algorithm on the CAAPP model was a factor of 81.

Clearly such mismatches are unacceptable. The
way to deal with them, in lieu of a compiler smart
enough to do the work for us, is to create separate
versions of these offending tasks for each type architec-
ture that requires one. If the number of tasks and type
architectures is large, then the creation of such an ap-
plication function library (AFL) would be prohibitive,

leaving the near-term possibility achieving simultane-
ous portability and efficiency in doubt.

But before abandoning hope, we must first deter-
mine whether such dramatic cases are common, and
if so, whether they are always the same task repeated
over and over, or many different tasks. To do this we
examined a set of SIMD codes produced by the UMass
VISIONS and IUA labs over several years and which
has been used in conjunction with ENPASSANT for ar-
chitecture evaluation [17]. We found very few such in-
stances: besides the connected components algorithm
just described, the only others were a Hough trans-
form, a convex hull, and right-angle detector. The first
of these was in a structure from motion code, the lat-
ter two were in the IU benchmark. What we did find
was that the majority of cycles were spent executing
relatively simple though extremely compute intensive
functions. This conclusion has been reinforced by our
architecture studies: although we have often found very
large differences in performance depending on presence
or absence of particular features, this has generally not
been because the slower machine needed to do a task
differently. Rather, it was because it just could not do
it any faster.

We find these last results promising. What they
signify is that there is reason to hope that the num-
ber of tasks that must definitely be recoded, at least
for computer vision applications, will be small. The
current contents of our AFL is three versions each of
exactly the four tasks mentioned.

8 Discussion

Changing the Hardware Feature Sets
Expanding the set of required features reduces the size
of the OEL and AFL since there are fewer variations
and therefore fewer type architectures. Contracting the
set of required features increases the size of the libraries
since there are more optional variations. For example,
assume that NEWS connections are optional, but that
1D connections are still required. This would increase
the size of the OEL as now NEWS communication must
be emulated for 1D machines. It would also increase
the size of the AFL in so far as, say, different algorithms
are required for window-based operations on 1D arrays
as for 2D.

Adding optional features may or may not increase
the size of the libraries. For example, adding support
for 8-way connectivity was accomplished in a few hours
since the 4-way emulation of 8-way communication is
trivial. Adding an entirely new communication scheme
S, however, would require that i) communication con-
structs be added to ICL to support S, ii) all the other



communication operations in ICL be emulated, if nec-
essary, for S, iii) emulations be added for other com-
munication schemes to emulate the constructs added to
support S, and iv) new application functions be added
for tasks where S calls for use of a different algorithm.

We do not believe that emergence of a new scheme
S is likely, however. We have found that beyond near-
est neighbor connections, the only crucial differences in
networks are whether or not they efficiently support the
standard routing functions of permutation, reduction,
scan, and broadcast.

Summary
The approach we have taken includes language, oper-
ator emulation, and application function libraries. To-
gether, they meet all five of the requirements stated in
the introduction.

The cost, besides a certain inelegance, is the pro-
gramming involved to add operator emulations and ap-
plication functions to the libraries as new machines are
added to the class of SIMD arrays. Ideally the opera-
tor emulation libraries would come with the compilers
supplied with each machine, much the way math and
graphics libraries are supplied now. Depending on the
universality of the application in question, the vendor
may or may not be obligated to supply an AFL as well.

In the ENPASSANT project where the goal is to
model many machines in this class, we have written our
own OEL and AFL (as described above). So far, this
programming cost has been on the order of months, so a
rough estimate for the cost of adding an essential new
feature is likely to be in the neighborhood of weeks.
This is much less than the time it takes to create a
compiler back end.

Other Approaches
The problem described here is well known. Often solu-
tions fall into one of two diametrically opposed camps:
those which imply that parallel processing will converge
to a single type architecture and those which just want
to get the best performance possible out of a machine.
Those in the first camp include the initial versions of
the type architecture work described here and the BSP
model proposed by Valiant [38]. More recent versions
of each have recognized that a solution based entirely
on one model with no regard to architecture may not
always be ideal and might require, e.g., optimized li-
braries on different parallel machines [12]. Supporters
in the latter camp include many of the actual program-
mers of parallel processors who are used to acquiring,
and using, detailed knowledge of the target architec-
ture to maximize performance.

Currently, it appears that parallel programming
has converged to three basic models: dataparallel, us-
ing languages such as Fortan 90 (similar to the over

all approach discussed here); explicit message passing,
sometimes using PVM or MPI; and multi-threading us-
ing, perhaps, Posix. Vendors of multiprocessors are ex-
pected to support all three. The trend, however, is for
fewer cycles to be executed from user codes and more
from third party applications. In effect these are appli-
cation function libraries.

Interestingly, an early discussion of this issue [32]
proposes that type architectures (idealized machines)
will emerge corresponding to a small set of parallel
computation approaches. These approaches include
processors with local memory and reconfigurable topol-
ogy, synchronous and asynchronous shared memory, as
well as a dataflow machine, and an associative proces-
sor. It was also stated that these approaches overlap,
are not necessarily complete, but also that if the total
number was not small, then the correct saliant feature
sets probably had not been identified. We believe that
while for large-grained machines this may certainly be
true, for fine-grained machine the interPE communica-
tion network currently cannot be ignored. Naturally,
if a clear network choice emerges, this situation will
change.

Status and Future Work
We have implemented this approach for three different
environments:

• A compiler for the CAAPP

• A compiler that produces C code

• A compiler that creates virtual machine code for
use by ENPASSANT in architecture evaluation ex-
periments.

The next task is to create a multithreaded version to
run dataparallel applications on multiprocessors.
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