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a b s t r a c t

Discrete molecular dynamics simulation (DMD) uses simplified and discretized models
enabling simulations to advance by event rather than by timestep. DMD is an instance
of discrete event simulation and so is difficult to scale: even in this multi-core era, all
reported DMD codes are serial. In this paper we discuss the inherent difficulties of scaling
DMD and present our method of parallelizing DMD through event-based decomposition.
Our method is microarchitecture inspired: speculative processing of events exposes paral-
lelism, while in-order commitment ensures correctness. We analyze the potential of this
parallelization method for shared-memory multiprocessors. Achieving scalability required
extensive experimentation with scheduling and synchronization methods to mitigate seri-
alization. The speed-up achieved for a variety of system sizes and complexities is nearly 6�
on an 8-core and over 9� on a 12-core processor. We present and verify analytical models
that account for the achieved performance as a function of available concurrency and
architectural limitations.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Discrete, or Discontinuous, Molecular Dynamics (DMD) uses simplified models; for example atoms are modeled as hard
spheres, covalent bonds as infinite barriers, and van der Waals forces as a series of one or more square wells. This discret-
ization enables simulation to be advanced by event, rather than timestep. Events occur when two particles cross a discon-
tinuity in inter-particle potential. The result is simulations that are typically faster than timestep-driven molecular dynamics
[4,18,19,26]. The simplicity of the models can be substantially compensated for by the capability of researchers to refine
interactively simulation models [24,25].

The problem addressed here is that for DMD, as for discrete event simulation (DES) in general, causality concerns make it
difficult to scale to a significant number of processors [5,16]. While the parallelization of DMD has been well-studied [16,23],
we are aware of no existing production parallel DMD (PDMD) codes. The difficulty in parallelizing DMD (as, in general, in par-
allelizing DES) is that dependencies can arise unpredictably and virtually instantaneously. In some Parallel DES application
domains, e.g., in network simulation, it is possible to circumvent this by predicting a window during which event processing
is safe (conservative approach) or by making a similar assumption to ensure that the amount of work that may need to be
undone is limited (optimistic approach) [5]. DMD, however, is chaotic: there is no safe window [12].
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Our approach is motivated by the following observations:

1. A recent algorithmic advance in DMD event queuing has reduced the complexity of the most time-consuming operations
from O(logN) to O(1) [18]. This has significantly reduced the amount of work to maintain a central event queue.

2. Previous PDMD work has been based on spatial decomposition [5,11,13,16]. While workable in one and two dimensions,
3D simulation is far more complex. This requires, for cubic decomposition, that each thread exchange information with a
large number of neighbors (26) for potential conflicts. Or, if decomposition is done by slices, then it must handle a drastic
increase in the ratio of surface area to volume and so the number of interactions per thread-pair.

3. Many of the successful PDMD implementations were reported more than a decade ago (and mostly for 2D) [11,13]. Since
then, event processing speed has increased dramatically, through advances in both processors and algorithms, especially
when contrasted with interprocessor communication latency. This means that parallelizing DMD through spatial decom-
position is likely to be less efficient. On the other hand, shared memory multicore processors have evolved to become the
dominant computing platform and maintaining a centralized event queue on such devices is not so expensive.

We therefore parallelize using event-based, rather than spatial, decomposition [7]. Overall, our method uses an approach
that has proved successful both in CPU design [6] and in hardware implementations of PDMD [8,17]: parallelize through dee-
ply pipelined processing, but maintain in-order commitment. In software this translates as follows. There is a single central-
ized event queue. Multiple threads dequeue events in parallel and process them speculatively. Various types of hazards are
checked by using shared data structures, and event processing is cancelled or restarted as necessary. As with hardware
implementations, in-order commitment assures correctness.

We have implemented our method on shared memory multicore computers and have achieved a speedup of 5.9� on an 8
core and 9.2� on a 12 core processor. We have also analyzed the potential of parallelism in DMD and identified the obstacles
that limit achieving it in full on currently available computing platforms. Overall, our contributions are as follows:

� A scalable parallel DMD system based on a novel design that is appropriate for production applications. We are not aware
of any other such system.
� Experiments with both known and new optimizations that update long-standing issues such as cell size and queue inser-

tion policy [11,20], as well as describe the interaction of the latter with the latest queue data structure.
� Extensive exploration of synchronization and scheduling mechanisms to minimize serialization. This is the key to scaling

event-based decomposition.
� Analysis of performance that accounts for scaling limitations by modeling the available concurrency and also the inter-

action between application and architecture.

The rest of this paper is organized as follows. In the next section we summarize discrete event simulation and its appli-
cation to molecular dynamics. We concentrate on the event queue and discuss in some detail a data structure that has not
previously been integrated into PDMD. In the following sections we describe how we chose the basic parameters, including
data structure shape, cell size, and event queue insertion policy. We follow with our PDMD design, starting with a discussion
of DMD hazards in general, how we deal with them conceptually, and then with our system. Next we present some critical
implementation issues: three possible scheduling mechanisms, and other software refinements. We then present the scala-
bility results, followed by various analytical models fleshed out with system-level measurements, and a conclusion.

2. DMD: basics and standard implementation issues

2.1. DES/DMD overview

MD is the iterative application of Newton’s laws to ensembles of particles. It is transformed into DMD by simplifying the
force models: all interactions are folded into spherically symmetric step-wise potential models. Fig. 1 shows a selection of
the potentials described in the literature (see, e.g., [1,19,24]). It is through this simplification of forces that the computation
mode shifts from timestep-driven to event-driven.

Overviews of DMD can be found in many standard MD references (e.g., Rapaport [21]) and DMD surveys [1,19,24]. A DMD
system follows the standard DES configuration (Fig. 2) and consists of the

� System state, which contains the particle characteristics: velocity, position, time of last update, and type;
� Event predictor, which transforms the particle characteristics into pairwise interactions (events);
� Event processor, which turns the events back into particle characteristics; and
� Event priority queue, which holds events waiting to be processed ordered by time-stamp.

Execution proceeds as follows. After initialization, the next event (involving, say, particles a and b) is popped off the queue
and processed. Then, all other previously predicted events involving a and b, if any, are removed from the queue, since they
are no longer valid. Finally, new events involving a and b are predicted and inserted into the queue.
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To bound the complexity of event prediction, the simulated space is subdivided into cells (as in MD) (Fig. 3). Since both
the number of particles per cell and the number of cells in a neighborhood (27 in 3D) are fixed, the number of predictions per
event is also bounded and independent of the total number of particles. One complication of using cells in DMD is that, since
there is no system-wide clock advance during which cell lists can be updated, bookkeeping must be facilitated by treating
cell crossings as events and processing them explicitly. Cell size is usually determined such that two particles have to be in
the same or adjacent cells to interact with each other (cell dimension > particle interaction cut-off distance). Thus for any
home cell, we ensure that checking only the 26 neighboring cells (in 3D) is always sufficient. Particles in other cells must
enter these neighboring cells prior to interacting with home cell particles; such events are handled separately as cell-
crossings.

One design issue that has received much attention is how many of the newly predicted events to insert into the event
queue [10]. The original algorithm by Rapaport [20] inserts all predicted events. Lubachevsky’s method [11] keeps only a
single event, the earliest one, per particle. The reduced queue size, however, comes at a cost: whenever the sole event involv-
ing a particle is invalidated, the events for that particle must be repredicted. This is done by converting the invalidated event
into an advancement event of that particle; when the advancement event is processed, new predictions are made. There is
thus a trade-off between the processing required to update the larger queue and that required for reprediction. We compare
the performance of these methods in Section 3.3.

Fig. 1. A collection of DMD potential models used in different studies (from [1,19,24]). (a) Simple hard sphere characterized by infinite repulsion at the
sphere diameter. (b) Hard spheres with an attractive potential square well, zero interaction after a given cut-off radius. (c) A square well potential with
multiple levels. (d) Single-infinite square well used for covalent bonds, angular constraints, and base-stacking interactions. (e) Dihedral constraint potential.
(f) Hydrogen-bonding auxiliary distance potential function. (g) Discretized van der Waals and solvation nonbonded interactions potential. (h) Lysine-
arginine-phosphate interaction potential in DNA-histone nucleosome complex. (i) Two-state bond used to create auxiliary bonds between backbone beads
if they are also linked by a covalent bond. (j) Repulsive ramp with two steps for auxiliary interactions in hydrogen bond and with multiple steps to model
liquids with negative thermal expansion coefficient.

Fig. 2. DES/DMD block diagram.
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2.2. Software Priority Queues

While parallelization retains the established mechanisms for event processing and prediction, queue operations are sig-
nificantly affected. Much work has been done in optimizing the DMD event queue (see survey in [18]) with the design con-
verging as is described in this and the next subsection.

The basic operations for the priority queue are as follows: dequeue the event with the highest priority (smallest time
stamp), insert newly predicted events, and delete events in the queue that have been invalidated. A fourth operation can also
be necessary: advancing, or otherwise maintaining, the queue to enable the efficient execution of the other three operations.

The data structures typically are

� an array of particle records, indexed by particle ID;
� an array to save information on which particle belongs to which cell;
� an event pool;
� an event priority queue; and
� a series of linked lists, at least one per particle, with the elements of each (unordered) list consisting of all the events in

the queue associated with that particular particle [21].

Implementation of priority queues for DMD is discussed by Paul [18]; they have for the most part been based on various
types of binary trees, and all share the property that determining the event in the queue with the smallest value requires
O(logN) time [14]. Using these structures, the basic operations are performed as follows. Operations using Paul’s queueing
structure are described in the next section.

1. Dequeue: The tree is often organized so that for any node the left-hand descendants are events scheduled to occur before
the event at the current node, while the right-hand descendants are scheduled to occur after it. The event with highest
priority is then the left-most leaf node. This dequeue operation is therefore either O(1) or O(logN) depending on book-
keeping. Our implementation is a binary search tree, therefore the worst case asymptotic bound is O(logN), as long as
the binary tree shape is maintained.

2. Insert: Since the tree is ordered by tag, insertion is O(logN) (again, in the worst case and as long as the binary tree shape is
maintained).

3. Delete: For Rapaport queueing, when an event involving particles a and b is processed, all other events in the queue
involving a and b must be invalidated and their records removed. This is done by traversing the particles’ linked lists
and removing events both from those lists and the priority queue. Deleting an event from the tree is O(logN) (again, in
worst case and as long as the binary tree shape is maintained). A particular event generally invalidates O(1) events, inde-
pendent of simulation size, since cell subdivision method limits the maximum number of predicted events per particle.

4. Advance/maintain: Binary trees are commonly adjusted to maintain their shape. This is to prevent their (possible)
degeneration into a list and so a degradation of performance from O(logN) to O(N). With DMD, however, it has been
shown empirically by Rapaport [20] and verified by us elsewhere, that event insertions are nearly randomly (and uni-
formly) distributed with respect to the events already in the queue. The tree shape is therefore maintained without rebal-
ancing, although the average access depth is slightly higher than the minimum.

Fig. 3. Cell subdivision in DMD. Neighboring cells should cover the particle cut-off radius.
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2.3. Implementation with Paul’s event queue (PaulQ)

In this subsection we summarize the primary DMD data structures. The event queue is based on work by Paul [18], which
leads to a reduction in asymptotic complexity of priority queue operations from O(logN) to O(1), and a substantial benefit in
realized performance.

The observation is that most of the O(logN) complexity of the priority queue operations is derived from the continual
accesses of events that are predicted to occur far in the future. The idea is to partition the priority queue into two structures.
This is shown in Fig. 4, along with most of the other major data structures. A small number of events at the head of the queue,
say 30, are stored in a fully ordered binary tree as before, while the rest of the events are stored in an ordered list of small
unordered lists. Also retained are the particle memory and the per-particle linked lists of events that are used for invalidates.

To facilitate further explanation, let Tlast be the time of the last event removed from the queue and T be the time of the
event to be added to the queue. Each of the unordered lists contains exactly those events predicted to occur within its own
interval of Ti. . .Ti + Dt where Dt is fixed for all lists. That is, the ith list contains the events predicted to occur between
(T � Tlast) = i⁄Dt and (T � Tlast) = (i + 1) � Dt. The interval Dt is chosen so that the tree never contains more than a small num-
ber of events.

Using these structures, the basic operations are performed as follows.

1. Dequeue: While the tree is not empty, operation is as before. If the tree is empty, a new ordered binary tree is created
from the list at the head of the ordered array of lists.

2. Insert: For (T � Tlast) < Dt, the event is inserted into the tree as before. Otherwise, the event is appended to the ith list,
where i = b(T � Tlast)/Dtc.

3. Delete: If the event is in binary tree, it is removed as before. If it is in the unordered list, it is simply removed from that
list. It should be noted that, particle and event data is stored such that finding an event to delete takes O(1) time.

4. Advance/maintain: The array of lists is constructed as a circular array. Steady state is maintained by continuously drain-
ing the next list in the ordered array of lists whenever a tree is depleted.

For the number of lists to be finite there must exist a constant Tmax such that for all T, (T � Tlast) < Tmax. In the rare case
where this relation is violated, the event is put in a separate overflow list, which is drained after all the lists have been drained
once. Performance of this data structure (PaulQ) depends on tuning Dt. The smaller Dt, the smaller the tree at the head of the
queue, but the more frequent the draining and the larger the number of lists.

We return to the other data structures in Fig. 4. For any simulation model, all of these structures can be implemented
highly efficiently as fixed sized arrays [2]. Particle memory depends on the number and type of particles; cell lists on the
simulation size and cell size; event pool on the number of particles, the insertion policy, and the energy landscape; and
the queues depend on the parameters just described.

2.4. Experimental methods

The baseline code is by Rapaport and is described in [21] (Ch14). This code is highly efficient being written in C in a ‘‘FOR-
TRAN-like’’ style and including standard optimizations (such as described in [2]). All modifications were also written in C and
compiled using gcc (v4.2.4) with O3 optimization. Execution times were measured on two platforms.

� A 64-bit, 2-processor, 8-core Dell Precision T-7400 Workstation with 4 GB of RAM. Each processor is a quad-core Intel
Xeon CPU E5420 (Harpertown) @2.50 GHz. This was built with a 45nm process, has a Penryn microarchitecture, 32 KB
L1 I-Cache, 32 KB L1 D-Cache, and two 6 MB L2 caches, each shared by two cores. The operating system was Ubuntu Linux
(v8.04).

Fig. 4. DMD data structures including Paul’s two-level event queue.
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� A 64-bit, 2-processor, 12-core AMD Magny-Cours Server with 16 GB of RAM. Each processor is a 6-core AMD Opteron CPU
6172 (Istanbul) @2.10 GHz. This was build with a 45 nm process, has a Bulldozer architecture, 64 KB L1 I-Cache, 64 KB L1
D-Cache, 512 KB L2 Cache, 6 MB of L3 cache shared by the 6 cores. The operating system was GNU/Linux (v2.6).

DMD simulations are generally evaluated in terms of events computed per unit time. For clarity, we count only Payload
events. These include all events that involve particles crossing discontinuities in potentials (as shown in Fig. 1). Overhead
events are needed only to ensure correct simulation and/or maintain data. There are two such event types.

Cell-crossing: When a particle crosses the boundary of a cell. This is present in all models.
Advancement: This is required only if we implement Lubachevsky-style event queuing [11] where only the earliest event

for each particle is queued. If that earliest event Ea,b for a particle a is a collision, but the other participant b is involved in
another collision Eb,c before Ea,b takes place, then Ea,b event is turned into an advancement event Ea for a. During the execu-
tion of Ea, the position of a is updated and new events are predicted.

In all experiments we simulated 10 million payload events, but in general performance is independent of simulation time
beyond a brief initialization phase. Following standard procedures (see, e.g., [21]), the particles were initially distributed uni-
formly in a 3D grid. The simulation box size was determined from the density and the number of particles. Particles were
assigned velocities in random directions, but with a fixed magnitude depending on the temperature. Velocities were ad-
justed to make the center of mass stationary. Particles were then assigned to cells and events predicted and scheduled
for each particle. Runtime was measured after all initializations were done, and when actual event processing had begun.

2.5. Simulation models and conventions

Various models have been created to accommodate molecular systems of differing complexity, flexibility, and desired res-
olution of the system of interest. They all have in common, however, the use of spherically symmetric step potentials, some
of which are shown in Fig. 1. Somewhat surprisingly, DMD simulator throughput (in events/second) is affected only margin-
ally by model complexity. For example, the difference in throughput between simulations using a simple square well, shown
in Fig. 1(b), and complex square wells, shown in Fig. 1(c) and (g), is negligible (see Section 6.1). The reason is that the added
model complexity is processed using a switch/case statement to identify the correct discontinuity, which requires only a few
instructions. A similar observation is made for per-particle differences in step functions, including particle radius. As a result
the simulation throughput also does not materially change as a function of number of particle types in the simulation, or
whether some particles are covalently bonded or not. Some factors that do affect throughput are the number of particles,
the radius of the furthest discontinuity from the particle center, and the simulation density.

As a consequence, for this study, instead of parallelizing any particular models in use, we chose, without loss of generality,
a generic simulation framework that encompasses the properties that have an effect on event throughput. Note that adding
complexity, such as processing reactions rather than simple discontinuities in potentials, necessarily adds to the work
needed per event and so improves the scalability of most parallelizations. In that sense the performance improvements re-
ported here are lower bounds.

Our simulations are of identically sized hard spheres of unit diameter and unit mass. Simulated time is presented in MD
unit time. Conversion from MD units to real units is immediate and a description with specific examples can be found in [21].
Systems have periodic boundary with wrap-around effects considered as necessary. Unless stated otherwise, we use a square
well potential with fixed radius of 2.5 MD units. Variations in density and temperature are tested. For density, a liquid-like
density of 0.8 is used by default, but there is little effect on performance until the density falls below 0.4 (see Section 6.1).
Temperature variation has virtually no effect on relative performance (see Section 6.1). Cell lists are used to bound the com-
plexity of event prediction, with cell size fixed at slightly larger than the square well radius. The selection of cell size is de-
scribed in Section 3.2. In the experiments we report results for three different sizes: 2K, 16K and 128K particles. There is little
relative change in performance beyond 128K particles. The chosen parameters are typical for liquid simulation [21] and are
sufficiently general to represent most of the biomolecular DMD simulations reported in the literature.

3. Establishing a DMD serial baseline

The primary purpose of this section is to describe the parameter selection of the serial baseline code and then present a
profile of that code. In the process we update results of long-standing issues of cell size and queue insertion policy, as well as
describe the interaction of the latter with the latest queue data structure.

3.1. Selecting PaulQ parameters

Two parameters, the number of linear lists n and the scaling factor s (s = 1/Dt) must be chosen to specify the implemen-
tation of the PaulQ [18]. The method described in Paul’s paper to determine these parameters ends up requiring large mem-
ory, due to having too many lists (example: list size of 35 � 106 for 70K particles). For our simulations, we determined in a
slightly different way that is much simpler and requires less memory. It should be noted that, as also mentioned in paul’s
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paper, the performance of PaulQ is only marginally sensitive to the choice of s. For example, a choice of s which results in a
doubling of the number of events in the binary tree results in only one additional level in the tree.

Step 1. Through simulation, fix the # of lists, n.
For Rapaport policy: n = SimSize � 64.
For Lubachevsky policy: n = SimSize.

Thus, n is always set to be the same as the size of the event pool, which is the maximum possible number of predicted
events at any given time. In parallel implementations, since events are deleted in a lazy manner, sometimes we may need
to have more events in event pool than the maximum possible number of predicted events. However, such case was not
observed in the simulations we performed.
Step 2. Tmax (the maximum difference between the time associated with a newly predicted event and the current time) is
determined using cell-crossing events only.
Step 3. The scaling factor s is determined using the following equation: n = s � Tmax.
Step 4. A few other neighboring values are tried for scaling factor and the best value is chosen.

Values are presented in Table 1.
Fig. 6 shows how implementing the PaulQ improved performance for the square well model simulation, the target of

this paper. For reference, we also present the result for a simple hard sphere model in Fig. 5. As shown in these figures, the
speed-up was more significant for Rapaport style, since it originally had a larger tree size and more frequent access to the
tree. Lubachevsky style already had smaller sized tree and less frequent updates, hence the improvement was less too. The
average tree size was about 60 for the Lubachevsky policy and about 200 for the Rapaport policy for the square well
model.

We also examined reducing the number of lists with the more aggressive use of the ‘‘overflow list’’ (see Section 2.3). We
found, however, that unlike our hardware implementation of this algorithm [8], this optimization has little benefit here.

3.2. Selecting cell sizes

Selecting the cell size involves determining the optimal trade-off between the number of predictions per event (more
with a larger cell size) and the fraction of overhead cell-crossing events (decreases with larger cell size). Setting the cell size
to slightly larger than the cut-off radius ensures that all relevant events can be found in the 27 cell neighborhood. For higher
density systems, such as we assume here for liquid simulations, this is the cell size we use; the resulting proportion of cell-
crossings to payload events is about 1:5.

For low density systems, especially when they are simulating only hard spheres with no square well potential, a substan-
tially larger cell size is naturally optimal. We found, however, that a density somewhat lower than 1 particle per cell is pre-
ferred; rather the cell size should be selected so as to fit 3–6 particles in the 27-cell neighborhood.

Table 1
Computed parameters for various simulation sizes and queueing policies.

SimSize 2K 16K 128K

# of lists s. factor # of lists s. factor # of lists s. factor

Rappaport 131,072 1195 1,048,576 63 8,388,608 72
Lubachevsky 2048 2304 16,384 13,696 131,072 41,984

Fig. 5. Performance of Rap vs. Lub (simple hard sphere model of density 0.8).
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3.3. Event queuing policy: Rapaport vs. Lubachevsky

There has been much discussion about the relative benefits of the two best-known queueing policies, those originated by
Rapaport [20] and Lubachevsky [11], respectively, and reviewed here in Sections 2.1 and 2.5. We find that the discussion is
far from over and likely to continue as new algorithms, simulation models, and computer architectures are explored.

The Rapaport method queues all predicted events and also maintains a linked list of events for each particle to facilitate
event invalidation. Since it saves all predicted events, cell-crossing events can be implemented efficiently. Unlike the Luba-
chevsky method, it does not require advancement events.

One advantage of the Lubachevsky method is that it has fewer events to queue, although with a small tree accessed with
logarithmic complexity the number of operations saved may not be large. There is some advantage, however, with respect to
memory hierarchy performance in having a smaller working set size. Another advantage of the Lubachevsky method is that it
avoids the linked lists in the Rapaport method.

There also exists a hybrid approach that saves all predicted events but queues only the earliest one [15]. This reduces the
tree size, but still requires linked lists. The PaulQ data structure, however, diminishes the advantage of this method, and the
linked list operations dominates. We therefore consider further only the Rapaport and Lubachevsky methods.

1. Use of the PaulQ data structure favors Rapaport because the tree operation is no longer the most time consuming part. But
Rapaport style queueing still requires linked lists to track all events of each particle. Figs. 5 and 6 show the improvement
in both methods when the PaulQ is used.

2. Simulation density matters. In low density simulations, particles travel farther between collisions causing a higher pro-
portion of cell-crossing events. This favors Rapaport because, in the Lubachevsky method, regardless of event type, all
neighboring cells must be checked to predict new events. But in the Rapaport method, for cell-crossing events, only
one-third of the neighboring cells need to be checked. That is, only the particles in the newly entered cell need to be
checked.

3. Models requiring a large number of predictions per particle, such as square-wells, favor Lubachevsky because it keeps
only the earliest. Models requiring small numbers of predictions favor Rapaport because it does not have Advancement
events.

From our experiments, we have found that the Lubachevsky method performs better as the system becomes denser and
larger, the Rapaport method for the converse. Since we are here more concerned with the former, we assume the Lubachev-
sky method for the remainder of this paper.

3.4. Serial reference code

We have augmented the baseline code to support:

� the Lubachevsky insertion policy (in addition to Rapaport’s),
� Paul’s data structure, and
� arbitrary spherically symmetric potentials.

The event insertion policy and data structure modifications were validated against the original code and square-well po-
tential was incorporated into the validated version. The new potential was verified through checks of internal consistency
and of conservation of physical invariants.

Fig. 6. Performance of Rap vs. Lub (square-well model of density 0.8).
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Table 2 shows event statistics and serial runtimes. In all cases, the force model was the square well, density was 0.8,
queueing was Lubachevsky style, and the event queue used the PaulQ data structure. Scaling results in Section 6 are all nor-
malized to these serial runtimes. In profiling the serial baseline execution we found the following breakdown: event execu-
tion, including state update, takes 1%; event commitment, including queueing operations, takes 3%; and event prediction
takes 97%.

4. Issues in parallelizing DMD

4.1. PDMD hazards

Parallelizing DMD presents certain difficulties. Given three events Eex, Epre, and Ecan where:

� Eex is the event at the head of the queue being processed at time t,
� Epre is an event predicted due to Eex, and
� Ecan is an event cancelled due to Eex.

Then

� Epre can be inserted at any position in the event queue, including the head,
� Ecan can be at any position in the event queue, including the head, and
� another event E caused by Eex (perhaps indirectly through a cascade of intermediate events) can occur at time t + � after

Eex where � is arbitrarily small and at a distance d from Eex in the simulation space where d is arbitrarily large.

Examples of these occurrences are shown in Fig. 7. In the lower part, events EA,B and EC,D occur at times t0 and t0+�. Pre-
viously predicted event EB,E gets cancelled, even though it is currently at the head of the queue. Newly predicted event EB,C

Table 2
Breakdown of event types for runs of 10M payload events.

# of particles Runtime (s) % Cell crossings % Advancements % Payload events

2K 411 1.3 36.0 Repulsive collision: 13.9
Well entry: 17.6
Well exit: 15.6
Well bounce: 15.6

16K 414 1.3 36.2 Repulsive collision: 12.0
Well entry: 20.0
Well exit: 15.0
Well bounce: 15.5

128K 623 1.8 36.9 Repulsive collision: 6.1
Well entry: 28.3
Well exit: 13.9
Well bounce: 13.1

Fig. 7. Events AB and CD cause BC and cancel BE. Event FG causes TU almost instantly and at long distance.
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will happen almost immediately and so gets inserted at the head of the queue. The upper part of Fig. 7 shows how causality
can propagate over a long distance d. After EF,G, a cascade of events causes ET,U to happen almost instantly and on the other
side of the simulation space. Although long distance events such as in Fig. 7 may appear to be rare, they are actually funda-
mental to polymer simulations. The polymer forms a chain with rigid links. A force applied to one end–say, by an atomic
force microscope that is unraveling a protein–creates exactly such a scenario.

These conditions introduce hazards into the concurrent processing of events. In each of the following cases, let E1 and E2

be the events in the processing queue with the lowest and next lowest time-stamps, respectively.
Causality hazards occur when the processing of events out of order causes an event to occur incorrectly. For example, let

event E1 be such that its execution causes E2 to be cancelled, either directly, or through a cascade of new events inserted into
the event queue with time-stamps between those of E1 and E2. Then the sequence E1, E2 presents a causality hazard and
should not be processed concurrently.

Coherence hazards occur when predictions are made with stale state information. For example, let E1 and E2 be pro-
cessed concurrently. Then even if there is no causality hazard, there may still be a coherence hazard. For example, a particle
taking part in E2 may be predicted to collide with a particle taking part in E1, but only in the now stale system state prior to
update due to the execution of E1. Coherence hazards can exist only among events in the neighboring cells.

Combined causality and coherence hazards occur as follows. Let a new event Enew caused by E1 be inserted into the
queue ahead of E2 and not invalidate E2, but still result in a coherence hazard. That is, Enew could change the state used in
E2’s prediction phase, or vice versa.

Efficient detection and resolution of these hazards is a key to creating scalable parallel DMD codes.

4.2. Possible approaches to PDMD

Parallelization of DMD can be achieved in at least three different ways.

1. Spatial decomposition. The simulation space is partitioned into some number of sectors and one or more are
assigned to each thread. Events can be processed conservatively, letting no causality hazard occur ever; or optimisti-
cally, allowing some sort of rollback when causality hazard occurs. In any case, as we mentioned before, this approach
becomes complex for 3D simulations. For cubic decomposition, each thread must exchange information with a large
number of neighbors (26) for potential conflicts. Or, if partitioning is by slices, then it must handle a drastic increase
in the ratio of surface area to volume and so the number of interactions per thread-pair. Spatial decomposition is
likely to become ever more challenging as the latency ratio of interprocessor communication to event processing con-
tinues to increase.

2. Functional decomposition. For any event, there is work that can be performed in parallel. In particular, there are likely to
be predictions needed with respect to a number of nearby molecules. The advantage of functional decomposition within
events is that hazards are not an issue. The disadvantage is that the predictions can be executed in a few hundred nano-
seconds and so extremely fine-grained invocation and synchronization is required.

3. Event based decomposition. Some number of threads process events in parallel, dequeueing new events as the old ones
are completed. This is the method we propose in this paper. The advantage is that concurrency can be tuned to limit syn-
chronization overhead (as described in Section 5). The disadvantage is that some serialization cannot be avoided.

While previous PDMD work has been based on spatial decomposition [5,11,13,16] we are not aware of any such systems
currently in use for 3D simulations. We are not aware of any system based on functional decomposition. We believe our sys-
tem to be the first to use event based decomposition.

5. Parallelizing DMD through event-based decomposition

5.1. A pipelined event processor

The main idea in our design is to process DMD in a single pipeline (as shown in Fig. 8). That is, while a large num-
ber of events can be processed simultaneously, at most one event at a time is committed. Viewed another way, this
design is of a microarchitecture that processes events rather than instructions: the logic is analogous to that used in
modern high-end CPUs for speculative instruction execution. In this subsection we describe how hazards and commit-
ment are handled in this literal design (see [17] for details). In the next we describe how this design translates con-
ceptually into a multithreaded software version. We end this section by describing some deeper software issues and
how they can be addressed.

Commitment consists of the following steps: (i) updating the system state, (ii) processing all causal event cancellations
and (iii) new event insertions, and (iv) advancing the event priority queue. As in a CPU, dependences—this time among
events rather than instructions—combined with overlapped executions cause hazards. And as in a CPU, these hazards are
compounded by speculation.
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� Causality hazards: The problem is that a new event can be inserted anywhere in the pipeline, including the processing
stages. But this cannot be allowed because then it will have skipped some of its required computation. Insertion at the
beginning of the processing stages, however, results in out-of-order execution which allows causality hazards. A solution
is to insert the event at the beginning of the processing stages, but to pause the rest of the pipeline until the event finds
the correct slot. This results in little performance loss for simulations of more than a few hundred particles.
� Coherence hazards: After an event E completes its execution, it begins prediction. The problem is that there will be

several events ahead of E, however, none of which has yet committed, but which will change the state when they
do. This has the potential to make E’s predictions incorrect because they may be made with respect to stale data
(coherence hazard). One solution begins with the observation that E is predicting events only in its 27 cell neighbor-
hood. It checks the positions of the events ahead of it in the predictor stages, an operation we call a neighborhood
check, or hood-check for short. If the neighborhood is clear, i.e., it is hood-safe, then E proceeds, otherwise it waits. This
check results in substantially more performance loss than that due to causality hazards, but it is still not large for sim-
ulation spaces of 323 or greater.
� Combined causality and coherence hazards: The problem is that an event E can be inserted ahead of events that have

already begun prediction assuming they were hood-safe. The solution is as follows. As before, E must be inserted at the
beginning of the processing stages. The added complication is that events in the predictor stages with time-stamps
greater than E must restart their predictions. Since the probability of such insertions is small, however, this causes little
additional overhead.

5.2. Conceptual description of software implementation

The conceptual implementation of our method on software is shown in Fig. 9.

� A FIFO is appended to the head of the event queue and contains the events that are currently being processed. This is anal-
ogous to the following processing components in Fig. 8: the Event Executor, the Event Predictor, and Commit. While this
FIFO is not necessary algorithmically, it is useful in visualizing how hazards and synchronization are handled.
� Each event in the FIFO is processed by an individual thread.
� The FIFO is ordered by time-stamp to facilitate handling of hazards, but processing is not otherwise constrained.
� Events are committed serially and in order. This allows the handling of all causality hazards.
� Events can be added to FIFO in two ways. They can be dequeued from the event queue and appended to the back of the

FIFO. Or they can be inserted directly from the predictor.

Fig. 9. Parallel DMD implemented on software with an event FIFO.

Fig. 8. DMD with a dedicated pipelined event processor. The event queue is several orders of magnitude larger than the processing stages even for modest
simulations.
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� All coherence hazards are handled by checking whether any of the preceding events in the FIFO are in the same neigh-
borhood. Since such hazards occur rarely (see Section 6.2), the hood-check is not done before a thread takes an event
for processing, rather it is done right before committing. A small committed-event history is maintained for this
purpose.

Event handling now contains the following tasks where processing and commitment are separated explicitly.

� Event execution and prediction: Calculate state updates, predict new events, and save these as temporary data.
� Synchronization: Wait until the event’s turn to commit.
� Handling potential coherence hazards: Perform hood-checks; restart the event or update processing results as necessary.
� Committing and, potentially, discarding, the processing result.

5.3. Implementing PDMD through event-based decomposition

After translating these ideas into the standard DES framework (e.g., Fig. 2), we obtain the design in Fig. 10. There are sev-
eral implementation issues which must be handled carefully if any speed-up is to be obtained: serial commitment, including
updates of all of the data structures; locks on shared data structures, including the potential waiting time for threads to ob-
tain new data; and contention in accessing a shared computing resource, i.e., shared memory.

PDMD through event-based decomposition can be implemented in various ways, depending on the synchronization
scheme. Here we present three implementations where two implementations (the first and the third) proved to be more effi-
cient than the other.

5.3.1. Implementation of Code 1
In Code 1 synchronization is done using a variable, EventToCommit, which holds the ID of the highest priority event, i.e.,

of the event at the head of the queue. Initially, Thread 0 is assigned the highest priority event and EventToCommit is set to
the ID of that event. Since all threads will poll EventToCommit to check their turn, no other synchronization is necessary. A
thread updates the shared data structures and particle states only when it has processed the highest priority event. Thus only
one thread commits at a time (and updates shared data structures and particle states). A committing thread also dequeues
the next highest priority event available from the event queue, before it updates the value of EventToCommit. This guaran-
tees that the highest priority event is always assigned to a thread.

Once an event is assigned to a thread, the event will not be deleted and its turn to commit will eventually arrive. In the
case where it has to be deleted, it is only marked as canceled; at commit time it is discarded. This ensures that no thread ends
up in an infinite loop. Hazards (and conversion to advancement events for the Lubachevsky method) are checked before
committing the result of an event. If hazards (or conversions to advancement events) exist, then the event is reprocessed
as necessary.

As a thread commits an event it notifies all the other threads. This information is used by each thread to handle hazards
and conversions. Every thread maintains a fixed size data structure for this information. If too many threads commit ahead of
a particular thread and cause an overflow, then that thread simply reprocesses its event at commit time.

Main Thread{
Initialize all data structures, including the event queue;
EndCondition = False;
EventToCommit = The very first event to be processed and committed;

Fig. 10. PDMD in the standard DES framework.
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Invoke Compute Threads and assign them each the highest priority event that is available.
(Note: Only one thread will be assigned the ’EventToCommit’ event; Main Thread will also continue as a Computing

Thread.)
Wait until all threads are done.}

Compute Thread{
While (Not EndCondition){

Process assigned event;
Wait until ((EventToCommit = assigned event) or (EndCondition));

(Note: Only one thread will reach beyond this point at a time, except when EndCondition is true;)
If (EndCondition) return;
If (Event has been cancelled){

Discard event;
Assign itself the next highest priority event that is available;
EventToCommit = Next event to be processed and committed;}

Else if (No ConversionToAdvancement and No hazard){
Commit result;
Assign itself the next highest priority event available;
Update EndCondition;
EventToCommit = Next event to be processed and committed;}

Else {
Update result or re-process the event as necessary;
Commit result;
Assign itself the next highest priority event available;
Update EndCondition;
EventToCommit = Next event to be processed and committed;}}}

5.3.2. Implementation of Code 2
Code 1 has a simple synchronization method but requires threads to wait for their turn to commit. Due to load-imbal-

ances (different types of events require different amount of processing time), unpredictable cache behavior, and time to up-
date the common data structures, threads spend much time waiting. In Code 2, threads do not wait; rather, after processing
their assigned events, they only mark the event as processed. They then acquire a centralized global lock and try to commit
all available events that are already processed. Then, as before, they assign themselves the highest priority unprocessed
event, release the lock, and start processing the new event.

A centralized fixed size list of committed events is maintained. When an event is assigned to a thread, the current number
of committed events is recorded. This number is used during commitment to determine hazards and conversions. As before,
if too many events have been committed before a processed event can be committed, making it impossible to determine the
hazards and conversions, then that event is simply restarted.

Main Thread{
Initialize all data structures, including the event queue;
EndCondition = False;
Invoke Compute Threads and assign them each the highest priority event that is available.
(Note: Main Thread will also continue as a Computing Thread.)
Wait until all threads are done.}

Compute Thread{
While (Not EndCondition){

Process the assigned event and mark it as processed;
Acquire Lock;

(Note: Only one thread will reach beyond this point at a time)
If (EndCondition) Release Lock and return;
While (The highest priority event is marked as processed){

If (Event has been cancelled){
Discard event;}

Else if (No ConversionToAdvancement and No hazard){
Commit result;
Update EndCondition;}

(continued on next page)
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Else {
Mark the event as not-processed;
It will be assigned to some thread again;}}

Assign itself the next highest priority event that is available;
Release Lock;}}

5.3.3. Implementation of Code 3
Code 2 allows threads to continue immediately after they have finished processing their assigned event, but it requires

continually acquiring a centralized lock. Since the processing time of an event is short (typically 3–60 ls), this requirement
results in a substantial loss of performance. We have found that instead of allowing all threads to commit and get new work,
better performance can be achieved by assigning a Master Thread for this purpose. This mechanism, however, requires syn-
chronization between each master-slave thread pair. But now, instead of using one centralized lock, we use separate locks for
each master-slave thread pair.

The implementation of the locks is done using flags and by allowing threads to spin on the values of their respective flags
(somewhat similar to a ticket-lock). Two flags, threadGotWork and threadFinishedWork, are used for each master-slave pair.
The Master Thread raises the flag threadGotWork for each thread once it has assigned an event to that thread. Meanwhile,
each Slave Thread spins on its threadGotWork flag until it is raised. Once it is raised, the Slave Thread reads the event data
and resets the flag. When the Slave Thread finishes processing the event, it raises its threadFinishedWork flag and again
waits for its threadGotWork flag to be raised.

The Master Thread checks the threadFinishedWork flags of all the threads. Once it is raised by any Slave Thread, the Mas-
ter Thread resets that flag, tries to commit the event, and assigns a new event to that thread. At this point, the Master Thread
raises that threads threadGotWork flag and processing continues.

We declare these flags such that they reside in different cache blocks so that each thread can spin on their values inde-
pendently without any false sharing. A centralized fixed-size data structure of committed events is maintained; its process-
ing is analogous to that in the previous Codes.

Main Thread{
Initialize all data structures, including the event queue;
EndCondition = False;
For (i = 0; i < threadCount; i++){

threadGotWork[i] = 0;
threadFinishedWork[i] = 1;
threadEventID[i] = -1;}

Invoke Compute Threads and assign them each the highest priority event available.
(Note: Main Thread will continue as the Master Thread, threadNum = 0.)
Wait until all threads are done.}

Compute Thread (threadNum){
While (True){

While (threadGotWork[threadNum] = 0){} // wait for flag;
if (threadGotWork[threadNum] = -1) return;
eventID = threadEventID[threadNum]; // get event
threadGotWork[threadNum] = 0; // reset flag
if (eventID ! = -1) Process Event;
threadFinishedWork[threadNum] = 1; // raise flag}}

Master Thread (threadNum){
SlaveCount = Number of slave threads;
While (SlaveCount ! = 0){

For (i = 1; i < threadCount; i++){// exclude master thread
if (threadFinishedWork[i] = 1){// check flag

threadFinishedWork[i] = 0; // reset flag
if (threadEventID[i] ! = -1) // mark this event as processed.
if (EndCondition){

threadGotWork[i] = �1; // signal end
SlaveCount = SlaveCount � 1;}

else{
threadEventID[i] = next highest priority event available; //�1 if none available;
threadGotWork[i] = 1;}}}

Commit highest priority events that are processed;
Handle hazards, conversions, and restarts;
Update EndCondition;}}

6576 M.A. Khan, M.C. Herbordt / Journal of Computational Physics 230 (2011) 6563–6582



Author's personal copy

5.4. Efficient restart

Restarting an event every time there is a coherence hazard (alone or combined with a causality hazard) is inefficient. We
optimize this by updating only the necessary portion of the prediction.

� In case a payload event has taken place in the neighborhood before the current event, it suffices to update the prediction
for only those particles (one or both) that took part in that event and are in the same neighborhood.
� In case a cell-crossing event has taken place in the neighborhood before the current event, if that new particle entered the

neighborhood, then updating the prediction only for that particle suffices. If that new particle left the neighborhood, then
(for our implementation) the event must be restarted. This is because, depending on the time of commitment of that cell-
crossing event, it is possible that the current event may have used the incorrect cell-list (linked list of particles in the same
cell) values.
� In case an advancement event has taken place in the neighborhood before the current event, theoretically, updating pre-

diction result for that particle is not needed. This is because nothing about that particle has changed. But, to ensure com-
patibility with the serial output, we update the prediction for that particle. If hardware had infinite precision, this would
not be necessary.

6. Results

This section is organized as follows. We begin by presenting the basic scalability results of the three Codes presented in
Section 5.3, together with a qualitative analysis. In the following subsections we present more detailed analyses: determin-
ing the parallelism inherent in PDMD with event-based decomposition; basic modeling of the inherent architectural limita-
tions; and a quantitative analysis of the most promising Code, together with an experimentally validated analytical model
that accounts for the details of the target architecture.

6.1. Scalability

The experimental setup and the baseline code are described in Sections 2.4 and 3.4, respectively. The parallel versions
have been created as described in Section 5. As described in Section 2.5, the energy model is of uniform hard spheres of ra-
dius 1 with simple square wells of radius 2.5. As discussed there this model generalizes with respect to relative performance
to most models described in the literature.

All parallel versions were verified to have complete agreement with their respective serial versions. This consistency in-
cludes complete matches of all particle histories. The method used was as follows. All events were saved in order with par-
ticipant information and time of occurrence. This was done for both serial and parallel versions which were checked to be
exactly the same, including overhead events. Other physical parameters, e.g., energy, were also checked to have the same
values. The codes are running and have been so tested in both Windows and Linux environments (except some versions that
were used to test system-specific lock implementations).

The primary scaling results are shown in Figs. 11 and 12. As shown in Fig. 11 (left panel), the best speedup is achieved by
Code 3 with 5.9� for a 128K particle simulation using one master and seven slave threads. Fig. 12 shows that for the 12-core
AMD processor the best speedup is 9.1 with one master and 11 slave threads. Code 2 is clearly not viable, while Code 1 per-
forms better for a smaller number of threads, and Code 3 performs better as the number of threads increased. This is because
Code 3 uses a helper thread: initially the overhead is apparent, but it rapidly overtakes the other methods.

Fig. 11. Left panel shows performance scaling of the various Codes. Simulation size = 128K. For Code 2 performance with different locks is shown. Right
panel shows performance scaling of Code 3 for different simulation sizes. For both density = 0.8.
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The right panel of Fig. 11 shows the scaling of Code 3 with respect to simulation size: not surprisingly, better scaling is
achieved for larger simulations and with the benefit of parallelization diminishing somewhat with small size (2K). This is
mostly because of an increase in coherence hazards (see Section 6.2). Since Code 3 appears to be the preferred method,
we discuss its performance in detail in the next subsections.

Code 1 has two inefficiencies that result in threads waiting additional time to commit. One is uneven load balance. Pay-
load events spend more time in event-prediction than do cell-crossing events or advancement events. This is because a pay-
load event predicts events for two particles, whereas the other types predict for only one particle. The other is increased
cache misses and the random occurrence of those misses. This is because the order of start-of-processing does not guarantee
the order of end-of-processing.

For Code 2, we note that the performance collapses suddenly with four or more threads. This is because of the bottleneck
at the centralized lock and the small processing time per event. We performed extensive tuning of the lock, starting initially
with the standard Linux function Mutex. We found that this Mutex has an undesirable system call and so replaced the func-
tion with various hand-tuned alternatives: Test& Set, Test& Test& Set, and Test& Test& Set_WithFixedDelay (see, e.g., Culler
et al., [3]). As shown in Fig. 11, none of these did significantly better than the original.

Fig. 12 shows how relative performance varies with particle density. There is apparently little variation for densities high-
er than 0.4. The effect of density on scaling is that it changes the amount of work per event: As density increases, more par-
ticles must be checked for potential events.

A number of other parameters were tested but found not to affect relative performance:

� Various combinations of temperatures and particle densities with a temperature range from 0.4 to 1.6 and particle den-
sity from 0.1 to 0.8.
� Model complexity with number of steps in the square well ranging from 1 to 15.

6.2. Available concurrency

In this subsection we measure the available concurrency in PDMD (with event-based decomposition) for the simulation
models described. Event-based decomposition enables all events to be executed concurrently as long as they are indepen-
dent. Since this independence is hard to determine a priori—as the system state is changing continuously and unpredict-
ably—all events but that at the head of the queue are necessarily processed speculatively and so may result in work
being wasted. There are two possible reasons for this: (i) The event may need to be invalidated due to a causality hazard
(and converted into an advancement event), and (ii) the event prediction may need to be recomputed due to a coherence
hazard.

6.2.1. Effect of causality hazards
Recall that causality hazards occur through the cancellation of a speculatively processed event E when a particle P in-

volved in E has been involved with a preceding event. In the Lubachevsky method this only happens if an event Enew involv-
ing P is inserted ahead of E after E has begun processing. We have examined the queue positions into which new events are
inserted and have found that the positions are nearly uniformly randomly distributed. Moreover, the number of events in the
queue is roughly equal to the number of particles being simulated. We find, therefore, that for likely numbers of threads T
and particles N, the probability that an event will be part of a causality hazard Pcausality ’ T/N. This makes the loss of concur-
rency due to causality hazards negligible.

Fig. 12. Performance scaling of Code 3 for different densities and two different processors. Simulation size = 128K.
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A consequence is that few events are inserted into or deleted from the binary tree part of the event queue. Therefore, no
additional FIFO-like data structure is needed. Instead, the binary tree is used directly to retrieve the highest priority events.

6.2.2. Effect of coherence hazards
Recall that coherence hazards occur when the predictions made during the processing of an event E may have been made

using stale data. This occurs when an event preceding E is committed after E has begun processing and has occurred within
the cell neighborhood of E. We have examined the spatial distribution of committed events and found that their locations are
nearly uniformly randomly distributed. The probability that there will be a coherence hazard is therefore related to the num-
ber of threads T, the particle density q, and the ratio of the volume of the cell neighborhood to the overall simulation space.
The cell neighborhood here is 42 cells rather than 27 because events typically span two neighboring cells. Given a square-
well size dsq and a number of particles N, then the probability of a coherence hazard is approximately Pcoherence ’
1 � (1 � q � 42 � dsq3/N)T. Plugging in typical values of q = 0.8, T = 8, dsq = 2.5, and N = 128K, we obtain Pcoherence = .032. This
value of Pcoherence, however, serves only as an upper bound on the number of restarts due to coherence hazard: Most can be
avoided by using the methods for efficient restart described in Section 5.4.

We now relate the theory to the actual implementation and effect on execution time. Fig. 13 shows the measured fraction
of the events that are processed but not committed and the events that need to restart. The latter events are a subset of the
former because every restarted event has been processed before it is restarted. Restarts are mostly due to coherence hazards,
but a small fraction are also caused by causality hazard (see immediately above). The fraction that is processed but not com-
mitted includes both the events that were restarted and the events that were processed but canceled later due to a causality
hazard.

Note that updating the prediction results and detecting the need to restart is handled by master thread during commit-
ment. If an event needs to be restarted, it is immediately processed and committed by the master thread. This means that the
restart latency is often hidden and slave threads can continue processing new events in parallel. These complex effects ac-
count for the non-linear behavior in Fig. 13.

The most important conclusion from this subsection is that lack of available concurrency is likely to affect performance by
only a fraction of a percent, and is not likely to affect scalability as much as architectural limitations (see Section 6.3).

6.3. Limitations on scalability – simple model

In this Subsection we propose a simple analytical model for the limit on scalability. The two constraints are (i) serial com-
mitment, and the associated synchronization overhead, and (ii) serialized memory access due to the shared bus. Each event-
processing task has four components:

Icpu = CPU portion of independent code (independent: can be done in parallel),
Imem = Memory portion of independent code,
Scpu = CPU portion of synchronization code (synchronization: cannot be done in parallel), and
Smem = Memory portion of synchronization code.

Assuming that the application is not memory bound and that computation and memory access can be overlapped, processing
time of an event by a single processor = Icpu + Scpu.

Constraint 1– synchronization. For multiple processors P handling separate events, the Icpu can be processed in parallel
while the Scpu must processed serially. Synchronization can be hidden as long as

Fig. 13. Events that are processed but not committed represent wasted effort only. Restarted events represent, in addition to wasted effort, the need for the
payload effort to be serialized. Graphs are for Code 3 and 128K particles.
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P � Scpu 6 Icpu þ Scpu;

that is, PSyncLimit = (Icpu + Scpu)/Scpu.
Constraint 2 – shared memory. Similarly, the memory components can be hidden until the memory system approaches

saturation:

P � ðImem þ SmemÞ 6 Icpu þ Scpu;

that is, PShMemLimit = (Icpu + Scpu)/(Imem + Smem).
If neither of the constraints is in effect, then the application scales linearly. Otherwise maximum scaling is PSyncLimit or

PShMemLimit, depending on which is stronger.
From measurement, we find that Scpu takes roughly 5% and Imem + Smem takes roughly 10% of the total time of event pro-

cessing with a single processor. We estimate the memory access cycle count to be L2_LINE_MISS_COUNT � 100, where
L2_LINE_MISS_COUNT was measured with VTune [22] and each miss is counted as 100 cycles (from [9], pp. 2-19–2-20).
Therefore, for our target platform, when Constraint 1 dominates, the maximum linear scaling PSyncLimit = 20; when Constraint
2 dominates, the maximum linear scaling PShMemLimit = 10.

6.4. Architectural limitations on scalability

To account for the increased processing time per event we analyze in more detail the interaction between application and
architecture. Fig. 14 shows that the processing time per payload event increases by about 25% as the number of threads is
increased to 8. Of this increase, 40% is due to synchronization overhead, including synchronization timing mismatch, while
the other 60% is due to the increase in cache misses and bus utilitization.

Fig. 14. Event processing time as a function of number of threads; Code 3, size 128K.

Fig. 15. Rate of memory bus utilization and total number of L2 cache misses as a function of number of threads; Code 3, size 128K.
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Fig. 15 shows total cache misses and rate of bus utilization for the entire simulation period for the different numbers of
threads. The data were collected with VTune (vtune_linux_9.1) [22] using separate runs of size 128K. We observe that the
count of total cache misses increases slightly with the number of threads. This indicates that there is neither significant data
reuse by a single thread nor data sharing among threads; these would cause substantial increases and decreases in cache
misses, respectively. More likely is that the modest increase is related to synchronization: more threads means more misses
on explicitly shared data.

We observe also that bus utilization increases roughly linearly with the number of threads with exceptions between 1
and 2 and between 7 and 8. The first exception is because of the shift between serial and parallel code with the latter having
master and slave threads. The second exception is most likely due to system effects as no cores remain free. We note that the
increase in bus utilization increases memory latency through queueing and other delays. We have tested the memory hier-
archy and found that, for random accesses (non-DMA), the bus saturates at 60%.

These results match the those of Section 6.2: that threads are almost always working on events in different neighbor-
hoods and thus different data sets. And since every prediction requires accessing data of a new particle, there is little reuse
or sharing of cached data.

To confirm our analysis on architectural limitation we use the following procedure. First, we project PDMD performance
based on the fact that the addition of each thread increases individual event processing time. Second, we validate the pro-
jection against the observed scaling result. Third, we present a hypothesis that the majority of the increase is due to archi-
tectural limitation. And finally, we validate the hypothesis by using a microbenchmark that has data access pattern similar to
those of the application.

The addition of each thread increases individual event processing time. Therefore, speed-up is limited by that increase
rate. For example, if using 7 processors causes 30% increase in processing time, then speed-up = (Original Processing
Time)/(New Processing Time/7) = 100/(130/7) = 7/(1+0.3) = 5.38. For PDMD, the addition of each thread causes roughly a
5% increase in event processing time. Of this 2% is due to synchronization timing mismatch, confirmed from measurement
in Fig. 14, and the rest is due to increased time in memory access. The latter portion is a hypothesis based on the increase in
cache misses and bus utilization.

Based on the above discussion, the equation of projected speed up for implementation 3 is,

Speed� up ¼ # of slave threads=ð1þ increase rate�# of slave threadsÞ:

For example, for 8 processors (7 slave threads), the projected speed-up = 7/(1 + 0.05 � 7) = 7/1.35 = 5.18; the observed speed-
up is 5.36. For 7 processors (6 slave threads), projected speed-up = 6/(1+0.05 � 6) = 6/1.30 = 4.61 and observed speed-up is
4.82. Thus the projection conforms well with the observed results, as shown in Fig. 16.

To confirm our analysis on architectural limitation, we designed a microbenchmark that has a data access pattern similar
to our DMD application: Data of similar size is accessed in nearly random fashion. Fig. 16 shows how the scalability result of
that program overlaps with our DMD application, confirming the fact that the increase in data access time is a major obstacle
to good scaling of PDMD. Therefore with a 5% increase in event processing time per thread, the projected runtime, with more
than two threads T = (serial runtime � (1 + 0.05 � (# of threads � 1)))/(# of threads � 1).

We validate our hypothesis that a 3% increase in event processing time per additional thread is caused by architectural
limitation, i.e., the increase in cache miss count and bus utilization. We created a program that has a single loop and accesses
different portions of a large data set randomly in each iteration. We kept the data size the same as our DMD application. If
our hypothesis was correct, the scaling pattern of this program would resemble the scaling pattern of DMD. In fact, as shown
in Fig. 16, the scaling result of the random access program almost perfectly overlaps with the DMD result. DMD scales

Fig. 16. Overlap of scaling result for an analytical model with PDMD scaling result.
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slightly better, since its data access is not entirely random. We conclude that we have accounted for the architectural lim-
itations that limit the scalability of PDMD with event-based decomposition.

7. Conclusion

In this paper, we examine the issues of parallelizing DMD, and present a PDMD simulator implemented with event based
decomposition. Our method is microarchitecture inspired, where speculative processing of events enables multi-threading,
and in-order commitment ensures correctness of simulation. We have achieved speedups of 5.9� on an 8-core and 9.1x on a
12-core processor. The relative speedups vary little across a wide range of simulation models: with respect to model com-
plexity, with the exception of simple hard spheres as in Fig. 1(a); number of particles, beyond a few thousand; temperature;
and density, beyond around 0.4.

We have also studied various other issues in DMD simulator construction, e.g., comparison of event queuing methods,
selecting cell size, Paul’s data structure, and synchronization and scheduling issues. We also analyzed the performance of
our method and concluded that the increase in cache misses and bus utilization rate, due to the increase in participating
threads, seems to be the major obstacle towards achieving higher performance on shared-memory multi-processors. The
need for frequent synchronization also remains a significant obstacle. An efficient hardware implementation of our method
(pipelining instead of using multiple computational cores) seems highly promising as future work.
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