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1 Introduction 
This paper describes a system for detecting occurrences of Design Patterns (DPs) in existing software. 
Section 2 discusses the importance of DPs to software maintenance, and notes some of the DP-related 
problems that arise during software maintenance. Section 3 discusses design issues and behavior of the 
ExPat (Extraction of Patterns) tool for detecting occurrences of DPs. In particular, this section describes 
how ExPat’s search uses three sources of information: 
 static information extracted from the program’s files,  
 a definition of the DP being sought, and  
 optional user input to guide or limit the search. 

Section 4 describes the experience of using ExPat, discusses related work found in the literature, and 
suggests directions for future development of ExPat. 
This report’s next section describes an implementation of DP detection, with quantitative and subjective 
result of the program’s operation. Finally, a summary describes the major results and limitations of the 
current approach, with possible directions for future work.  

1.1 Design Patterns: A working definition 

The term “Design Pattern” comes from Christopher Alexander’s work [Ale] in architecture and urban 
design. Much has been written about what is and is not a DP, but this is not the place for a full discussion. 
This project’s goal is to find DP occurrences in programs, so this project’s definition must be phrased in 
terms of the program’s content:  

A design pattern is a collection of relationships between some set of classes. 
The exact definition of “relationship” involves classes and their fields, methods and constructors.  

1.2 Design Patterns in Program Maintenance 

Just as DPs create large-scale order in a program, they can preserve the order in a program under 
maintenance. That means that maintainers must work within the framework of DP occurrences already in 
the program. Those occurrences may not be at all apparent. This section shows how it would help 
maintainers to have tools that automatically identify DP occurrences in the code being maintained.  

1.3 Detecting Occurrences in Existing Programs 

A DP is a set of relationships between some number of classes. The relationships have semantic content, 
but no syntactic content. In other words, the programmer creates meanings in the program that are not 
inherently related to the program’s text. Realizing the design pattern, however, generally requires some 
number of classes and methods to interact in defined ways. A typical DP defines a number of related 
classes, subclasses, method return and parameter types, and aggregations. If the DP describes a large 
enough number of relationships, the DP’s representation in actual code may be recognizable. Java’s 
reflection API [Fla, JDK] allows access to all those features of compiled Java code, making the search for 
DP occurrences credible.  

1.4 Project Results  

The final section of this paper discusses the implementation of ExPat. This shows how ExPat is used, and 
notes its the strengths and weaknesses. This section ends with a comparison to other tools described in the 
literature, and suggests ways in which ExPat’s pattern matching could be improved. 
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2 Design Patterns in Program Maintenance 
In the software DP literature [Bus, Coo, GoF, Gra] , one fact stands out clearly: they are design patterns. 
Most authors address only software development. This seems odd, since the largest part of software 
lifetime and cost lie not in creating the code, but in maintaining it. If DPs are worthwhile, they should be 
worthwhile throughout the software’s maintenance phase. There does not, however, appear to be any 
significant body of literature or practice regarding DPs in maintenance. This effort seems to address 
problems that have not been described previously 

2.1 The maintenance problem 

DPs, applied at design time, create order and high-level structure in a program. Knowing that a DP is in 
use, the designer can typically add large numbers of classes and features with no change to the program’s 
structure. DPs are invisible, though. Nothing about a class, except perhaps for comments, identifies it as a 
member of some DP occurrence. No programming language constructs identify code items as DP 
elements, so knowledge of the DP is often lost at the end of design. End of design is also when program 
maintenance begins; very often a continuous re-design. 
Maintenance programmers may have no knowledge of the DPs embodied in the program, and typically no 
way to find them out. Lacking knowledge of the DP structure and the code items involved in the pattern, a 
maintenance programmer may make changes that violate the spirit of the DP. 
Thus, the maintenance programmer is the proximate source of revisions that break DP discipline and 
regularity. That makes it easy to blame the maintainer for “bit rot” or “entropy” in the software, creeping 
in as the DP occurrences weaken. The maintainer’s task is nearly impossible, though. It is very rare for 
developers to document their code well enough for easy maintenance, let alone document occurrences of 
DPs involving many classes. It is also rare for maintainers to keep such documentation up to date, 
especially when one occurrence of a DP may use dozens of classes. When a maintainer has access to only 
the compiled form of a class, a DP becomes even less visible. 
Prudent maintainers would most likely want to make their changes fit naturally into the program’s 
structure, as defined by the DPs used. The problem is that there is no practical way to determine which 
DPs are in use, or what classes take the various roles in a DP. Lacking that knowledge, it seems inevitable 
that maintenance will unwittingly tend to break up the structure defined by the DPs. This is not a sign of 
incompetent maintenance, it is a sign of an intractable maintenance problem.  
There might even be a temptation to blame the DP for its failure to guide its own maintenance. That 
reasoning can not be supported, though. Design principles have bees around for years, operating at a DP’s 
level of multiple interacting modules (classes). Maintenance has gone on for years with access to some 
code only in executable form. Even without DPs, the literature [Bro] records the decay of a system’s 
design due to maintenance ignorant of that design. Some methodologies, such as Yourdon’s “Good 
Enough” [You] or “Extreme Programming” [Bec] intentionally disregard existing design.  In that context, 
DPs have no visibly worse effect on software maintenance than any older style of design. 
This project’s goal is to develop a tool for locating the code elements that take part in a DP occurrence. 
This is a reverse engineering tool – its goal is to deduce the developer’s intent based on the code. 

2.2 Creating a DP occurrence 

The developer has great flexibility in creating an occurrence of a DP, for example the Chain of 
Responsibility (Figure 1). The roles within that DP may be assigned (Figure 2) so that: 
 class ResidentialRate corresponds to the ConcreteHandler1 role and is a subclass of TaxRate, 
 class AgriculturalRate corresponds to ConcreteHandler2 and is also a subclass of TaxRate,  
 class CommercialRate has no exact equivalent in Gamma’s diagram but subclasses TaxRate,  
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 TaxRate corresponds to Handler. 
Unlike Handler, though, TaxRate is 
a concrete class that covers un-
taxed properties, and 

 other symbol names (not shown) 
take the places of  successor and 
HandleRequest. 

That is all very clear to the 
developer. The developer may even 
add comments, for example, in 
ResidentialRate to note its part 
in a Chain of Responsibility DP. 
Nothing about the code, however, 
necessarily denotes participation in 
the DP. When the developer passes 
the code to the maintainers, some or 
all knowledge of that DP could be lost. 

Figure 1: Chain of Responsibility  
( verbatim from [GoF] ) 

2.3 Detecting the occurrence 

Looking only at ResidentialRate, the maintainer 
may find it difficult to pick out the other roles in the 
DP. It may even take the maintainer some thought to 
see that concrete superclass TaxRate takes a place 
that Gamma described as abstract. Given 
ResidentialRate and TaxRate, there’s no simple 
way to determine that AgriculturalRate and 
CommercialRate also take roles in this occurrence 
of the DP. 

Figure 2: Occurrence of Chain of Responsibility

TaxRate 

AgriculturalRate

CommercialRate 

ResidentialRate

In fact, the various TaxRate subclasses may live in 
different Java packages1. What’s more, a subclass of 
AgriculturalRate (for example) may also act as 
ConcreteHandler, as an indirect subclass of 
TaxRate. It may take an exhaustive search to find all 
candidates for the ConcreteHandler role in this 
occurrence of the DP. The maintainer may need to 
consider inner and anonymous classes too, making 
the search even more cryptic and error-prone.  
In short, there is very little chance that even careful maintainers will find all the classes that take part in a 
given DP occurrence. That means that code revisions may not be able to follow the DP. Maintenance 
code will tend to break up the DP, and so break up the logical structure of the software.  

2.4 Sample search task 

Consider the example from Figure 2. Assume that the maintainer learns, from code comments, that 
ResidentialRate takes the ConcreteHandler role in an occurrence of the Chain of Responsibility DP. 

                                                      
1  This discussion centers on Java implementations of design patterns. Most of the discussion, however, can be translated into 

C++ or other object oriented programming language. 
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The intelligent maintainer may draw a blank Chain of Responsibility UML diagram, as in Figure 3, and 
fill it in as information arrives. Initially, only ResidentialRate as a  ConcreteHandler is known. 
The Handler role is relatively easy to fill in. 
It must be the superclass declared for the 
ResidentialRate class, or perhaps a 
super-superclass, … Of course, the Handler 
role could also be filled by one of the Java 
interfaces implemented by 
ResidentialRate, or super-interface, or 
interface of a superclass2, … A persistent 
maintainer may be able to deduce the class 
acting as Handler, or at least find the finite 
set of candidates. The superclass (if any) and 
implemented interface[s] (if any) are written 
into the source code, and recursively 
likewise for their rest of the super*class set. 
Persistence, deduction, and good guessing 
should eventually fill the Handler role. 

Figure 3: Guessing the occurrence structure 

? Handler

ResidentialRate

? 

? 

ConcreteHandler

Filling in the ConcreteHandler classes, other than ResidentialRate, is harder. Given only one 
concretion of ConcreteHandler and the Handler, there is no easy way to find other classes  acting as 
ConcreteHandler. The search has the form: “Locate all classes that have <the Handler class> as their 
super*class”. That means “examine all classes in the program,” an operation for which human patience is 
badly equipped. It’s not even that simple, though. Another ConcreteHandler may be arbitrarily far down 
the sub*class hierarchy from Handler. 
Such a search is tedious. Given potentially elaborate superclassing and large numbers of classes and 
interfaces, a person would probably find the search time-consuming and error-prone. The search is, 
however, deterministic and easy to specify. In other words, it is amenable to automation. 
A sub*class of Handler is not necessarily part of the design pattern occurrence, but any ConcreteClass is 
certainly a sub*class of Handler. It will probably be easier for the maintenance programmer to pick 
through a list of Handler sub*classes for members of the DP occurrence than to find the set by hand. 
Even if an automated search found more Handler sub*classes than necessary, it could still help 
maintainers find the real members of the DP occurrence. 

3 Detecting Occurrences in Existing Programs 
This project defines and produces a tool to help the DP maintenance programmer. ExPat examines a body 
of compiled code for occurrences of the DP. It is a reverse engineering tool meant to extract DPs from the 
code being maintained. The description of ExPat’s behavior falls into several sections: 
 A description of Java as a target language. This section describes Java’s reflection API as a tool for 
examining compiled Java code. This also describes a simple scheme for loading an arbitrary set of Java 
classes to be examined for DP occurrences. 

 A description how ExPat represents DPs. This section starts by examining the features used to describe 
GoF patterns. The next part of this paper gives an informal tour of a novel Pattern Description Language 
(PDL), used by ExPat to represent DPs. PDL descriptions of GoF DPs demonstrate how PDL is used. 

                                                      
2  For convenience, the transitive closure of a class’ superclasses and super-interfaces is written as super*class. The sub*class is 

the transitive closure of subclasses and sub-interfaces.  
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This section describes DPs that can not be distinguished at the Java code level, and DPs that can not 
reliably be detected. 

 The next section describes search constraints – requirements imposed by the user to limit the search to 
code elements of interest. Detailed analysis of an example demonstrates the different effects that 
constraints have when applied to different parts of the DP description. 

 The final section describes how ExPat’s matching engine tests an ensemble of Java classes against a 
PDL description. 

3.1 Basic operation of ExPat 

ExPat’s search for DPs has three basic sources of information: 
 A list of Java classes to examine,  
 A list of pattern definitions, and 
 An optional list of search constraints specified by the operator. 

The program will present some user interface for specifying which Java classes to use, which patterns to 
look for, and what constraints to apply in the search. For experimental purposes, there may be other 
controls that select options in the search engine’s run-time behavior. 
Given those, the search program will examine the list of Java files, looking for matches to pattern 
definitions, subject to the user’s constraints. The program’s UI will present the user with data representing 
discovered matches. More than one match may occur on any run, if there is more than one occurrence of a 
DP in some body of code. The report will show how each of the matched classes, methods, fields, or 
constructors fits its role in the DP. 

3.2 Java as target language 

This project has chosen a Java-based implementation. The general logic used should be applicable to a 
variety of object-oriented languages, however. The only important pre-requisite is that the language’s 
APIs provide capabilities similar those of Java’s reflection API. That’s not much of a constraint; most 
languages and object code formats give debuggers all the information ExPat requires. 

3.2.1 Examining one Java file 

Parsing Java source code requires significant programming effort. In particular, the parser must handle 
grammatical errors in the source text. Once the source file is correct enough, the class, method, field, and 
other declarations must be interpreted. That includes information about extended superclasses, 
implemented interfaces, return data types, parameter lists, scoping, etc., all with regard to the class 
definitions provided by other files. That programming effort is large, error-prone, and unnecessary. 
Java’s reflection API makes all that information, and more, available with a simple programming 
interface. The reflection API inherently runs on Java files known to be grammatically correct, since 
reflection runs on the executable class files output by successful compilation. The reflection API also 
allows access to library classes and others not available in source form. All these reasons argue for using 
Java reflection for examining code.  
The reflection API has only one major drawback. Java security limits reflection to the interfaces allowed 
by scope declarations. In practice, this generally means that only public symbols are visible through the 
reflection API. Good programming practice [Lie] dictates that most interfaces, especially fields, be 
scoped very tightly – often private. Many design patterns, however, rely on field values for aggregation 
or composition. This conflict creates problems in recognizing occurrences of DPs. Later sections describe 
indirect ways around this problem. 
Java’s security restrictions are acceptable limits for this project. Test code can be designed that avoids 
visibility problems. Broader interpretations of a class’ meaning can also reduce the effects of the Java 
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class loader security restrictions. Production-quality tools would probably need more access to the class’ 
interface, however. 

3.2.2 Locating the compiled Java files 

This project finds Java class files by examining the “.” directory (ExPat execution directory) and all 
subdirectories, recursively, for files whose names end with the six-character string “.class”. For each file 
found, the search treats the left substring of the file name, up to the period character, as a class name and 
tries to load that class3. If the file appeared in a subdirectory, the list of directories relative to “.”, down to 
the file’s directory, is converted into the class’ package name. Failure to load a class is not reported to the 
user, but the class is not available for analysis. This algorithm has an obvious, implicit relationship to the 
CLASSPATH environment variable and loader search rules. A more elaborate intelligent implementation 
could make more use of the search rules. 
ExPat accepts one command line parameter. If present, the application treats that parameter as a 
subdirectory name for the “.” directory. ExPat then searches for class files only within that tree. 
Once the program has started, the user may select some subset of the known classes for analysis. This 
selection could reduce search time or restrict searching to classes known to be of interest. The ExPat 
prototype has no way to load additional class files after initialization. 

3.3 Pattern definitions 

The DP must be specified in order to be found in the code, and some language4 must specify the pattern. 
That language must be able to state all the salient features of a DP. Many WWW sources describe 
themselves as “Pattern Languages.” All such sources known to this author are composed of patterns, 
though. They are not machine-readable languages for describing patterns. In the words of one author: 

“The patterns in this paper form a pattern language. A pattern language is a set of patterns that are used 
together to solve a problem. [Un1]” 

3.3.1 Existing pattern representations 

A series of references from a web search turned up mention of a “Pattern Markup Language (PML).” It 
was interesting that all references pointed to the same web site, and that site had only a message saying 
that PML was not available [Suz2]. 
UML is an obvious candidate as a notation for describing DPs. Several GoF DPs appear in primitives of  
UML5: a UML “Boundary” class resembles a Facade, a “Control” class resembles a Mediator, and a 
“Subscribe” association resembles an Observer. The UML specification even addresses DPs6, albeit 
tersely, as a possible application of UML’s extension mechanism. The UML specification, however, is 
long and dense. The XML DTD covers more than 120 pages, and the IDL rendering is over 160 pages7. 
One author [Dso] points out that “The UML 1.3 metamodel is already quite large and is known to contain 
some inconsistencies.” UML complex enough that its developers have difficulty working with it; that 
complexity UML argues against its use in small prototypes with limited distribution.  
UML raises another concern, as well, that its extension mechanism lacks any apparent way of ensuring 
global uniqueness. That means that different developers could unknowingly create different extensions 

                                                      
3  Class file names containing a dollar sign “$” generally represent inner or anonymous classes and are ignored. 
4  Even a graphical notation must be serialized for storage, and that serialization could be considered a language. In practice, a 

more human-readable notation is often preferable. 
5  [UML] section 4.4.2, “UML Profile for Software Development Processes / Stereotypes and Notation” 
6  [UML] section 2.10.5, “Behavioral Elements / Collaborations” 
7  [UML] sections 6.3 and 5.4 respectively. 
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using the same symbols. If both developers deliver code to a common customer, naming collisions during 
integration could cause software failures8.  
At least one author [Suz1] has proposed a simplified alternative, UXF. The biggest reason for that 
proposal is simplicity – its DTD is only ~2 pages. UXF’s feature set is limited and possibly evolving. 
Also, its general popularity is not known. 
Yet another author has pursued DP analysis from a different direction, and chosen Prolog as a 
representation [Sef]. The representation is surely effective. It does, however, put much of the DP 
detection logic into the description itself, rather than letting the pattern description be purely declarative. 
It also presupposes a complex execution engine for case matching and unification. 
In any case, it seems backwards to select a representation language before determining the semantic 
demands that will be made on that language. The application that uses DP descriptions should be well 
partitioned. That means the parser can be replaced without disrupting other parts of the matching 
application. Despite the importance of interoperability, etc., this application’s real concern is flexibility as 
a research tool. Simple representation handled by familiar, lightweight tools would suit this project best. 

3.3.2 Pattern description language requirements 

Whatever the strengths of existing tools, their logical bases were not dedicated to DPs. Rather than 
commit early to a representation that may not suffice, it seems preferable to restate the problem in wholly 
new terms. Thus, this project uses a novel language for describing DPs. Figure 1 (Gamma’s Chain of 
Responsibility pattern) suggests several requirements for the pattern description language: 
 No symbol name is taken literally. Every symbol is a place-holder for some name taken from an actual 
code element. 

 The DP includes several distinct classes. Some classes (e.g. Handler) appear once in each occurrence of 
the DP. Other classes (e.g. ConcreteHandler1) may appear multiple times in one occurrence of the DP. 
Still other classes (e.g. client) may be omitted without disrupting any critical aspect of the DP. 

 Java permits a concrete class anywhere that the DP specifies an abstract class9, and none of the notation 
distinguishes Java interfaces from abstract classes. Java also permits abstract classes to be subclasses of 
concrete ones. This distinction between concrete and abstract classes is too blurry for simple discussion, 
so no distinction is made between concrete classes, abstract ones, and interfaces. 

 The client and Handler classes each have a reference to an object of type Handler. A description of the 
pattern should include references, with a data type for each reference. 

 The Handler class (and subclasses) export a HandleRequest() method. Clearly, methods must be part of 
the description. Method return values may be specified. Parameter lists may also be specified, but 
should not be interpreted as an exact number, order, and possibly type of parameter. 

 Some symbols in the DP (e.g. the actual names of the HandleRequest() method, the successor field, and 
the client class) have no relationship to each other. Other features of the DP (e.g. the superclass of 
ConcreteHandler1, the data type of the successor field, and the name of the Handler class) are required 
to match. There may be several sets of symbols, not related to each other but matching within each set. 

 Many patterns ask a client class to use a method in some class referenced by the client – Bridge is one 
such pattern. Unfortunately, the reflection API can see only declarations of methods, not invocations of 
them. This project cannot detect use of a method, so will not define syntax representing such use. 

                                                      
8  Java naming conventions and many network protocols (e.g. ISO 8802 family) have solved this problem with only small, 

simple mechanisms. 
9  Except in cases of multiple inheritance. 
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3.3.3 DP specification 

ExPat represents DPs using a novel Pattern Description Language. The language has very simple syntax, 
described using the following conventions: 
  The ∅ symbol represents a null string.  
 PDL keywords and literals are underlined.  
 Terminals named symbol represent tokens that follow Java’s syntax for unqualified symbol names. 
They are not literal Java symbols, though. There is no significance to the shared naming convention.  

 Adjacent symbols and keywords must be separated by white space, using Java’s white space definition. 
Punctuation does not require white space separation. White space has no effect on the meaning of the 
description. 

 Java-style comments (“//” or “/*  */”) are used the same way as in Java. Comments have no effect on the 
meaning of the description. 

 The quotedString terminal stands for a Java-style quoted string, delimited by double-quotes ( “ ” ). 
 The patternDescription non-terminal specifies a complete PDL representation of a DP.  

The grammar appears below, where patternDescription is the non-terminal that represents a 
complete PDL pattern definition: 

patternDescription = patternStmt classDefinition* 
patternStmt = pattern quotedString ;
classDefinition = classHeader { classBody } 
classHeader = modifiers class symbol superclasses 
modifiers = ( many | optional )* 

superClasses =   ( extends symbol (, symbol)* ) | ∅ 
classBody = ( reference | method )* 
reference = modifiers reference symbol symbol ; 
method = modifiers method symbol symbol ( paramList ) ; 

paramList =   ( symbol (, symbol)* ) |  ∅ 

The prototype language has Java-like syntax for readability. Other syntax, perhaps based on XML  [XML] 
would work equally well and would not affect ExPat’s architecture. With proper encapsulation, the PDL 
parser can easily be replaced.  
PDL semantics are complex, and subject to runtime options and constraints. A later section details the 
pattern-matching algorithm. This section sketches the matching engine’s behavior in terms of a sample 
PDL definition. 
Consider the Composite DP in 
figure 4, and the PDL (Figure 
5) that describes it. The PDL 
sample displays keywords in 
bold type. Line by line, the 
PDL description has the 
following meaning: 

Figure 4: UML for Composite Design Pattern   
Taken verbatim from GoF 

1. The pattern statement is 
required in every description 
file. It always has exactly one 
quoted string. This string acts 
as the pattern name 
throughout ExPat’s UI, but 
has no other significance.  
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Note that Java-style comments 
are allowed. As in Java, they 
have no semantic significance.  

2. This is a class description of 
the simplest form. The class 
keyword starts the definition. In 
order to map Java’s inheritance 
rules to into DP terms, the 
class definition actually 
covers both classes and 
interfaces. That simplifies 
descriptions of class patterns 
considerably. 
Next, the user-defined symbol Component takes the place of the class name. Symbols initially have no 
binding.  During the matching process, however, the Component symbol will be bound repeatedly to 
different actual class names. The matching process is defined in the next section. 
This class has an empty body. That means that the actual class may have any content, without 
constraints set by this pattern definition. This definition has no superclass specification; that means this 
pattern will match whether or not the actual is a subclass, or subimplementation any another. 
This pattern, by the way, matches any class at all. There are no constraints in the body or in the 
subclassing expression. 

1  pattern "Composite";    // Composite from GoF 

2  class Component {} 

3  many class Composite extends Component { 

4      reference Component children; 

5      method addReturn add(Component); 

6      optional method delReturn delete(Component); 

7  } 

8 many class Leaf extends Component {} 

Figure 5: Pattern Description Language (PDL) Example 

3. This starts a more complex description. The name symbol Composite appears for the first time, so it 
is unbound when the matcher reaches this point. The class name symbol is unrelated to the quoted string 
in line 1, and to the name of the pattern. It is just the symbolic name assigned by GoF in their 
illustration of the design pattern. 
Next the extends keyword indicates that the pattern describing this class requires at least one 
super*class. More could have been required, and the pattern is still satisfied if the class extends others 
not specified. Java indicates inheritance by saying that 
 a class extends its superclass, 
 a class implements its super-interfaces, or 
 an interface extends its superinterfaces. 

Since PDL does not distinguish Java interfaces from classes, the extends keyword covers all of Java’s 
kinds of inheritance. PDL does not require a class and its superclass need to be adjacent in the 
inheritance hierierchy. If class A extends class B, then A may be a sub-subclass of B,  a sub3-class of B, 
and so on, without regard to the sequence of concrete classes, abstract classes, and interfaces used. 
Note the recurrence of the Component symbol in this extends clause. Line 2 allowed the class 
description to match any class nameThe matcher then bound that matched class to the Component 
symbol. Later occurrences, such as this, take the Component symbol as bound earlier, and require that 
the name of this actual class match the name of the object bound to that symbol. In other words, the 
Composite class must be a sub*class of Component. 
Figure 4 shows only one class in the Composite role, but it also shows only one Leaf. Elsewhere in GoF 
the Composite DP is shown with several different Leaf classes in one occurrence of the DP. It makes 
equal sense to assume that GoF intends more than one class in the Composite role. Therefor, this class is 
declared with a many modifier. Instead of binding one code object to a matching symbol, the many 
keyword lets multiple objects, all meeting the PDL description match. If the pattern as a whole matches, 
then PDL symbols will be shown holding multiple bindings concurrently. Later sections on pattern 
matching describe this process in more detail. 
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4. This continues the class definition started in line 3. The reference keyword states that this class 

refers to some other using an association named compositePart, an unbound symbol. The type of that 
class must be Component, defined earlier.  
The name of the reference (compositePart) serves little purpose at present. The simplest 
interpretation of this statement is that the class must have a field of the stated type. This symbol appears 
in the user interface reports of successful matching, and helps the user understand how the pattern 
matched the actual code. Descriptions of the matching engine, below, discuss interpretations for 
reference other than field values. 

5. This line defines one of the methods in the current class. The name of the method is an unbound 
symbol, add, which will match any actual method name. The return type is another symbol, 
addReturn, which is also unbound and will match any return type. The parameter list specifies another 
occurrence of the class that matched the Component pattern. This list means that add must have at least 
one parameter, and at least one of the parameters must match Component. Testing will determine 
whether the parameter should be an exact type match or should be taken as a sub*class of actual type. 
A pattern may two parameters (or more). That would match any actual method with two or more 
parameters, as long as some actual parameter matches the first pattern parameter and some other actual 
parameter matches the second pattern parameter – order of parameters is not significant. 

6. This line defines another method with arbitrary name and return type, and with at least one 
Component in its parameter list. The only novelty here is the optional keyword. That means this 
pattern will match whether or not the actual class contains such a method. The optional keyword may 
also be used with reference and class definitions  
Optional elements don’t affect the success of the search. Their importance lies in binding symbols to 
actual code elements that show more of the DP’s realization. 

7. This line ends the class definition started at line 3. The reader now knows that this class pattern 
specifies inheritance, one or two methods, and a reference to another object of specified class. 

8. This line is quite simple. After as many classes as possible have matched Composite, look for one or 
more classes with the same inheritance requirement but no requirement on the class body. Like line 3, 
this also uses the many qualifier. That qualifier has one effect not mentioned earlier: it creates multiple 
simultaneous bindings for a symbol, representing all of the actual code elements that matched the DP.  

3.3.4 Loading DP descriptions 

This project uses a data file to specify the structure of each DP. Specifications are stored in a known 
subdirectory of the matching program, and have a .dspat suffix.. The filename’s prefix has no meaning, 
but may have mnemonic significance. The pattern-matching program parses all such files during 
initialization, one DP per file, using the PDL described above. 
This technique is just one way that pattern data could be loaded, and has no architectural significance. 
Patterns can be added or deleted without changing the program, but the program does need to be restarted 
to find the new pattern files.

3.3.5 Design patterns from GoF 

This section shows how the DPs from GoF appear when cast into this PDL. Some patterns can not or 
should not be written in PDL. When that is true, the reasons are given. Aafter the detailed analysis of the 
Composite example above, very little additional description of PDL appears here. The reader is invited 
to see GoF for the DP structures represented here. 
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1. Abstract Factory 
This pattern is unique in the way it generalizes to many kinds of ConcreteProduct classes. In other 
patterns, generalization is one-dimensional: only one list at a time has variable length. In this pattern, the 
main feature generalized is a Cartesian product, Factory × Product. The matching language and engine 
have no ways to express that kind of inter-dependency. 
pattern "Abstract Factory"; 
class AbstractFactory  
  {many AbstractProduct CreateProduct();} 
 
many class ConcreteFactory extends AbstractFactory {} 

 
many class ConcreteProduct  
    extends AbstractProduct {}    
 
optional many class Client { 
  {reference AbstractFactory absFact;} 

2. Adapter 
This DP has forms based on inheritance and on aggregation. First, the aggregation model: 
pattern "Adapter (Composition)"; 
class Adapter extends Target 
  {reference Adaptee adp;} 
 
class Client  
  {reference Target tgt;} 

Note a usage in this DP that may not be intuitive. The class Target appears in a reference and a 
subclassing expression, but the class seems not to be defined. Remember that a pattern symbol is 
implicitly defined by its first occurrence in the pattern. That means that Target is defined when it 
appears in the Adapter class declaration. 
Here is the Adapter built according to the inheritance model. Note how the Adapter class inherits from 
both interfaces. 
pattern "Adapter (Inheritance)"; 
optional class Client  
  {reference Target;} 
 
optional class Adaptee{} 
 
many class Adapter extends Target, Adaptee {} 
This pattern is quite general. It might, in practice, be used with constraints on Adaptee to limit the range 
of the search. 
The declaration of the Adaptee symbol may seem redundant, since it accepts any class, and since the 
next class would have defined the symbol any way. This declaration is outside of a many scope so accepts 
only single bindings. That better suits the spirit of the design pattern, which considers only one Adaptee at 
a time. 
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3. Bridge 
pattern "Bridge"; 
class Abstraction  
  {reference Implementor impl;} 
 
many class RefinedAbstraction extends Abstraction {}  

 
many class ConcreteImplementor extends Implementor {}         
 
optional many class Client 
  {reference Abstraction abst;} 

This pattern includes an optional many declaration. The optional keyword alone means zero or one, 
many means one or more, and the pair means zero or more. 

4. Builder 
pattern "Builder"; 
class Builder 
  {method Product BuildPart();} 
 
many class ConcreteBuilder extends Builder {} 
 
class Director  
  {reference Builder bld;} 

This is a very general pattern. It says little more than “one class references another, which has a subclass.” 
A pattern like this works best when the user already knows at least one of the classes in some DP 
occurrence. That knowledge helps anchor the search, and keeps it drifting aimlessly around the pool of 
classes. 

5. Chain of Responsibility 
This DP has a structure very much like that of Composite. It will usually match about the same set of 
classes as Composite, and match them in about the same way. 
pattern "Chain of Responsibility"; 
class Handler {                     
  reference Handler hhnd;  
  method hndReturn HandleRequest(); 
} 
 
many class ConcreteHandler extends Handler {} 
 
optional client 
  {reference Handler chnd;} 

6. Command 
pattern "Command"; 
many class ConcreteCommand extends Command 
  {reference Receiver rcv; } 
 
many class Invoker  
  {reference Command cmdinv;} 
 
optional many client { 
  reference Command cmduse; 
  optional reference Receiver crcv; 
} 
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This pattern may need rewriting, in order to reduce the breadth of its wildcard many searches. This PDL 
risks picking up too many occurrences at a time, and presenting a report that does not clearly label 
matched elements by occurrence. This may work well if Receiver or Invoker is constrained before 
matching begins. 

7. Composite 
This DP has very nearly the same structure as the Chain of Responsibility. Most times, this DP will find 
all and only the classes that Chain of Responsibility would find.  
pattern "Composite";   
many class Composite extends Component { 
  reference Component compositePart; 
  method addReturn add(Component); 
  optional method delReturn delete(Component); 
} 
many class Leaf extends Component{} 

8. Decorator 
This is another redundant member of the Composite family of patterns. 
pattern "Decorator"; 
 
class Decorator extends Component  
  {reference Decorator decoratee;} 
 
many class ConcreteDecorator extends Decorator {} 
many class ConcreteComponent extends Component {} 

Composite, Decorator, and Chain of Responsibility demonstrate a basic weakness of ExPat’s analysis. 
They all differ at the semantic level, but have about the same representation at the syntactic (Java or PDL) 
level. Much of the DP’s semantic content is lost when the DP drops down to the syntactic level. 

9. Façade 
The UML diagram representing this class is so broad that it describes every interesting Java application. 
There is no way separate the unintended matches from the genuine occurrences of the DP. 

10. Factory Method 
The GoF UML diagram for Factory Method shows little more than two pairs of classes, subclass and 
superclass in each pair. This is another pattern that captures so many irrelevant sets of classes that it is 
better not used at all. 

11. Flyweight 
This also seems to offer too inclusive a description to be useful. Very loosely, the diagram says that the 
pattern is some Factory class A, which references class B and subclasses of B. 

12. Interpreter 
This design pattern has essentially the same structure as Composite, Decorator, and others.  
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pattern "Interpreter"; 
class AbstractExpression {} 
 
many class NonterminalExpression extends AbstractExpression  
  {reference AbstractExpression production;} 
 
many class Terminal extends AbstractExpression {} 

13. Iterator 
pattern "Iterator"; 
 
class AbstractAggregate  
    { reference Element aggregate; } 
 
class Iterator { 
    reference ConcreteAggregate iterand; 
    method Element next(); 
} 
many class ConcreteAggregate extends AbstractAggregate  
    { method Iterator createIterator(); } 
 

14. Mediator 
pattern "Mediator"; 
class Mediator {} 
class Colleague  
    { reference Mediator myMed; } 
 
many class ConcreteColleague extends Colleague {} 
 
many class ConcreteMediator extends Mediator  
    {many reference ConcreteColleague colMed; } 

This was able to discover an unintended occurrence of Mediator in ExPat. It is also a good example of 
writing a pattern from most specific towards most general. Early bindings of the individual Mediator 
and ConcreteColleague symbols prevent the many declarations from accepting repeating code 
elements too promiscuously. 

15. Memento 
pattern "Memento"; 
class Originator { 
  method setReturn SetMemento(Memento); 
  method Memento CreateMemento(); 
} 
 
class Caretaker  
  {reference Memento mto;} 

This pattern is not likely to be helpful – it matches many code combinations that lack Memento semantics. 
For example, this is likely to match any Java Bean’s set/get interface, as long as some other class makes 
reference to the data type at the set/get. 
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16. Observer 
pattern "Observer"; 
class Subject  
  {method attachRet Attach(Observer);} 
 
many class ConcreteObserver extends Observer {} 
 
many class ConcreteSubject extends Subject {} 

17. Prototype 
The structure of Prototype is so small, perhaps only a single class, that it will match almost every class. If 
this project supported the Prototype pattern, its description would look something like this: 
pattern “Prototype”; 
class Prototype  
  {method Prototype clone();}} 

Clearly, this will generate too many false positives to be useful. 

18. Proxy 
pattern "Proxy"; 
class RealSubject extends Subject {} 
 
class Proxy extends Subject  
  {reference RealSubject realSubject;} 
many class client  
  {reference Subject sub;} 

This pattern finds large numbers of false hits in code that matches Composite. 

19. Singleton 
The structure of Singleton is so small that it matches almost every class. 

20. State 
pattern "State"; 
class State  
  { method hreturn Handle(); } 
 
class Context 
  { reference State state; } 
 
many class ConcreteState extends State 
  { method hreturn Handle(); } 

This is a very broad pattern, likely to trigger many false matches. It is also one of the few patterns that 
makes use of a method name. This states that the subclass is required to export a method that the 
superclass does. 
This pattern suffers several problems, outside of its broadness. First, the method patterns are meant to 
detect over-rides in the subclass. The patterns come close, but can not distinguish polymorphic use of the 
same method name. Parameter list patterns do not presently detect exact number or sequence of 
parameters, so there is no reliable way to detect over-ride of a polymorphic method. 
Second, ExPat does has only coarse tools for saying that a class should export a method itself, not simply 
by inheriting that interface from it super* class. With normal matching controls, the method parts of the 
pattern match vacuously: a subclass of A exports the interface that A exports. 
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Finally, this pattern may report redundant matches. If three methods appear in both the State and 
ConcreteState classes, the matcher will give three reports. There is no present way to ask for the set 
intersection of the two class’ lists. 

21. Strategy 
The PDL definition for Strategy can not be distinguished from the State definition. 

22. Template Method 
Very roughly translated, the GoF UML diagram says that “A is superclass of B which over-rides some of 
A’s methods.” This is another place where the gap between the pattern’s meaning and representation 
becomes painful – ExPat can work only at the representation level. 
pattern "TemplateMethod"; 
 
class AbstractClass  
  { method preturn PrimitiveOp(); } 
 
class ConcreteClass extends AbstractClass 
  { method preturn PrimitiveOp(); } 

This description suffers same problem encountered in State. ExPat’s matching rules are too broad to 
determine that the second PrimitiveOp’s parameter list matches the first. 

23. Visitor 
pattern "Visitor"; 
 
class Element                    
  {method acReturn AcceptVisit(Visitor);} 
 
class Visitor  
  {method visReturn Visit(Element);} 
 
many class ConcreteElement extends Element {}    
 
many class ObjectStructure {reference Element elem;} 
 
many class ConcreteVisitor  
  extends Visitor {}

3.4 List of search constraints 

DPs have deliberately broad definitions. That lets them be applied many ways, in many contexts, in 
many programming languages. This means that descriptions of DPs must be so inclusive that it risks 
matching many non-occurrences, as well. Any useful description will necessarily generate false 
positive matches; collections of classes that resemble but do not embody the desired DP. Too many 
false positives, however, may flood the operator with useless coincidences. Constraints let an operator 
focus the search by including the operator’s knowledge in the search. 
Constrained searches may also pick out specific DP occurrences, even when there are many other 
occurrences of the same design pattern. A Chain of Command, for example, may be constrained to use 
actual class ALPHA to fill design pattern role Handler. The may be very helpful to a maintainer who 
knows only one or two of the actual symbols filling specific roles in a pattern. In the Chain of 
Command, for example, the maintainer might be able to find all of the classes filling the multiple parts 
of the ConcreteCommand role, given only one of them to start. 
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3.4.1 Basic uses of constraints 

Search constraints are rules that allow only some subset of possible DP occurrences as matches. The 
following examples display the effects of constraining different elements of the DP Chain of 
Command, Figure 1. In particular, note the following symbols defined by that abstract DP: 
 Handler, the class linked into the command chain, 
 ConcreteCommand, a set of possibly many subclasses of Handler. This has Handler as a superclass, 
noted graphically in Figure 1, 

 client, one of possibly many users of the chain. This includes some reference to the Handler class. 
 successor, the link from one Handler to the next, and 
 handleRequest(), the method at which service is defined. Any method implicitly has a return type 
and parameter list. 

Exact string matching may be the simplest kind of constraint rule. In other words, it is the requirement 
that the code feature filling some role have a name the same as some specified string. Consider the 
effect of applying such a constraint, one by one, to each of the code features named Table 1, below. 
The final row of the table shows that constraints typically affect more than one part of the pattern. In 
the case shown, one constraint defined the name of one class in the pattern, the name of another class’ 
super*class, an association down the chain of responsibility, and an association from the client class. 
One could also imagine constraints on constructor parameters, but they have not yet proven useful. 
Other language constructs, such as inner classes and interfaces, exception lists, declaration modifiers, 
etc. could also be constrained. Design patterns tend to use simple programming constructs so that they 
can be applied across many programming languages. Because of that language-independence, Java-
specific features may not be useful. 

3.4.2 Variations on constraints and matching 

There are many possible variants of constraint rules described so far, and many ways to match 
program features to design pattern specifications. Some have been explored in the current project’s 
implementation. Others have yet to be tested. The following list is not exhaustive; many other 
possibilities exist as well. 
 Constraint string matching: Instead of exact string equivalence, one may imagine regular 
expressions of arbitrary expressive power.  

 Inheritance based matching: One may imagine many ways to incorporate a language’s inheritance 
rules in the string matching tests. Class X, for example, might match another X or any of X’s 
super*classes. In other contexts, X might match any of its sub*classes. Both rules may apply: method 
A(X) with return type Y might match sub*classes of X and also super*classes of Y. 

 Inheritance exclusion: Every Java class, for example, is a subclass of java.lang.Object. That 
class exports several methods into all its subclasses, i.e. into every class. The Object interface is 
rarely of interest in design pattern occurrences. Omitting Object from consideration will surely let 
pattern searching run faster, and may prevent false positive reporting. Other times, one may want 
only the application’s content to be reported in the design patterns; all of the Java libraries (java.*) 
may be unwelcome. 

 Direct implementation: Strict descriptions of patterns may require that a method (or field) be 
implemented directly in some class, not just in  a super*class. Figure 1, for example, defines 
HandleRequest() in the Handle superclass, but implements it in all of the ConcreteHandle 
subclasses. Other times, it may be enough that the class inherit the method. Excluding super*class 
implementations of a method may also shorten the search for design pattern occurrences. 
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Table 1 – Constrained search behavior  
Constraint Meaning  Consequences 
Handler = ALPHA uniquely specifies 

the name of the class 
in the Handler role: 
ALPHA 

 Defines the name of the superclass required of 
ConcreteCommand, the data type of the 
reference from any client, and the type of the 
successor reference in Handler 

ConcreteCommand = 
ALPHA 

Demands that one of 
the sub*classes of 
Handler be named 
ALPHA 

 All of ALPHA’s subclasses and subinterfaces 
are candidates for the Handler role. 

ConcreteCommand 
extends ALPHA 

Specifies 
super*class ALPHA 
for class  
ConcreteCommand  

 The pattern defines Handler as 
ConcreteCommand’s superclass, so this 
constraint also defines the name of the class 
acting as Handler. 

client = ALPHA Requires that there 
be a client class 
named ALPHA. 

 There may be many references from class 
ALPHA to various types. One or more of those 
references is expected to take the Handler 
role, and thus lead to all other roles. 

successor = ALPHA The name of the 
symbol linking the 
chain together is 
specified. 

 It does not seem especially useful to seek out 
all classes containing a field named ALPHA, 
but it is possible. 

ALPHA successor Specifies that the 
type of field 
successor be ALPHA 

 A class may contain no such fields, one, or 
several. Such a constraint happens not to be 
useful in this specific pattern. 

HandleRequest = 
ALPHA() 

Specifies that the 
name of some 
method be ALPHA 

 Method names, like field names, are not 
normally part of PDL matching. They report 
matches to the user. 

HandleRequest  
(ALPHA) 

Specifies that the 
method’s parameter 
list includes an 
element of type 
ALPHA 

  

ALPHA 
 HandleRequest() 

Requires an object 
of type ALPHA as the 
method’s return 
value. 

  

Handler = ALPHA 

follow the 
consequences 

specifies the name 
of the class in the 
Handler role, and 
propagates name 
through the pattern 

 The Handler class is named in parts of the 
pattern other than actual Handler: 
 superclass of ConcreteCommand 
 data type of successor 
 data type of link from client 

 Language specifics: Gamma’s distinction of some classes as abstract has vague Java significance at 
best. Some may choose to ignore the distinction completely. There are also design patterns (e.g. 
Singleton) that rely on the distinction between static and instance-based fields or methods.  
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 Unused language features: Constructor matching could follow rules like those for method matching. 
No current design patterns refer to constructors, however, so the need has not arisen. Exception lists 
on methods and constructors could be added, but no present design rules use exceptions. 

 One class in multiple roles: The strict interpretation of Figure 1 says that Handle is always distinct 
from ConcreteHandle classes. That does not need to be the case. Some class C could act as a 
ConcreteHandle, and also act as the Handle superclass for all other members of the ConcreteHandle 
set. Allowing such double duty may increase the number of design pattern occurrences found, but 
may also increase the number of false matches and the search time. 

 Method signatures: The HandleRequest() method in Figure 1 is shown without parameters or return 
type. The strictest reading might state that HandleRequest()  must not have any parameters and must 
have void return type. More lenient readings might allow any return type at all, and any parameter 
list. A method described as F(X, Y) might leniently be allowed any two or more parameters, as long 
as at least one X and at least one Y appear somewhere in the parameters, in any order. F(X) might 
even match the description, if X = Y. Constructor parameter lists might be handled the same way. 

3.4.3 Implementation 

The current ExPat tool uses exact string matching for locating DP occurrences. The search algorithm 
is recursive testing and backtracking. The search engine adds new symbol bindings as it climbs down 
the search tree, and releases them as it backtracks up the tree.  
It is consistent with that search logic to bind some symbols to strings before the search even begins. 
Symbols are never over-written, and backtracking would never reach up to the level at which those 
symbols were bound. That is how ExPat implements constraints – as pre-bound symbols. 

3.5 Searching for DP occurrences 

The search engine starts with a list of Java 
class files, a DP description, and an optional 
set of constraints chosen by the user. 
Initially, all program symbols are unbound, 
i.e. they do not yet represent anything. 

pattern "Composite"; 
class Component {}   
many class Composite extends Component{
  reference Component compositePart; 
  method addReturn add(Component); 
  optional method delReturn 

    delete(Component);
} 
many class Leaf extends Component {} 
 

The search engine uses a basic backtracking 
mechanism. Matching proceeds through the 
pattern until a mismatch occurs, then backs 
off to the most recent successful match. New 
candidate code items are tried in turn, until 
all candidate code items have been tested. 

Figure 6: Composite Design Pattern 

When the list of candidate code items is done, matching backs up another level. Matching could have 
bound a symbol at any point in the matching. As backtracking steps back through each test, it unbinds 
any symbol bound at that step. That means that the next code item considered for matching finds a 
clean context, with no stale bindings still in effect. 
If the last element of the pattern matches successfully, the whole pattern has been fulfilled. The match 
is reported to the user, showing the names of the code elements bound to each of the symbols. 

3.5.1 Constrained and unconstrained matching 

Searching is an exhaustive process, running top to bottom through the pattern definition. The search 
engine takes each class in turn, and presents it to the first part of the pattern, the Component class. The 
Component symbol could have been constrained by user. In that case, the string assigned to 
Component is compared to the actual class name. If the strings are the same, matching proceeds on to 
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the class internals. If the Component string differed from the actual class name, though, the match fails 
at that point and backs up. The match engine presents the next class for matching, and so on.  
The user may not have assigned a constraint value to the Component symbol, though. The symbol 
would be unbound. In that case, the name of the class is bound to the Component symbol, and 
matching continues. 
Whether or not the Component symbol was already assigned by the user, successful matching moves 
on to the Composite class. The matching engine tries every class as a Composite, except for the class 
bound to the Component symbol – once matched, a class is considered used up. Dual-roles classes are 
not currently supported. 
Assume that none of the remaining pattern symbols were assigned constraint strings. When the 
matching engine starts testing an actual class against the pattern, it finds the Composite symbol 
unbound. Unbound symbols match unconditionally, and take on the value of the thing against which 
matching tried the symbol. Thus, the matcher binds Composite to the actual class name and moves on. 

3.5.2 Matching classes 

When the matcher presents classes to the Composite pattern for matching, it presents abstract and 
concrete classes, and interfaces as well. Java’s inheritance semantics allow any of the three as 
superclasses (or super-interfaces). Rather than create semantic and syntactic clutter, this application 
makes no distinction between classes and interfaces. Through the rest of this discussion, the word 
“class” should be taken to mean “class or interface”. Likewise, extending a superclass will also mean 
implementing an interface. 
It is quite reasonable for a programmer to look for patterns involving only the application’s own 
classes. Classes from the Java library may not be involved in any important design patterns, as 
parameters, return values, etc. An option on the matching engine allows the user to ignore any classes 
with names of the form java.*. Ignoring these symbols yields fewer false matches and faster searches. 

3.5.3 Matching superclass patterns 

Next, the matching engine sees that the Composite class must include at least one other as a 
superclass. In fact, the superclass is the Component symbol, recently bound to a class name. A naïve 
implementation would simply check whether the Component class was among the class’s immediate 
superclasses. Java semantics, however, would let Composite work equally well whether Component 
were a superclass, super-superclass, … or anywhere up the Composite inheritance hierarchy. The test 
used by the matching engine sees whether the java.lang.Class.isAssignable() test allows the 
Component type to be assigned to any of Composite’s super*classes. 
If Component is not found as a super*class of Composite, the matching engine backs out of the 
Composite class and releases the binding of the Composite symbol. The matching engine tries the next 
class as a Composite candidate, and the next, and so on. 
The Java system defines java.lang.Object as a super*class of all other classes. Since it is present 
in every inheritance hierarchy, it does not help distinguish one class from another. The user may tell 
the matching engine to disregard all occurrences of java.lang.Object, to reduce false matches and 
to reduce the size of the search tree. 

3.5.4 Matching references 

If, however, Component were a super*class of the Composite class, matching continues with the 
content of the Composite class. The first element of the class is a reference to an object of type 
Component. This is a second use of the value bound to the Component symbol. The reference symbol 
name is not used. 
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A reference represents an association or aggregation in which the current class has knowledge of 
some other. The simplest interpretation of a reference describes it as a field of the class, with the 
given type.The first modification of that model allows any class assignable from the pattern’s type as a 
match to the type. This uses the same super*class logic as the test used in matching the extends 
clause. The next modification lets arrays take the place of a scalar base type. The declaration 

public SomeClass x; 

is a reference to SomeClass, but so are 
public SomeClass a[], b[][], c[][][]… 

Matching ignores any number of levels of indexing. 
A field is an obvious way to create a reference from one class to another - the field is simply 
assigned a reference to the target type. It is generally good programming practice to scope fields as 
tightly as possibly [Lie], private more often than public. That practice, however, hides the field 
from Java’s reflection API. Reflection normally has access only to public symbols. In other words, 
good programming practice makes fields inaccessible to the matching engine. The pattern’s reference 
from one class to another may not be visible.  
Even if the reference field is public, the field may embed the reference in another object. The matching 
engine looks only at each field’s type, not the class-typed fields inside the class definition . 
These problems lead to options in the matching engine. First, consider the idea that a field must be 
assigned a class reference to act as a reference pattern. The class must have assigned the value to 
the field, and must have gotten the value through its external interface. The value may have entered the 
class through a constructor or method parameter. When looking for a reference from class A to class 
B, a parameter of type B to some constructor or method in A might be considered as strong enough 
evidence to warrant consideration. The user has separate control over treating constructor and method 
parameter lists as reference matches. 

3.5.5 Matching methods 

The matching engine uses all of its familiar techniques to match a method pattern to an actual method. 
The matching engine tests the return type, the parameter list, and the method name. The last is almost 
never used for matching purposes. It is important, though, for UI match reports. Parameters in the 
pattern may appear in any order in the actual parameter list. Also, the actual parameter list may be 
longer than the list in the pattern – extra parameters are ignored. Parameters match if the pattern’s 
parameter is bound to the actual class or a super*class. Return types match if the pattern’s type is the 
actual return type or a sub*class. As with references, levels of array indexing are ignored. 
Constructors are not handled in this implementation, but could be handled much like methods. 
One weakness of the current implementation is that it does not distinguish static methods from 
instance methods. That weakness affects reference matching, as well. The distinction should be 
made in the future, but has not caused problems in experiments to date. 

4 Project Results  
This section describes experience with the ExPat program. This demonstrates the major features of the 
program, without going into full analysis of every result. 
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4.1 User interface 

This section describes the ExPat user interface, showing how each feature supports the goal of 
matching DPs. The first display, Figure 7, shows the application as it appears on starting up. The top 
row of selection buttons is constant for all panels. A status line at the bottom also remains constant. 
The large display area changes according to the function selected.  

4.1.1 Pattern display 

The display area initially shows a pattern 
description, as in Figure 7. The user may 
select any available pattern using the 
pulldown near top center. The description for 
that then appears in the main window. This 
panel lets the user look at the list of available 
patterns and review them in detail. This 
shows a human-readable form of the parsed 
PDL, not the pattern source file. That means 
that comments and formatting in the original 
file may be lost. 

Figure 7. Pattern display panel 

4.1.2 Class display 

The next display, Figure 8, presents a 
pulldown for choosing among available 
classes. The class chosen appears in the 
display area. 
Remember that ExPat uses only the 
compiled form of the class file, so it can 
access only the file interface, not source 
code. That means, for example, that method 
signatures can be displayed but not method 
bodies. Source text formatting and 
comments, of course, are lost. 

Figure 8. Class display panel 

The display includes only features used in 
pattern matching, methods and fields. 
Constructors, inner classes, and inner 
interfaces are not displayed. Arrays are 
simplified down to their base types. For 
example int[][] is simplified to int. 
ExPat uses the standard Java reflection API 
and security manager, so it will normally not 
display interface elements with private, 
protected, or package (default) scope. 
ExPat can use only public interface 
elements reliably. 
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4.1.3 Option selection 

The options selection panel (Figure 9) lets the user set control values that affect how pattern matching 
occurs. The options presently available are: 
 Skip java.* symbols. This restricts the set of classes tested as candidate members of some design 
pattern occurrence. When selected, any class name starting in “java.” is an automatic mismatch. 
When deselected, matching allows Java library symbols. This feature supports users who know that 
all design patterns in their application are built around application class types. By eliminating the 
Java library symbols, the user sees fewer false positive reports and faster searches. 

 Skip Object.* symbols works the 
same way as “Skip java.*” 
symbols, but is more selective. 
Instead of rejecting any java.* 
symbol, though, this rejects only 
java.lang.Object.* 
symbols. Object is the common 
ancestor of all Java class types. 
That means that all classes have a 
common ancestor and common 
inherited interface elements. 
Skipping Object.* symbols 
reduces the number of matches 
due to unintentionally shared 
interface elements. 

 Skip all inherited symbols. This 
means that only fields and methods defined in a class take part in pattern matching. Symbols defined 
in super*classes are skipped, unless over-ridden in the class being matched. Consider a class with 
several dozen subclasses. If the superclass takes some part in a design pattern, the subclasses trivially 
take part also. Some interface elements in the superclass allowed it to match that role, and subclasses 
all inherit those interface elements. Disqualifying inherited interfaces eliminates those subclasses 
from consideration, showing only the class that originated membership in that DP occurrence. 

Figure 9. Option selection panel 

 Constructor params are references. Normally, a reference from one class to another would be a 
variable (field) of the target type. Good programming practice suggests that class data be scoped as 
tightly as possible to maintain good encapsulation. ExPat uses the standard Java reflection API and 
security manager, so ExPat can not see many properly scoped references. 
Even if the reference variable can’t be seen, it is certain that the variable received a value of the 
proper type one way or another. The value may be created within the class, or it may be an 
embedded component of some other class type. In many cases, though, the value will have passed 
into the class as a parameter. Presence of some parameter type may be considered adequate evidence 
that the class holds a reference variable of that type. If that’s true for constructor parameters, the user 
should select this option. 

 Method params are references. There is no syntactic or semantic difference between constructor and 
method parameters. There may, however, be an idiomatic difference in connotation between the two. 
This control lets users select either or both kinds of parameter as evidence of a reference. 

 Parameter types match exactly. An actual method or constructor with a parameter of type T normally 
matches sub sub*class of T. More tightly-typed applications have the option of requiring exact 
matching of pattern and actual parameter types. 
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4.1.4 Class selection 

The user may want to examine only a 
subset of the classes loaded by ExPat, 
perhaps classes in one package. This panel, 
Figure 10, lets the user select classes to 
examine. 

Figure 10. Class selection panel 

The “selection” panel lets the user choose a 
subset of the loaded classes. The list on the 
left names the classes that are not to be 
used in matching; the list on the right is 
classes that should be used. If the user 
hasn’t chosen any classes at all, i.e. if the 
right-hand column is empty, the whole list 
of classes is used for matching. 

4.1.5 Constraint selection 

The “Constraints” panel lets the user add 
knowledge to the naïve search algorithm. 
The first version of ExPat just uses simple 
strings as constraints on the pattern matching 
process. 
The user selects a pattern to constrain using 
the pulldown at upper left. The left-hand 
column below the pulldown lists symbols in 
the chosen pattern. If the symbol meanings 
are not clear, the user can go back to the 
pattern listing in the “Patterns” panel, and 
see the pattern symbols in context. This 
column is not directly editable. It does, 
however, show which symbols are 
constrained, and what the constraint string is 
for each. In this display, only delReturn 
and addReturn have constraints. Both 
happen to have the same value in this 
example, but could have been different from each other. 

Figure 11. Constraint selection panel 

The caption “delReturn:” and a text entry box appear near lower right. The caption shows which 
symbol has been selected (by clicking in the left column) to have its constraint string modified. The 
user types a constraint string into the box below that legend. The new constraint string takes effect 
when the user hits the “Enter” key in that box. An empty constraint string represents no constraint. 

4.1.6  Pattern Matching 

After (optionally) setting the list of classes, choosing a pattern, and optionally setting constraint strings 
in some of the pattern symbols, the user is ready to run the pattern matching process. The “Matching” 
panel controls the pattern detection process, and appears at right. 
The pulldown at upper left lets the user select which pattern to match.  
The scrolled list along the left edge lists the classes involved in the search. 
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The caption “Matching results:” never changes. It simply identifies the tall box on the right as output 
from the matching process. 
Matching started the moment this panel appeared, and ran in a background thread. It may find a 
number of different classes that match the DP in different ways. Each time the matcher finds a new 
result, it shows the code elements matched each pattern symbol and waits.  
The sample display shown was too long 
to fit the area allocated. The scroll block 
at right suggests how much of the result 
in invisible above and below the part 
shown. The top row reads 
Composite:dpPattern.PatternLi
st. That means that pattern symbol 
Composite is displayed. This match 
bound that symbol to a code element 
named dpPatten.PatternList. 
Several indented lines follow that. 
Those additional lines are additional 
bindings, since Composite was 
defined in a many context. The next 
lines show bindings of actual code to 
the compositePart pattern symbol, 
and so on. 

Figure 12. Matching panel 

The user is free to examine this match at leisure, then use one of the three buttons arranged vertically 
down the center of the panel. The topmost button is labeled “resume.” That lets the matching engine 
continue from the point at which it stopped for display. The matcher then continues until it finds 
another match or reaches the end of the search. 
The next button is labeled “restart.” Pressing that button stops the matching process and begins again 
as if for the first time. The lower “quit” button (not the one in the top row) halts the matching process, 
but does not halt the program as a whole. 

4.1.7  Quit 

The main control button labeled “quit” exits the program. No data is saved; all user selections and 
matching results are lost. 

4.2 Experience with ExPat 

ExPat has been quite successful as an experimental vehicle. Its behavior, user interface, class search, 
and PDL file search have all proven adequate for current testing. It has been surprisingly successful in 
finding unintended, real instances of DPs, as well as DPs put deliberately into test classes. It has also 
shown where the matching algorithms require enhancement. 

4.2.1 Basic example  

ExPat easily recognized DPs in hand-crafted  test cases. Figure 13 shows one such test. The 
Composite PDL (See section 3.3.3) has been presented with a set of files designed to represent the 
Composite pattern. Without looking at the actual PDL, one can read a fair bit into the assignment of 
actual code objects to pattern symbols. 
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First, it’s easy to see that no method in the actual code matched the description of a method to delete 
elements from the aggregate. The delete and delReturn symbols are both blank, indicating that 
they were part of some, optional PDL declaration, and the option was not used.  
Second, the Leaf symbol matched several classes, including one with a name that suggests a 
composite. That class, COcomposite5, contains the following Java source code: 

// COcomposite5 
package Examples; 
public class COcomposite5 extends COcomposite1 { } 

By itself, that class might or might not fill the Composite role in the DP. It depends on the superclass, 
COcomposite1: 

//COcomposite1 
package Examples; 
public class COcomposite1 extends COcomponent { 

public COcomponent compRef; 
public void insertIntoComposite(COcomponent insertMe) {} 
public void deleteFromComposite(COcomponent insertMe) {} 

} Figure 13: Sample Matching Output 
When COcomposite1 was included in 
the set of classes for analysis (not 
shown), then COcomposite5 appeared 
as one of the Composite matches. With 
COcomposite1 included, its public 
reference to a COcomponent was 
included, so the matcher could see that 
reference in COcomposite1. Since 
COcomposite5 subclasses 
COcomposite1, the matcher could see 
the fields and methods it inherited. With 
COcomposite1 in the set under test, 
COcomposite5 was recognized in the 
Component role of the DP. 
The next question is, with COcomposite1 missing from the set of classes being analyzed Figure 13, 
why was COcomposite5 accepted in the DP’s Leaf role? Any leaf must be a subclass of the object in 
the Composite role. The answer comes from ExPat’s notion of “subclass”. By default, it means 
sub*class. When ExPat encounters “class Alpha extends Bravo”, ExPat will treat another class 
Charlie as superclass if the java.lang.Class.isAssignableFrom() test states that Bravo is 
assignable to Charlie. That test may count on the Java class search rules and loader to find out that 
COcomposite5 is a sub-subclass of COcomponent, even though the intermediary COcomposite1 
was not part of the test. 
A few more points deserve attention. A class was allowed in the Composite role if it was a subclass 
of Component and referenced Component. The matcher cast COcomposite2 in that role. The source 
file COcomposite2.java follows: 

package Examples; 
public class COcomposite2 extends COcomponent { 

public COcomponent compRef2[][]; 
public void insert2(int i, COcomponent j) {}; 

} 
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The insert2 method was put into the add (method) role of the DP, even though the actual insert2 
method has more parameters than described in the PDL, and the parameter of interest is not first in 
insert2’s parameter list. 
Also note that the Composite PDL requires a reference from the Composite class to a Component. The 
most straightforward form of reference is a public field. COcomposite2 does in fact have a public 
field (visible to the matcher), but the field is not of COcomponent type. It is an array of arrays.  The 
base type of the arrayN is of desired type, and that is good enough for the ExPat matcher. 
ExPat correctly rejected those classes when tested for the Mediator and Observer DPs, and found only 
the one design pattern occurrence. 

4.2.2 Demonstration of backtrack searching 

The matcher does not assume that only one occurrence of a DP exists in any body of code. After 
reporting a match, ExPat waits until the user lets ExPat resume the search where it left off. Figure 14 
shows such a case: a pastiche of outputs describing four occurrences in one run of the program.  
This example shows an annoying problem, though. It uses two classes, COcomposite1 and 
Cocomposite1a, which export identical interfaces (shown earlier). The Composite PDL specifies 
optional add and delete methods, if they exist. The PDL descriptions of the two methods are 
identical, and the actual pairs of insert and delete methods have identical signatures. That means 
the actual method named delete will serve equally well in the PDL’s add or delete roles, and the 
same is true for the actual insert methods. 
The four displays report only trivial changes, without 
reporting a truly new DP occurrence. Here is what 
happened: 

Figure 14: Repeated pattern discovery

Match #1: 1a.insert and 1.insert match the add role 
(also, 1a.delete and 1.delete match the delete role), 
Match #2: 1a.delete and 1.insert match add, 
Match #3: 1a.insert and 1.delete match add,  
Match #4: 1a.delete and 1.delete match add.  
This demonstrates the thoroughness of the backtracking 
search algorithm, but also reports many trivially different 
matches. 
If it seems odd that a method named “delete” is assigned to 
a pattern symbol named “add”, remember that the current 
implementation of ExPat makes no use of any name string 
except as in an equality test with another. Program symbol 
names have no meaning to ExPat. 
This problem gets exponentially worse when more actual 
classes take part in the match, or when more methods in 
each class match the PDL description. This problem can be 
eased by removing the problematic method declarations 
from the PDL, but not wholly solved.  
A better solution might preprocess the actual class information. Given knowledge of the pattern to be 
matched, the preprocessor might divide the actual code elements into equivalence classes, specific to 
that pattern. The matcher might then be constrained to match only once with a specific configuration 
of equivalence classes. The solution is not obvious, and the problem can interfere with ExPat’s 
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usability. Swamping the user with trivially different results makes the significantly different harder to 
pick out. 

4.2.3 Surprise discovery 

One of the early tests with ExPat was a pleasant surprise. It detected an occurrence of the Composite 
data pattern in ExPat’s own code that the author had not anticipated.  
The matching algorithm is a backtracking tree search, simplified for current discussion. Very roughly, 
each PDL syntax element, in source order, represents an element along a linked list. Each class 
description in the PDL represents a set of branches spreading out from that node, one per actual class. 
Having matched some class, the matcher moves on to the next list element. That PDL method pattern 
acts as a set of branches from that method node in the linked list, corresponding to actual methods in 
the class just entered. Matching of reference patterns works much the same way, but chooses 
different parts of the class interface. 
Figure 15 illustrates how the matching might work: the 
matcher tries each actual method from the current 
actual class as a possible match for the method PDL 
element. When all methods in that class have been 
tried, the matcher returns to the previous class PDL 
element. The matcher then tries the next actual class in 
the PDL class pattern, then tries all actual methods 
in that class against the method pattern, and so on. 

class

method

Already 
searched

Current 
search 

Not yet 
searched

Figure 15: Sample search tree 

class aClass  
  { method rType aMethod(); } 

Consider the case where all actual methods have been 
tried in the final class, i.e. the matcher has just finished 
with rightmost branches at several consecutive levels. 
ExPat maintains back-links telling the matcher where 
to resume, possibly many levels back along the path. 
Each PDL element may be followed by many others, 
so that all ExPat classes that  examine actual methods, 
classes, etc. subclass a common ancestor. That 
ancestor maintains the back-link logic in common for 
all subclasses.  
ExPat correctly identified the back-link, the common ancestor, and the matching classes as members 
of a Composite DP. The author had been working from a different conceptual model, and was 
surprised to see this well-formed but unintended occurrence of a Composite DP. 

4.3 Comparison to previous work 

Only a few tools appear to have been built with design pattern maintenance in mind: 
 Language extensions that check a program’s logical consistency. Eiffel and R++ [Cra] both fall into 
this category, with assertions or similar logical extensions. Neither, however, seems able to specify 
relationships among several classes. 

 Pattern skeleton generators, which have only limited popularity. Some generators run once, before 
the programmer adds any application code. Others [Bud] assume that that code skeleton conforming 
to the design pattern will be owned, more or less, by the skeleton tool, somewhat the way UI-
oriented programming environments often work. Such tools have the obvious disadvantage of 
requiring a specific set of development tools. Also, they disregard the reverse engineering question 
completely. 
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 Meta-data standards (e.g. RDF [RDF], MOF [OMG], or the Dublin Core [DC]) seem to lack clear 
semantics relating different objects to each other, and lack any obvious mechanism for expressing 
indirect relationships such as super*classing. Perhaps, with further study, they could be specialized 
for DP description.  

 Sefika [Sef] described a tool, Pattern-Lint for handling both static and dynamic pattern behavior. It 
made static and dynamic checks DP compliance, but appears to required pre-assignment of specific 
classes to specific roles in a DP. 

Pattern-Lint seems closest in spirit to ExPat, so warrants further attention. 

4.3.1 Comparison: Pattern-Lint 

Pattern-Lint’s purpose was slightly different from ExPat’s. It seems that Pattern-Lint would be given a 
known set of classes with known roles in the design pattern. The tool would then verify that classes in 
the occurrence of the pattern followed the behavioral restrictions set by the pattern. ExPat, on the other 
hand, discovers classes involved in a pattern. ExPat does not, however deal with the system’s runtime 
(dynamic) behavior.  
Pattern-Lint searches were based on the Prolog language, using phrases such as the sample in 
Figure 16. There’s a clear attraction in using a mature engine for backtrack searches, and in using a 
full-scale programming language for expressing DP structure. Closer examination shows some 
problems, however: 
 The sample Mediator is hard-coded to handle exactly two colleagues under mediation. Presumably, 
there would need to be a mediator of each arity  to handle a Mediator ensemble of each size. There’s 
not apparent induction mechanism for handling an arbitrary number of colleagues 

 It appears that the size of a mediator description 
grows O(N2) with the number of colleagues10. The 
control and data terms in the mediator clause 
appear to relate every colleague to every other, in 
ordered pairs. Similar O(N2) behavior appears in the 
invokes and friend terms of the violation 
clauses.  

mediator(M1, C1 , C2 ) :- 
invokes(C1 , M1), 
invokes(M1 , C1), 
invokes(C2 , M1), 
invokes(M1 , C2), 
control flow( C2 , C1 ), 
control flow( C1 , C2 ), 
data dependent( C1 , C2 ), 
data dependent( C2 , C1 ). 
 

violations mediator(M1, C1 , C2 ) :- 

invokes(C1,C2). 

violations mediator(M1, C1 , C2 ) :- 

not(invokes(M1,C1)). 

violations mediator(M1, C1 , C2 ) :- 

is friend of(C1,C2). 
 
Figure 16. Sample from [Sef] 

 The Prolog code is generated from other 
representations with yet another set of tools. 
Significant effort would be required creating correct 
translations from each tool, and providing adequate 
expressive power to the front end. 

 The full set of system primitives was probably not 
exposed. Questions remain about handling of 
function return values, parameter lists, etc. 

The system uses the same code to generate runtime 
analysis tools. The idea is attractive, but the authors 
did not state how the application would handle two or 
more unrelated Mediators, either instances of one 
pattern occurrence or multiple different occurrences. 

The authors did not indicate how optional elements in a DP would appear (presumably as new Horn 
clauses). The authors also failed to mention any problems due to language visibility rules. Perhaps the 
tool suite had highly privileged access to the target code’s private symbols, perhaps the C++ tools for 
                                                      
10  If each Mediator has size O(N2) and there are different Mediators for each number of colleagues M2, M3, …, then the size 

of the entire ensemble may be said to grow O(N3) 
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handling object code are not constrained the way Java tools are, or perhaps they simply disregarded 
the issue. Still, there is much to be admired in this effort. By the way, Sefika also noted how rarely 
design patterns are mentioned after the earliest stages of a program’s life. 
All other DP support tools seem to consist of skeleton generators for outlining code that matches the 
pattern, or textual lists of discovered design patterns. 

4.4 Directions for future exploration 

Although ExPat is successful as an experimental vehicle, there are many ways it could be improved. 
Area worth further exploration include: 
 Dynamic as well as static analyses - Such analysis could help verify correct use of communication 
relationships between classes. 

 Re-representation of PDL. The semantic content of PDL is quite distinct from its syntax. The PDL 
syntax shown was selected for readability and compatibility with available tools. Some day there 
may be reason to recast PDL’s semantics into a different syntax, perhaps one based on XML. 

 More program information - Java’s security manager limits the amount of class data available for 
analysis. Future versions of ExPat could use the Java source code itself, or use the same program 
information available to a debugger. This project declined those possibilities, focussing the pattern 
characterization and matching process, instead. 

 Some patterns in GoF could not be managed by ExPat’s PDL or matching engine. Those cases 
require further analysis. 

 No effort was made to make the search run quickly. Although test runs executed quickly enough for 
comfort, the broad tree search would likely take an infeasible amount of time to examine a large 
commercial body of code. ExPat requires optimization before it can be considered a viable tool. 

 Inner classes, inner interfaces, and anonymous classes are not included in any ordinary part of DP 
recognition. No effort is made to avoid them, though, and they may create erratic output. Future 
implementations should formalize semantics for dealing with them, or should prevent them from 
entering the matching process. 

 Constructors are not named in the PDL. GoF omits constructors from DP definitions to preserve 
language independence. A tool committed to Java, however, could use constructors at least in some 
of the ways that methods are used. 

 This tool searches only for relationships that must exist between code elements. It does not check for 
relationships that must be missing. The Mediator DP, for example, requires that none of the mediated 
classes refer to each other. References between mediated classes constitute violations of the pattern, 
but can not be phrased in the current PDL. 

 This tool does not detect all forms of a pattern where one class occupies more than one role. In 
Figure 1, the Chain of Responsibility could be built from only one class type, where links in the 
chain differ in their data content. In that case, the UML diagram might consist of a client class and 
just one other, a concrete Handler class that links to itself. 

 Some semantics of the many qualifier, particularly when there are several many qualifiers, need 
review. Bindings made after a many match may depend on which of the many bindings it relates to, 
but the matching report does not show those dependencies. 

 Reduce redundant reporting. Rework the logic that prevents a matching configuration from being 
reported repeatedly. Redundancy occurs in some reports of many patterns. Given two code elements 
A and B that both match the many pattern, one matching report should report both A and B. That 
occurs, but sometimes B and A will be reported – the same code elements in a different order. Other 
times A and B are reported singly, in successive matches. 
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4.5 Summary 

There is a long step from the semantic specification of a DP to its syntactic representation in a 
programming language. There is another step from source code, with full visibility of fields, methods, 
etc., to the interface presented by the Java reflection API. Even so, the structure of a DP can often be 
detected by exhaustively searching the interfaces of each class and combinations with other classes. 
Complex DPs tend to work best in this search. Their stringent requirements tend to cut large branches 
from the search trees, letting the searches run faster. Those same requirements, specifying complex 
relationships of many classes, also make false matches less likely. Some DPs, however, have so few 
distinguishing characteristics that their description may match almost any set of classes. 
ExPat is only an experimental tool. It has demonstrated some of the weaknesses of reverse engineering 
DP occurrences from compiled Java code.  ExPat as also had some striking successes. These results 
suggest that automated reverse engineering of DPs from compiled code could help in maintaining 
some DP-based software. Further development of the reverse engineering tools would certainly 
improve their usefulness. 
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5 References 
This project used a parser generator, JavaCC, from Metamata. That program accepts the grammar for 
PDL, and builds several files for reading PDL input. The PDL grammar is based on a sample Java 
grammar that is part of the standard JavaCC software package. 
Except for those files, all work on this project was done by the author, specifically for this project. 

5.1 Glossary 

API: Application Programming Interface. The list of classes, methods, fields, constructors, and 
other program elements made available by some service to an application program. 

Code element: This term refers generically to a class, method, parameter, field, or any other 
identifiable, indivisible entity that makes up a body of code. 

DP: Design pattern 
ExPat: (Extraction of Patterns) Experimental tool for detecting occurrences of DPs in a body of code 
Field: The conventional Java term for a data element in a class. 
GoF: The book or CD-ROM “Design Patterns” by Gamma et. al. 
OMG: Object Management Group, an industry consortium for developing communication standards. 
Pattern Instance: A dynamic juxtaposition of run-time objects that matches the set of roles and 

relationships specified by a design pattern. This project does not examine pattern instances. 
Pattern Occurrence: A static collection of class and interface declarations, examined without 

executing them, that matches the set of roles and relationships specified by a design pattern. This 
project examines only pattern occurrences. 

PDL: Pattern description language used by ExPat. 
sub*class: The set of classes and interfaces composed of a class’ subclasses or implemented 

interfaces, and their subclasses and sub-interfaces, and so on to transitive closure. Depending on 
context, the class itself may be included in the set. 

super*class: The set of classes and interfaces composed of a class’ superclass and implemented 
interfaces, and their superclasses and super-interfaces, and so on to transitive closure. Depending 
on context, the class itself may be included in the set. 

UML: Uniform Modeling Language. Unless otherwise stated, this document refers to version 1.3 of 
the OMG UML specification. 

XML: Extensible Markup Language. Standard created by World Wide Web Consortium [XML]. 
Originally a slightly restricted form of SGML, the XML standard has grown to include style sheet 
processing and other non-SGML features. 
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