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Abstract—Molecular Dynamics is notable in High Performance
Computing in that it is both sufficiently critical, and not well-
enough served by off-the-shelf processors, that it has been
continually targeted with domain-specific architectures. These
range from the common, i.e., use of accelerators, to FPGA-centric
servers describe here, to full-scale ASIC-based systems (e.g.,the
Anton processor). The strict constraints on achieving strong scal-
ing leads to novel designs, which in turn suggest restructurings of
the underlying algorithms. These in turn suggest some changes
to the hardware. We discuss the technological issues involved,
the implications of various approaches on architecture/algorithm
codesign, and how these are likely to affect future high-end
processors, both domain-specific and off-the-shelf.

I. I NTRODUCTION

“Codesignrefers to a computer system design process where
scientific problem requirements influence architecture design
and technology and constraints inform formulation and design
of algorithms and software.[1]” Both halves of this statement
are obvious: architects optimize systems based on software
performance and application developers (re)formulate software
accounting for the target system. What makes codesign topical
is that it combines these two domains. Implied in the approach
is that it be economically viable: Completely off-the-shelf is
perhaps not acceptable, but neither is unrealistic variation in
either hardware or software.

Codesign is most interesting when there are many viable
ways to solve the target application, preferably with variations
occurring at multiple levels, e.g., choice of algorithm, code
transformation, arithmetic mode, and communication mech-
anism. For codesign to be useful, these different variations
must have different optimal target architectures. Molecular
Dynamics (MD) fits these criteria: variations at all these
levels have been described extensively and the optimality of
the variations often differs depending on hardware support.
Moreover, variations in different parts of the applicationaffect
each other in their own “codesign” process.

This work is based on our codesign experiences with MD
and its mapping onto FPGA-centric clusters. We cast codesign
as an iterative process; while hardware and software can be
optimized jointly, we believe that for complex applications
such as MD altering multiple variables simultaneously may
not be the best the best method to traverse the solution
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space. Specifically, we describe three phases of codesign. In
phase 0, we hypothesize FPGA-centric clusters as the initial
target architecture, although we also use GPU and ASIC
mappings for reference. Phase 1 is the mapping of MD to
the target hardware and involves modifying the application. In
phase 2, we suggest changes in hardware based on these new
application characteristics.

A potential problem with this approach is local minima: the
initial target architecture may specify a point in the solution
space from which no minimal path to the optimal may exist.
The practical answer is simply to measure the results against
existing MD systems: if the codesigned system cannot improve
on what exists then the hypothesis fails.

The rest of this paper is organized as follows. In the next
section we briefly describe MD. In the three following sec-
tions, we examine three classes of optimizations of MD with
respect to the target architecture: (i) polynomial evaluation; (ii)
neighbor lists; and (iii) communication. At the end of each
of these sections we briefly discuss possible changes to the
hardware. In the conclusion we summarize current status.

II. MD PRELIMINARIES

MD is central to computational biochemistry and comprises
a large fraction of all High Performance Computing cycles.
This section provides background based on material in [2].

MD is an iterative application of Newtonian mechanics to
ensembles of atoms and molecules (see, e.g., [3] for details).
Each iteration consists of two phases, force computation
and motion integration. The forces may include non-bonded
(Lennard-Jones or LJ and Coulomb) and bonded terms:

F
total = F bond+F angle+F torsion+FHBond+Fnon−bonded

(1)
Because the bonded terms affect only neighboring atoms,
computing their effect isO(N) in the number of particles
N being simulated. Motion integration is alsoO(N). The LJ
force for particlei can be expressed as:
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where theǫab andσab are parameters related to the types of
particles. The Coulombic force can be expressed as:
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A standard way of computing the non-bonded forces is by
applying a cut-off. Then the force on each particle is the result
of only particles within the cut-off radiusrc. Since this radius
is typically less than a tenth of the size per dimension of the
system under study, the savings are tremendous. The problem
with cut-off is that it introduces an error.

A number of methods have been developed to compute the
force outside the cut-off. Two of the most popular are based
on Ewald Sums [4], which generally involves an FFT, and
multigrid [5]. We use the standard convention of calling the
component within the cut-offrange-limitedand that outside
long-range. Depending on the methods used to compute these
components, different correction terms are applied to simplify
the computation. For single threaded execution, the range-
limited force dominates accounting for roughly 90% of the
time. When parallelized, however, the long-range force can
dominate, especially for large computer systems operatingon
small to medium sized problems.

III. POLYNOMIAL EVALUATION

The range-limited force on each particle is the sum of
its interations with all particles within radiusrc. These are
computed using the expressions given in the previous section
plus correction terms to smooth the cut-off and simplify the
long-range force. These expressions are sufficiently complex
that a large number of choices emerge in their evaluation (see,
e.g., [2], [6], [7], [8] and references therein). For FPGA-based
systems the object is to minimize pipeline size to enable more
computation per area and thus more parallelism and faster
execution. Sufficient simulation quality must be guaranteed,
however, especially to ensure stability. Similar reasoning goes
into ASIC designs; for CPUs and GPUs there are fewer
choices, but lower precision and use of integer rather than
floating point yield higher performance with lower quality.

In our studies we have considered direct computation versus
table look up with interpolation; with table look up, the num-
ber of bins, order of interpolation, and method of generating
coefficients; precision; and arithmetic mode including fixed
point, floating point, and a hybrid representation. Consider-
ations are use of FPGA resources versus simulation quality.
Additionally, some particular hardware features or application
characteristics shift these tradeoffs. An interesting observa-
tion is that our system has gone through three generations
of solutions. The changes are due to changing application
requirements and characteristics of the base hardware.

section

Fig. 1. Table look-up varies in precision acrossr
−k.

1. MD software system = ProtoMol [9], FPGA = Xilinx Virtex
5 [8], [10], [7]. The significance of the ProtoMol integration
is that it supports a Multigrid implementation of the long-
range force and has the following Coulombic component of
the range-limited force:
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whereQQab is a precomputed parameter and theGi are the
smoothing terms. The significance of the Virtex 5 is that it has
limited floating point support. We made the following phase
1 changes based on the choices of ProtoMol and Virtex 5.

• Sweet spots for precision are at 35 and 53 bits as derived
from measured stability and resource utilization. The
unusual word sizes are due to size of the hardwired
multiplier blocks.

• The lack of floating point support indicated using table
look up. The functions being evaluated lend themselves
to two optimizations: usingr2 rather thanr as an index,
and having the bin size double with increasing interval
(see Figure 1).

• We found two preferred designs based on acceptable error
and resource utilization: 3rd order with 128 bins per
interval and 2nd order with 512 bins per interval.

• An observation about exponent usage led us to the devel-
opment of a more efficient floating point representation,
Semi-FP, which uses half the resources.
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Fig. 2. Force pipeline template.

2. MD software system = ProtoMol, FPGA = Altera Stratix
III [11], [2]. The significance of the Stratix III is that it has
improved floating point support. At the same time, Altera
released its Floating Point Compiler that optimizes floating
point pipelines. Together, these led to the following changes.



• Direct computation rather than table look up (see Fig-
ure 2).

• Mix of fixed and single precision floating point.
• Higher precision for accumulation.

3. MD software system = NAMD [12], FPGA = Altera Stratix
IV [6]. The major change with moving to NAMD is that the
range-limited force calculation is substantially more complex.
Here is the electrostatic calculation.
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A more general trend, inspired by the emergence of GPUs
as MD accelerators, is a better of understanding the effect of
precision on simulation quality. Changes are as follows.

• The evaluation is done with table look up.
• First order interpolation is used with 256 bins per interval

and 10 intervals. We find that multipliers are the critical
resource, rather than on-chip memory, so select the lower
order solution.

We now comment on analogous mappings of polynomial
evaluation to two other processors. NVIDIA GPUs have a
texture processor that gives direct support for first order
interpolation making this the method of choice [13]. Also
with GPUs, floating point support is superior than integer
so floating point is used exclusively. And in older GPUs,
single precision was proportionally much faster than double
precision leading to the use of single precision throughout
except for accumulation [13]. The Anton processor from D.E.
Shaw uses custom ASICs and was developed in parallel to the
work described here [14]. Use of ASICs leads to a different
solution: Anton uses 2nd and 3rd order interpolation with
variable segment size and a small number of bins (256 total).

The phase 1 implementation points to possible hardware
improvements (phase 2). For FPGAs, more multipliers and
better floating point support are obvious recommendations.For
GPUs, there is already direct support for first order interpola-
tion. Naturally second order would improve the quality. And
since a substantial fraction of the computation can be done in
fixed point, better support there would also help.

IV. N EIGHBOR L ISTS
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Fig. 3. P’s two dimensionalcell neighborhoodis shown in white; cells have
edge size equal to the cut-off radius. Particles within the P’s cut-off circle are
in P’s neighbor list.

Two methods are used to prevent zero calculations of the
range-limited force: cell lists and neighbor lists (see Figure 3).
With cell lists, the simulation space is partitioned (typically)
into cubes with edge-length equal torc. Non-zero forces on the
reference particleP can then only be applied by other particles
in its home celland in the 26 neighboring cells (the 3x3x3
cell neighborhood). Cell lists can be created very quickly
but have only 15.5% efficiency. With neighbor lists,P has
associated with it a list of exactly those partner particleswithin
rc. Creating neighbor lists is much more time consuming and
so is usually done only every 15-20 iterations or as needed.
An optimization that increases the recompute interval is to
increase the neighbor list radiusrnl; the closerrnl to rc the
higher the efficiency but the more frequently the neighbor lists
need to be adjusted.

The problems with using neighbor lists on accelerators
include the size of the lists, the complexity of building thelists,
and the need to follow pointers. Since accelerators generally
trade off latency for throughput, the last of these is especially
problematic. The FPGA (and ASIC) solution begins with the
trivial observation that the force pipeline already computesr2

(see Figure 2). We use this observation by noting that only
15.5% of the computations need to advance from this point
through the rest of the pipeline. It should thus be possible to
replicate ther2 calculation (the filter) 6 times for each copy
of the rest of the force pipeline. This is our first “candidate”
filter design: it has several filters per force pipeline; runsat
nearly 100% utilization, rather than 15.5%; requires 2.5 times
the area per pipeline; and has2.6× the throughput.

We note thatrfilter need not be as accurate asrforce
used for the full force computation. This requires roundingup
rfilter so that it is> rc, which reduces the utilization slightly
(to 99.5%). But it also reduces the size of the entire combined
filter/force pipeline by a factor of 2 over the first candidate
design. Summarizing the second candidate filter design: it has
the same number of filters per force pipeline; runs at 99.5%
utilization, which results in 3% extra work; requires 25%
more area per pipeline than the original; and has5.2× the
throughput of the original design.
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Fig. 4. Filtering with planes rather than a sphere – 2D analogue.



For the third canditate design we note that a linear rather
than a quadratic filter avoids multiplies, which are relatively
more expensive resource than adds on an FPGA. In this
method we avoid multiplication by thresholding with planes
rather than a sphere (see Figure 4 for the 2D analog). The
formulae are as follows:

|x| < rc, |y| < rc, |z| < rc
|x|+ |y| <

√
2rc, |x|+ |z| <

√
2rc, |y|+ |z| <

√
2rc

|x|+ |y|+ |z| <
√
3rc

With 8 bits, this method achieves 97.5% efficiency, or
about 13% added work with respect to perfect filtering. The
advantage is that no multipliers are needed by the filter,
reducing the total by nearly 25%. Where that is the critical
resource, as in current FPGAs, the total throughput is increased
by almost 18%.

We now comment on analogous mappings of filter with
ASICs; we are not aware of a GPU mapping that implements
filtering. Anton uses a reduced precision filter similar to that
described here [15], but we are not aware that it uses a linear
filter. This may be because all arithmetic units are hardwired,
rather than just multipliers.

Possible hardware improvements (phase 2) are as follows.
For FPGAs, the filtering scheme described is an excellent
fit with balanced use of resources. GPUs could implement
filtering with inter-thread communication.

V. STRONG SCALING
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Fig. 5. Time per timestep for various simulation sizes and core counts
assuming perfect scaling. This shows computation only and gives the time
budget for communication.

While the long-range force only takes about 10% of the
compute cycles, this fraction assumes that communication
latency can be hidden. This becomes increasingly difficult
as cluster size increases and problem size remains fixed (see
Figure 5 and [16] for details). Since many critical applications,
e.g., protein folding, involve fewer than 100K particles and
long time scales (1012 timesteps or more), strong scaling is
critical. Note that for a cluster with 8K cores running a 100K
particle simulation, the communication budget is200µs per

timestep. Since this communication involves multiple all-to-
all communications among (in this case) hundreds of nodes,
this is likely to require extremely careful network design.

Communication time is the sum of time-of-flight latency
and transmission time (inversely proportional to bandwidth).
Raw bandwidth and latency are basic in this calculation, but
there are other factors. On the negative side, congestion both
increases latency and decreases apparent bandwidth. On the
positive side, judicious in-channel filtering can reduce the
amount of data that needs to be transmitted and so increase
the apparent bandwidth. These two factors add a third criterion
to our communication network design (beyond latency and
bandwidth): application aware processing.

Fig. 6. Bandwidth requirement for various systems for a 100K particle
problem size. Systems are ideal with all-to-all interconnect and no in-channel
particle filtering.

We now explore these three criteria, beginning with band-
width. For this we summarize the discussion in [16]. MD
communication has four components: range-limited, which is
mostly nearest neighbor; grid interpolation, which is alsonear
neighbor; grid distribution, which is a scatter and its inverse
which is a gather; and FFT which involves a transpose. We
model this communication for NAMD and validate the model
with a medium-sized cluster. Using this model we derive the
overall bandwidth required per node; Figure 6 shows these
results for nodes of various sizes and counts.

Next we determine the actual bandwidth requirement, as-
suming a 3D bi-directional torus network. Our goal here is to
determine the bandwidth needed for each of the 12 channels on
a node. Data communication for the range-limited non-bonded
force computation is contained within neighboring nodes at1-
3 hops. This will on average cause about a2× increase in data
communication. At the same time, however, the FPGA easily
supports in-channel filtering to remove particles not needed by
a particular neighbor. For typical cell/patch and cut-off sizes,
this results in a reduction of data to be transferred (weighted
by number of hops) to 73% of the original. For long-range
communication, all-to-all communication is required which
roughly doubles the data amount for a4× 4× 4 node system
and further doubles it on an8× 8× 8 node system.

The final bandwidth requirement for a 100K simulation



Fig. 7. Bandwidth per channel requirement for various systemsfor a 100K
problem size. Some likely system information is integrated such as number
of hops per packet and in-channel particle filtering.

is shown in Figure 7. The seriesnode = 256 cores
represents projected performance of a 4 FPGA node. For a
system with 64 such nodes, configured in a 3D bidirectional
torus, each channel must support 27Gb/s bandwidth; this is
possible with 2 14Gb/s serial links. The aggregate of 24 links
is a small fraction of the roughly 200 available among the four
FPGAs on such a node.

To minimize latency we stipulate direct accelerator to accel-
erator connections as available with FPGAs (and ASICs) and
likely to be available soon with many-core processors. This
bypasses the bus and NIC. FPGA systems like this have been
built for numerous applications, including simulation of neural
networks [17]. Point-to-point time-of-flight at the application
layer is typically less than 100ns with 50ns reported.

The third aspect of the design involves support for
application-aware processing. In MD there are at least two op-
portunities, in-channel filtering and application-aware packet
routing. The first of these has already been mentioned above:
when transferring data in the range-limited force calculation
a simple position filter removes over half of the data from
the stream. The second is possible with regular determinis-
tic patterns. In the case of a transpose, there is a pattern-
specific schedule based on de Bruijn sequences that guarantees
congestion-free routing [18]. Schedules can be implemented
with in-channel reordering.

Possible hardware improvements (phase 2) are as follows.
For FPGAs, we find again that they are an excellent match for
the proposed scheme. In this case this is not surprising since
the primary market for high-end FPGAs is as network routers.
If follows that for many-core processors to be able to follow
suit they would need similar communication support.

VI. D ISCUSSION

We have described the codesign process for Molecular
Dynamics using FPGA-centric clusters as a starting point
(phase 0). We describe three aspects of MD implementation:
polynomial evaluation, creation of neighbor lists, and commu-
nication. We find that for neighbor lists and communication,

the FPGA’s unusual capabilities—including flexibility and
communication support—suggest restructuring the application
to improve performance (phase 1). Finally, these restructurings
sometimes suggest improvements to the hardware (phase 2).
Overall we find that the concern of remaining in a local
minimum is unfounded: per chip performance is competitive
[6] while the intrinsic communication support is unparalleled
for COTS parts.
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