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The BLAST sequence alignment program is a central application in Bioinformatics. The de facto standard
version, NCBI BLAST, uses complex heuristics which make it challenging to simultaneously achieve both
high performance and exact agreement. We propose a system that uses novel FPGA-based filters that reduce
the input database by over 99.97% without loss of sensitivity. There are several contributions. First is design
of the filters themselves, which perform two-hit seeding, exhaustive ungapped alignment, and exhaustive
gapped alignments, respectively. Second is the coupling of the filters, especially the two-hit seeding and the
ungapped alignment. Third is pipelining the filters in a single design, including maintaining load balancing
as data are reduced by orders of magnitude at each stage. Fourth is the optimization required to maintain
operating frequency for the resulting complex design. And finally there is system integration both in hard-
ware (the Convey HC1-EX) and software (NCBI BLASTP). We present results for various usage scenarios
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1. INTRODUCTION

A fundamental insight underlying Bioinformatics is that biologically significant poly-
mers such as proteins and DNA can be abstracted into sequences thereby allowing the
use of approximate string matching (AM) to determine, e.g., how a newly identified
protein is related to those previously analyzed, and how it has diverged through muta-
tion. The motivation for achieving the highest possible performance for biological AM
is motivated by at least two factors. First, biological databases are increasing in size
at exponential rates far outstripping Moore’s Law [Cochrane et al. 2011; Kahn 2011].
And second, AM is being used as a “subroutine” in ever more complex applications
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such as multiple sequence alignment, genomics, and phylogenetics; in a single run of
any one of these, BLAST may be “called” thousands to billions of times.

The most common approach to biological AM is based on Karlin-Altschul statistics
[Karlin and Altschul 1990] which allows for insertions and deletions and scoring based
on independent character replacement with a scoring matrix. Optimal methods are
based on dynamic programming (DP), including the Smith-Waterman algorithm (SW),
and have complexity O(MN) where M is the size of the query and N the size of the
database. Heuristics such as those used by the BLAST algorithm [Altschul et al. 1990]
generally speed AM; these heuristics only rarely cause signficant matches to be missed
(see, e.g., [Lam et al. 2008]), although for some applications it is exactly these distant
matches that are critical. BLAST acceleration has therefore received much attention
with FPGAs being successfully applied. Commercial solutions are currently available
from TimeLogic (now part of Active Motif) [Time Logic Corp. 2013] and from Con-
vey [Convey Computer Corporation 2013b]. There have also been several academic
efforts [Herbordt et al. 2007; Jacob et al. 2008; Lavenier et al. 2006; Muriki et al. 2005;
Park et al. 2009; Sotiriades and Dollas 2007; Xia et al. 2008]. GPU implementations
described in published studies [Ling and Benkrid 2010; Liu et al. 2011; Vouzis and
Sahinidis 2011] have so far achieved performance up to about 3x times that of a mul-
ticore CPU.

Of the many versions of BLAST, NCBI BLAST [NCBI 2013] has become a de facto
standard. All BLASTs runs through several phases (overview below) and return some
number of matches with respect to a statistical measure of likely significance. NCBI
BLAST itself is a complex highly-optimized system, consisting of tens of thousands of
lines of code and a large number of heuristics beyond those of the original algorithm.
Creating an accelerated version that both matches the NCBI BLAST output and deliv-
ers significant acceleration is therefore challenging. A now commonly used method is
prefiltering [Afratis et al. 2008; Herbordt et al. 2006]. The idea is to quickly reduce the
size of the database to a small fraction, and then use the original NCBI BLAST code
to process the query. Agreement is achieved by guaranteeing that the filter output is
strictly more sensitive than the original code.

In CAAD BLAST (as we call our system) we combine three filter stages, correspond-
ing to the three major phases of BLAST, with the original NCBI BLAST code. As these
filters are pipelined there is a significant load balancing problem since the work per
filter drops by 5× to 10× at both interfaces. Other challenges addressed are the de-
sign and implementation of the filters themselves and the logic necessary to couple
them. The result is a highly complex system that requires coordination of dozens of
I/O ports, a similar number of internal pipes, and synchronization and orchestration
of all these streams. Adding to the difficulty are the heterogeneity of the data streams,
the resulting long control paths, and the need for high chip utilization and operating
frequency.

The primary result is a transparent FPGA-accelerated NCBI BLASTP, fully tested
and validated on the Convey HC-1EX, that achieves both output identical to the orig-
inal and a factor of 5× to 11× improvement in performance over a multithread opti-
mized reference code running on a similar generation CPU. The FPGA implementation
now takes just a few seconds and is limited by the remaining serial code and the time
it takes to stream the database through the device.

The rest of this paper is organized as follows. In the next Section we give background
in Biological AM, NCBI BLAST, and prospective target architectures. There follows an
overview of CAAD BLAST and details of the Two-Hit Filter implementation. After
that we describe how the filters are coupled and give details of the FPGA implemen-
tation and optimization. We conclude with system integration issues, results, and a
discussion.
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2. BACKGROUND

2.1. Basics of AM for Biological Sequences

An alignment of two sequences is a one-to-one correspondence between their char-
acters, without reordering, but with the possibility of some number of insertions or
deletions. In biological AM, an alignment score between two (sub)sequences is com-
puted by combining the independently scored character matches, which themselves
are determined a priori by biological significance. For large databases heuristic meth-
ods such as BLAST are popular. BLAST is based on an observation about the typical
distribution of high-scoring character matches in the DP alignment tableau: there are
relatively few overall, and only a small fraction are promising. This promising fraction
is often recognizable as proximate line segments along the main diagonal.

The original BLAST algorithm [Altschul et al. 1990] has three phases: identifying
short sequences (words) with high match scores, extending those matches, and merg-
ing proximate extensions. In the first phase (seeding), the word size W is typically 3 for
BLASTP and significance is determined using a scoring matrix and threshold score T
(default 11). Nowadays [Korf et al. 2003; NCBI 2013], the preferred method of seeding
looks for diagonals (ungapped alignments) with two hits within a certain distance A
(default 40). In the second phase (extension), seeds are extended in both directions to
form high-scoring segment pairs (HSPs). Extension stops when it ceases to be promis-
ing, i.e., when the drop off from the last maximum score exceeds a threshold X. An
Evalue (expected value) is computed from the raw alignment score and other parame-
ters. Database sequences with a sufficiently good Evalue, as selected by default or by
user, are reported. The third phase is nowadays often replaced by a gapped extension
based on DP – the O(NM) complexity is not onerous when the database size N is a
small fraction of the original.

2.2. NCBI BLAST Overview

NCBI BLAST adds a number of phases and options, which we sketch here. There are
two options, ungapped and gapped. Ungapped alignment proceeds initially as just pre-
sented. In gapped alignment, extension and evaluation are triggered only when un-
gapped alignment satisfies the ungapped threshold. In gapped extension, the exten-
sion drop-off threshold X also depends on gap-opening and gap-extension costs.

NCBI BLAST begins the evaluation phase by using an empirically determined cut-
off score to keep only statistically significant HSPs. To improve sensitivity, a lower
score is tolerated if there are multiple HSPs in a particular database sequence; the
more HSPs, the lower the threshold. These multiple HSP scores are combined using
Poisson and sum-of-scores methods for ungapped and gapped alignments, respectively.
Finally, HSPs are organized into consistent groups and evaluated with the final thresh-
old Evalue.

2.3. Target Systems

Our target system is the Convey HC-1ex (see Figure 1 and [Bakos 2010; Convey Com-
puter Corporation 2013a]), a hybrid processor with a single four-core Intel CPU (Xeon
L5408 2.13GHz) and four Xilinx FPGAs (Virtex-6 XC6VLX760 with user logic clocked
at 125MHz). We also support an Altera-based system from Gidel. There is a total of
24GB host and coprocessor memory and the standard Intel I/O chipset; the system
runs 64-bit Linux. Host and coprocessors share a virtual address space.

Convey refers to the FPGAs as Application Engines (AEs). The coprocessor also con-
sists of interface logic, called the Application Engine Hub (AEH), which connects the
coprocessors to host CPU. It is responsible for fetching and decoding instructions, exe-
cuting scalar instructions, and routing host memory requests to coprocessor memories.
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Fig. 1. Block diagram of the Convey HC-1ex.

The coprocessor system has 8 memory controllers that connect the AEH and the AEs to
coprocessor memory modules through a full crossbar network. The memory controller
subsystem can support up to 16 DDR2 memory channels. The memory subsystem can
collectively support up to 8K parallel (independent) requests and 80GB/s total band-
width.

3. CAAD BLASTP OVERVIEW

The design goal of CAAD BLAST is to use the FPGA accelerators to successively reduce
the database (DB) without removing any matches that would be returned by NCBI
BLAST. Figure 2 shows the overall structure. In the precompute module, the host uses
logic from the NCBI code to compute the various parameters needed to determine
cutoffs and Evalues whose values are necessary to guarantee sensitivity and correct
scoring. Three FPGA-accelerated filters replace analogous BLAST functions: The Two-
Hit Filter (2HF) replaces a similar BLAST seeding routine; the Exhaustive Ungapped
Alignment Filter (EUAF) replaces ungapped extension; and the Exhaustive Gapped
Alignment Filter (SW for Smith-Waterman) replaces gapped extension.

Operation is as follows. After the parameters are determined, the next step is to
filter the DB with the 2HF and generate a set of hints in the form of a bit vector. These,
together with the original DB are then sent to the EUAF and a reduced database DB’
is generated. This time only pointers to the relevant sequences are retained. SW is
run on DB’ to generate a further reduced database DB”. Finally, DB” is formatted and
sent to NCBI BLAST, together with the original parameters and query. The final run
through the original NCBI BLAST code ensures that there are no false positives; this
includes removing statistically significant sequences generated by CAAD BLAST but
not by NCBI BLAST. So that the Evalues match those that would be computed by the
original code, we pass the original search space information.

Integration and correctness are described in detail elsewhere [Park et al. 2009].
Briefly, the overall logic is that each filter is either identical to (2HF) or more sensitive
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Fig. 2. High-level design of CAAD BLAST.

than its NCBI BLAST counterpart (EUAF and SW). In the latter case, the internal pa-
rameters in CAAD BLAST are computed dynamically from the NCBI BLAST analogs
with an empirically derived function; please see Section 7 for details.

The filters themselves all work on the same principle. Each holds a copy of the query
as the database streams through it. The filter size is related to the query size. Gen-
erally the filter uses only a fraction of the chip area and so can be replicated some
number of times. If the query is very large, then the filter is folded: it still operates
correctly, but with a slowdown proportional to the number of folds. Each filter thus
runs in O(N), assuming that the query sequence is a small multiple of what can fit on
a current FPGA, a characteristic of almost all proteins. Large protein databases such

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TBD, Article 1, Publication date: 2014.



1:6 A. Mahran and M.C. Herbordt

s

database position dx

a a aa

ry
 p

o
s

it
io

n
s ax-k ax-j ax-i

qi

qj

i
j

k

hits from 

previous db 

positions

ax-m+2

q
u

e

Counter Frame

qk

…
…Bit Vector

Counters

two-hit

window

size = A

Fig. 3. The Two-Hit filter is processing the xth 3-mer in the database sequence. There are three hits. The
hit on alignment ax−j is within A of a previous hit, and so is part of a two-hit event. This is determined by
comparison with the corresponding Counter value; its bit in the Bit Vector will be set.

as NR currently have over 5GB of data: off-the-shelf FPGA plug-in boards of the type
used for computation can hold this in local memory and stream it through the FPGA
in a few seconds.

Performance benefit is derived from two sources. The first is that during filtering the
DB is processed in a stream with one data element completed per cycle. The second is
that most FPGAs can support the processing of multiple streams in parallel. In CAAD
BLAST, as is common with accelerated BLASTs, the DB is partitioned to match the
number of streams. Since the proteins in the DB are independent, the method of the
partition itself is arbitrary: the only constraints are similarity of size and not splitting
proteins across partitions.

4. TWO-HIT FILTER

The design of the 2HF is generally similar to that used by Mercury BLAST in the seed-
ing pass [Jacob et al. 2008; Krishnamurthy et al. 2007]. There are several algorithmic
and implementation differences, however, which have two significant consequences:

— The 2HF does not use heuristics and so has exact agreement with the two-hit seeding
algorithm used in NCBI BLAST.

— The 2HF is compact. For our reference design, each filter uses no more than 1% of
any chip resource for average sized queries.

In the rest of this section we present the algorithm, some implementation details,
and experimental results.

4.1. Algorithm Overview

Figure 3 shows the database on the horizontal axis and the query on the vertical axis.
Positions of each 3-mer are referred to as dx for the database and qy for the query.
Each of the N − M − 2 possible ungapped alignments between the database and the
query is represented by a diagonal; we refer to each diagonal (alignment) as ai. The
output of the 2HF is a bit vector where each bit bi corresponds to an alignment ai
and tells whether or not ai has passed the filter. That is, an alignment ai passes the
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filter if anywhere on the diagonal there are two hits within the distance threshold A
(typically 40). If yes, then bi is set, otherwise it remains cleared. For each alignment,
the corresponding counter in the Counter Frame holds the position of its most recent
hit, if any.

The primary data structure is the Query 3-mer Position Table shown in Figure 4.
The Position Table stores, for each possible 3-mer, say WWW, the positions of all of the
3-mers in the query that exceed the match threshold (typically 11) for that 3-mer. The
Position Table has two parts, the primary and the secondary tables. The primary table
has an entry for each of the 15625 (25x25x25) possible 3-mers for a typical 25 character
alphabet. For any 3-mer, if there are 3 or fewer occurrences in the query, then its
primary table entry holds all of those positions. If there are more than 3 occurrences,
then the primary table entry contains the number of occurrences and the address in
the secondary table where entries for those positions begin. A status bit indicates the
record type.

We now give an overview of the operation of the 2HF. On iteration x, database 3-mer
dx indexes the Position Table. The query positions where matches occur, if any, are
retrieved. Figure 3 shows three hits, at query positions qi, qj , and qk. These correspond,
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respectively to the ith position on alignment ax−i, the jth position on alignment ax−j ,
and the kth position on alignment ax−k.

This hit information is then used to determine whether another hit has occurred
on any of these diagonals within the previous A positions (as shown in Figure 3 for
alignment ax−j). The method is to use a circular list (or frame) of M − 2 counters, one
for each alignment where there could be match on the current iteration. For example,
for a hit in alignment ax−j , the counter (M−3−j) for that alignment is read, compared
with j, and updated. If the difference between j and the previous value of the counter
is less than A, then this indicates a two-hit hit event for alignment ax−j and bit bx−j

in the bit vector is set. The counters for ax−k and ax−i are also updated.
Critical for keeping the filter logic compact is for the logic required to track each

diagonal to be small. In particular, for the 2HF only a single counter plus comparison
and update logic is required. That is, only the position of the last hit needs to be saved.
This may be non-obvious since on any iteration, any of the last M − 2 alignments can
be affected. For each alignment, however, advancement is monotonic: a hit on a later
iteration will never be further back on the diagonal than the previous one.

4.2. Implementation Details

Overall. The overall structure of the 2HF is given in Figure 5. The goal is to process
the database at streaming rate. To support this, the 2HF processes three hits at a
time. Both primary and secondary tables are structured to enable the fetch of three
query positions per cycle. If the secondary table must be accessed, then streaming rate
cannot be maintained and the database stream may need to be throttled. Much of this
is prevented, however, by using a judiciously selected FIFO size for the input stream
and adjusting the stream rate accordingly. Most performance loss occurs when there
are a large number of occurrences O of a 3-mer in the query. The number of cycles per
database position, given that there are O occurrences of the 3-mer at that position, is
roughly equal to max(1,⌈O/3⌉).

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TBD, Article 1, Publication date: 2014.
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Query 3-mer Position Table. The primary table has 15625 entries. Each entry has 3
query positions plus 1 status bit. For queries of size less than 1024, this information fits
in a single 32-bit word. The secondary table is negligible for small queries, but grows
to have size similar to the primary table as query size approaches 2K. The secondary
table is again organized to have 3 positions per entry. The FPGA in the reference
design has 864 M9K (256x36b) BRAMs and 48 M144K (4Kx32b) BRAMs each of which
is dual ported. These support 30-40 Position Tables for small queries and 16 for queries
of size 2K.

Query Position Look-Up Unit. Input: 3-mer from the current head of the database
stream.
Outputs: Positions qm of that 3-mer in the query (three at a time).
Operation: Translates the 3-mer into the entry position. Fetches corresponding posi-
tions, if any. If secondary table look-up is required, fetches 3-mers from there until
done.

Hit-Generator. Inputs: The current position di of the database stream and the query
positions qm for up to three hits at a time from the Query Position Fetch Unit.
Outputs: For each hit, a “hit packet” containing the alignment ai and the position pi
on that alignment.
Operation: The Hit Generator performs the necessary translation.

Update Units. Inputs: Hit information (ai,pi) for up to three hits at a time.
Outputs: Update of the frame counters corresponding to the ai with the positions of
the new hits pi. Update the bit vector.
Operation: Determine for each ai whether two hits within A positions have occurred.
This requires reading, comparing, and updating the frame counters.

Routing Logic. To support three parallel updates, the bit vector is interleaved (mod
3). Since multiple hits can be routed to any hit generator on any cycle, hit packets may
need to be buffered.

Note that while we have used fixed numbers in the presentation, e.g., 3-mer rather
than w-mer and an alphabet of 25 characters, the design supports all standard param-
eter choices.

4.3. Design Decisions and Experimental Results

For the 2HF, performance depends on the number of filters which, in turn, depends on
the FPGA resources needed for each filter instance. The logic required is trivial, con-
sisting of less than 1% of that available on the reference FPGA. The on-chip memory
required, on the other hand, is the critical resource. Table I shows the number of 2HFs
that can be instantiated on an Altera Stratix-III 260E for a selection of sequences from
the NR database. Results scale to other FPGAs.

Table I. Various 2HF measures for selected sequences from the NR database.

Query # of Two- # of Hits # of excess cycles percent
Size Hit Filters per DB char. per DB char. removed (0s)

81 38 0.064 0.0002 99.7%
217 35 0.206 0.0100 99.2%
490 28 0.567 0.0524 98.4%
838 25 0.891 0.2203 98.3%

1204 21 1.244 0.3062 98.0%
2205 14 2.570 0.8790 97.3%

The primary design decision therefore has to do with the structure of the Position
Table, in particular the number of positions per entry in the primary table. For most
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queries (size < 2K) this number (3) falls out immediately from the convenience of
packing that number of 11-bit addresses into a single 36-bit word. For larger queries,
different configurations are possible, e.g., packing two addresses into one 36-bit word
or five into a 72-bit word. The optimization is to trade off table size for number of filters.
That is, by having more entries in the primary table, some accesses to the secondary
table can be avoided. But the larger table size allows fewer filters to be fit on the FPGA
and so fewer database streams to be processed in parallel.

The third and fourth columns in Table I give an indication of this trade off. The
number of hits per database character (3-mer) is independent of the structure of the
Position Table. For queries up to size 2K, the expected number of hits per position is
only slightly more than 1; having three position per entry allows the primary table
to account for most 3-mers. For larger query sizes, we have only two addresses and
the secondary table must be accessed frequently. The fourth column illustrates this: it
shows the number of excess cycles per database character; i.e., the number of extra cy-
cles needed due to accessing the secondary table. For small queries, there are virtually
no excess cycles, but for the 2205 query, nearly half the cycles are due to secondary
table accesses.

The effectiveness of the 2HF is shown in the rightmost column of Table I. For all but
the largest queries, more than 97% of ungapped alignments are tagged for skipping.

5. COUPLING THE FILTERS

The EUAF is based on the TreeBLAST scheme described in [Herbordt et al. 2007]. The
issue described in this Section is the coupling of the 2HF and the EUAF. The goal is
for the EUAF to be able to skip alignments tagged with a 0 by the 2HF. The problem is
that the EUAF is already operating at streaming rate. The solution uses two essential
properties of the EUAF: it can be folded to trade off performance for area and it can
be replicated to process DB sequences in parallel. In an EUAF-only design one or the
other might be used for large and small sequences, respectively [Park et al. 2009]. Here
it turns out that it is advantageous to use both simultaneously.

Ideal Skipping.. The idea behind ideal skipping is, on every cycle, to look ahead
in the bit vector to find the next “one” (corresponding to the next alignment to be
examined) and then slide the database the correct number of positions. With ideal
skipping, the EUAF takes only the number of cycles equal to the number of ones in
the bit vector. The additional hardware required, however, is complex. For both the bit
vector and the database stream, they must be able, on each cycle, to slide any number
of positions up to the maximum number supported. This, in turn, requires that each
register in the stream buffer have a multiplexor (MUX) that is large enough for every
possible number of positions that could be skipped. It also requires complex routing
logic. As a result, support for even a small range of choices makes the logic for general
skipping more expensive than the original EUA filter.

Constant Skipping.. A better solution is to limit the number of positions that can be
skipped to a single number S that is determined experimentally. That is, the database
stream skips either S positions or none (and advances either S positions or 1). If there
is a sequence of S or more 0s, then S skipping is used, otherwise it is not. This scheme
greatly simplifies the MUX logic, but has two drawbacks. The first is that only se-
quences of 0s of length S or greater can be taken advantage of. All shorter sequences
of 0s are useless. This indicates a small S so that most sequences of 0s can be used.
The second is that the maximum skip is also limited indicating a large S. The optimal
S is query dependent but generally follows the query length. A larger S works better
with smaller queries as more of their alignments are filtered.

ACM Transactions on Reconfigurable Technology and Systems, Vol. TBD, No. TBD, Article 1, Publication date: 2014.



NCBI BLASTP on HPRC Systems – PREPRINT 1:11

Folded Skipping.. Folded skipping is a substantial improvement. Recall that trees
can be folded with the addition of a trivial amount of logic. Also that a tree that is
folded to 1/F its original size requires only 1/F the logic of the original, but requires F
cycles per alignment rather than 1.

The idea behind folded skipping is to process unfiltered alignments in F cycles (as
before), but to process the others in only 1 cycle. The control for this scheme is thus
extremely simple: there is no need for complex look-ahead or routing logic. Rather, if
the bit-vector value of an alignment is a 0, simply shift the database stream; if the
value is a 1, then continue processing the alignment for a delay of another F −1 cycles.
The hardware cost is a slight increase in control complexity; no other additional logic
is needed.

The performance benefit of folded skipping can be demonstrated as follows. Assume
that the bit vector for a size N database has O ones. Without skipping, an F -folded
tree requires roughly F ×N cycles to process the database. With skipping, the number
of cycles is N +O× (F − 1). If F is 16 and N/O is 20, then the speed-up is greater than
9×. This speed-up is independent of the distribution of 1s.

Variable Folded Skipping.. The drawback of folded skipping is that while 0s are pro-
cessed F× as fast as 1s, they still take a cycle per character. Since the fraction of 0s
(Z) is generally 98%-99% of the stream, processing these null alignments still takes

Z
Z+(1−Z)×F

of the cycles, or 75% to 85% for almost all query sequences.

Variable folded skipping works as follows. During the F clock cycles required by
the folded skipping mechanism when TreeBLAST is processing an alignment, a seed
lookup module continues streaming the database until it finds the next unfiltered di-
agonal. The seed lookup module finds the next unfiltered alignment by implementing
the constant skip mechanism with S=16. That is, each clock cycle it either skips one
character or 16 consecutive characters until it finds the next unfiltered alignment.
With F = 16, 16 × 16 = 256 filtered diagonals (0s) can be skipped. The performance
gain is dramatic: only a small number of cycles are spent processing 0s, improving
performance of the EUAF by more than 4×. Note that variable folded skipping ad-
dresses another significant issue with the EUAF filter: the need to process artifactual
null alignments that are inserted as padding during start-up and tear-down of each
database sequence.

6. FPGA IMPLEMENTATION

6.1. Pipelining the Filters

In early versions of this work we coupled the filters by running them in separate
phases and configuring the FPGA to a single filter during any phase. Intermediate re-
sults such as the bit vector generated by the 2HF were stored in off-chip memory. This
approach achieves high performance by enabling a large number of database streams
to be processed in parallel (30 or more for a Stratix-III), but also requires reconfig-
uration between phases. Both of these characteristics, high number of streams and
reconfiguration, have become problematic with new generation devices and system
configurations. First, in CAAD BLASTP the number of streams supported increases
proportionally with FPGA feature count; the number of streams necessary to fully
utilize the resources of Virtex-6/Stratix-IV generation FPGAs may now exceed the
bandwidth typically provided to off-chip memory. And second, reconfiguration times
continue to grow longer in parallel with FPGA size. When coupled with improved fil-
ter performance, we find that reconfiguration time now dominates the execution time.
Our approach now is to pipeline the three filters. This is a significant load balancing
problem since the work per filter drops by 5×−10× at both of the interfaces, but must
be achieved with little resource overhead.
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Fig. 6. Block diagram of CAAD BLAST pipelined filters.

Figure 6 shows the overall scheme: there are number of a single filter banks. In each
bank, parallel database streams feed the 2HFs, which in turn send the 0/1 stream to
an EUAF. A copy of the database is streamed to the EUAF where it is coupled with
the 0/1 stream. This structure is then replicated some number of times depending on
the size of the query and of the FPGA. In the final stage, the highest scoring database
sequences from all of the banks are processed with a single SW module.

Speed matching between 2HF and EUAF stages is accomplished as follows. The
EUAF processes data (a single sequence) from a single 2HF at a time. Processed se-
quences from the other 2HFs in the bank are buffered. Through the mechanism de-
scribed in the previous Subsection, the EUAF is capable of consuming 3 to 5 characters
per cycle. That is, data from buffered filtered sequences are transferred to the EUAF
F characters at a time (currently F = 16). After processing the data of one 2HF, the
EUAF starts working on the next sequence from the next 2HF. In order to load balance,
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Query size

Fraction 1s

Ratio of two!hit 

to EUA filters

EUA Filter:

Percent idle cycles

4 13

5 1.5

6 0

2 14

3 0.14

2 13

3 0.06

2 12

3 0.03

256

0.008

512

0.016

1024

0.020

2048

0.027

Fig. 7. Balance between two-hit and EUA filters. The number of 1s generated by the two-hit filter is shown
together with the query size. Optimal ratio for each query size range is shown in bold.

the database sequences are sorted based by length and multiplexed among multiple
2HFs. As a result the time required to process successive sequences is nearly equal.

Coupling with the SW filter is accomplished as follows. For each database sequence,
the EUAF compares the maximum score generated with a constant threshold. If this
score is larger than the threshold, the EUAF writes the address of the sequence to a
FIFO. The SW unit reads these addresses, streams the subject sequences, and calcu-
lates the maximum scores.

6.2. Replicating and Balancing the Components

We find the optimal number 2HFs per EUAF by measuring the fraction idle cycles in
the EUAF as a function of number of 2HFs and query size. We add 2HFs to each filter
bank until almost saturated. The results are shown in Figure 7: 3 to 5 2HFs per EUAF
is optimal.

The second column of Figure 8 shows the reduction in database size following the
EUAF: This is at least 97% for most query sequences. The SW module can therefore be
compacted substantially through folding and still obtain adequate performance. The
optimally folded SW consumes characters of the reduced database db at the same rate
that characters of the original database db are consumed by the two-hit filters. The raw
results are shown in Figure 8. When integrated into the overall system, the number of
folds is either 8 or 16 (see Figure 9).

From the preceding discussion we see that a speed matched bank of filters contains
from 3 to 5 two-hit filters and 1 EUAF folded to effect 16× replication. A single SW
module is shared by all of the filter banks and folded as just described. The number of
filter banks themselves that can fit on an FPGA is a function of query size and FPGA
resources. Figure 9 shows the results for the Xilinx Virtex-6 XC6VLX7601. Depending
on query size, 5, 4, 3, or 1 filter banks can fit for a total of 25, 16, 9, or 3 input streams.
Queries of size greater than 2K are run on the host.

6.3. Optimization

The initial synthesis returned an unacceptably poor operating frequency, which was
not ameliorated by reducing the size of the design until only a small fraction of the
potential chip capacity was in use. We have solved this problem through two mecha-
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Query size
Reduction

db to db'

Number of Folds 

for SW Filter

(Virtex 6)

Number of Folds 

for SW Filter

(Stratix IV)

256 0.01 7 4

512 0.03 4 2

1024 0.05 4 2

2048 0.07 5 2

Fig. 8. Shown is the average fraction reduction of the database after the EUA filter (and before the SW
filter) and the resulting optimal number of folds in the SW filter.

Query Size Range

# of Filter Banks

Total 2!Hit Streams

Logic Utilization

Component LUTs BRAMs/FIFOs

Qs<256

Reps=5

2hSt=25

5 2HFs 9050 124

1 EUAF (16 Folded) 5365 8

1 SW (8 Folded) 7179 27

Total (5 Reps) 79254 687

Qs<512

Reps=4

2hSt=16

4 2HFs 7355 124

1 EUAF (16 Folded) 8747 16

1 SW (8 Folded) 14223 43

Total (4 Reps) 78631 603

Qs<1024

Reps=3

2hSt=9

3 2HFs 6115 113

1 EUA (16 Folded) 15384 32

1 SW (8 Folded) 28215 75

Total (3 Reps) 92712 510

Qs<2048

Reps=1

2hSt=3

3 2HFs 6180 119

1 EUA (16 Folded) 30075 64

1 SW (8 Folded) 56246 139

Total (1 Rep) 92501 322

Total Available (Virtex VI) 474240 720

Fig. 9. Per component resource utilization for the Xilinx Virtex-6 and the number of replications for the
bank configurations shown for each query size.
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Config. (4x8B)
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S-W sequences (1x1B) Filtered DB, indexes only (1x8B)

EUA

Sequence (5x16B)

EUA Offset (5x8B) 

(once per seq)

Fig. 10. Accelerated BLAST external interfaces for query size < 256. Number of streams and width of each
type are shown.

nisms: by floor planning modules with respect to BRAMs and by handling fanout and
length of the communication channels.

6.3.1. RTL-Level Logic Optimizations. There are two problems that need to be dealt with
through RTL-level logic: mapping function I/O to physical I/O and reducing path delay.
These are both handled primarily through the creation of three modular communica-
tion interfaces: Simple FIFO, Jump FIFO, and a direct register-based interface. Using
these we can place each core anywhere on the FPGA and keep its communication off of
the critical path by simply specifying an appropriate number of pipeline stages. Other
optimizations include replicating registers to reduce fanout and eliminating the reset
circuit as much as possible.

The Simple FIFO interface serves as our flexible general purpose inter-module com-
munication mechanism and is used especially to foster module independence and
avoid the creation of long paths. Prefetching enables correctness in the presence of
back-pressure signals. Figure 10 shows the external I/O interfaces for the Accelerated
BLAST configuration that supports sequences < 256 characters. Note that there are 26
x 1B streams and 5 x 16B streams operating continuously and a number of others that
are used for initialization, data offload, and synchronization. These must be mapped
to the physical I/O provided by the Convey HC-1ex: the 16 x 4B memory channels that
can operate independently at over 300MHz. The mechanism we use is a Jump FIFO
interface, a generalization of the Simple FIFO in that it communicates with external
memory at a specified address. The Jump FIFOs are mapped to the Convey physical
memory interface through the Convey memory crossbar module which routes memory
transactions to the correct memory interface.
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Query 

Neighborhood Bit Vector 

2!hit filter 0
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2!hit filter 1

Logic for 2! hit filters 0&1 

Fig. 11. 2HF after floor planning. Blue cells indicate logic and other colors represent BRAMs.

6.3.2. Floor Planning. We apply floor planning in two layers. The first is internally to
the two-hit filters, the second is for the higher level modules consisting of the two-
hit filters that feed individual EUA filters. We found it sufficient to map BRAMs to
particular modules and let the synthesis tools continue handling the logic placement.

While the two-hit filters each require only a small amount of area, their logic is
complex and, more significantly, does not lend itself to pipelining. That is, pipelining
stages would increase the time required to process each character, violating the basic
design contraint: flowing the database through the FPGA at streaming rate of one
character per cycle. The most critical path is the lookup of database WMERs in the
query (see Figure 4). In the “fast” case there are three or fewer matches in the query.
In the “slow” case, there are more and a secondary table must be accessed [Mahram
and Herbordt 2010]. Each fetched entry must be processed in one clock cycle meaning
that a newly computed address needs to be issued to the position list. As a result, the
addressing circuit contains a combinational path that starts with the output of the
position list and continues to the address input of the same position list.

The FPGA consists of a pool of CLBs and Block RAMS as shown in Figure 11. We
number the BRAM columns from the left from 0 to 11. Of these, 4-7 are used by the
interface logic and the API leaving 0-3 and 8-11. To floor plan the two-hit filters, we
place the BRAMs for the position lists in a square, minimizing the path length as
shown in Figure 11. At the next level, the EUA filter BRAMs are placed as close as
possible to those of the two-hit filter (see Figure 12).
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Fig. 12. Module after floor planning.
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Table II. Percentage of the orginal 15.6M se-
quences of the NR database remaining after the
EUA and SW filters, respectively.

Test DB’ reduction % DB” reduction %
1 0.13 0.035
2 2.15 0.034
3 0.02 0.014
4 1.28 0.034

Table III. Various tests of reference and accelerated BLAST for queries up to 256 characters. “FPGA Only” refers to the accelerated part
of the computation, i.e., the time to execute the filters. All times are in seconds.

Test Ref. 1 FPGA 4 FPGAs Post-filter Post-filter 1 FPGA 4 FPGAs 1 FPGA 4 FPGAs acc %
Time Filter Only Filter Only Search Traceback Total Total Speedup Speedup

1 46.5 7.1 1.9 1.5 1.9 10.5 5.3 4.4x 8.8x 98.4%
2 45.6 10.5 2.9 1.5 1.7 13.7 6.1 3.2x 7.5x 100%
3 48.9 7.3 2.0 1.2 1.3 9.8 4.5 5.0x 10.9x 96.4%
4 47.0 8.1 2.2 1.4 0.4 9.9 4.0 4.7x 11.7x 100%

7. INTEGRATION AND RESULTS

For these tests we use the NR protein database with 15.4M sequences and 5.4G char-
acters. The hardware configuration is as described in Section 2.3. The reference con-
figuration is the Convey processor without the AEs. We chose this reference processor
because it is of the same technical generation as the FPGAs in the system. All the ref-
erence and accelerated tests were done with the latest NCBI BLAST (BLAST+ 2.2.28)
with the -num threads 4 option; this forces maximum useful parallelism for both the
reference code and the CPU part of the accelerated code. In NCBI BLAST, the trace-
back code which generates the actual alignments is currently not threaded and so is
serial in both reference and accelerated tests.

NCBI BLAST provides a wide range of user options that vary such quantities as
internal thresholds and the quantity of results provided. The internal thresholds con-
trol sensitivity and thus the amount of work to be done. Varying them has compa-
rable effect on both reference and accelerated execution. CAAD BLAST and NCBI
BLAST are not identical, however: CAAD BLAST executes exhaustive ungapped and
gapped alignments while NCBI BLAST executes gapped and ungapped extensions
with heuristics. In order to guarantee no false negatives it may therefore be neces-
sary to increase the sensitivity (lower the threshold) in CAAD BLAST. Note that as
long as all false negatives are eliminated this does not change the overall output: the
final run of NCBI BLAST still uses the user-specified thresholds and eliminates false
positives.1 In contrast to the sensitiviy parameters, those for output affect primarily
the CPU-only part of the accelerated code. The default is to return the top 500 se-
quences of any possible statistical significance. Given that the traceback code is serial
(and Amdahl’s Law), permissive output has a disproportionate detrimental effect on
the performance of CAAD BLAST.

We run four tests varying the following NCBI BLAST parameters: ungapped exten-
sion threshold (for the CAAD BLAST EUAF threshold), Evalue, and number of match
sequences returned. We have also experimented with the gapped extension threshold
(for CAAD BLAST SW threshold): as expected, no increase in sensitivity is required
here so CAAD BLAST always uses this directly. Results are summarized in Tables II
and III. We first note the general effectiveness of the filtering mechanisms: depending
on thresholds, the EUAF reduces the original database from 97% to 99.98% while SW
reduces it by from 99.97% to 99.99%.

1These are actually true positives, just not found by NCBI BLAST.
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Table IV. Tests 2 and 4 (see text) of reference and accelerated BLAST for all queries. “FPGA Only” refers to the accelerated part of the
computation, i.e., the time to execute the filters. All times are in seconds.

Test Ref. 1 FPGA 4 FPGAs Post-filter Post-filter 1 FPGA 4 FPGAs 1 FPGA 4 FPGAs acc %
Time Filter Only Filter Only Search Traceback Total Total Speedup Speedup

2 78.5 12.6 3.4 2.4 0.99 16.0 6.8 4.9x 11.5x 99.99
4 68.2 11.2 3.0 2.2 0.80 14.2 6.0 4.8x 11.4x 100

Test 1.. Reference and CAAD BLAST use default parameters Evalue = 10,
max target seqs = 500). The EUAF threshold is set to the ungapped extension thresh-
old of NCBI BLAST. In this baseline test we note that there are some false negatives,
although none ever appear in the top 100 of returned sequences.

Test 2.. For CAAD BLAST the EUAF threshold is reduced by 12. This selection is
based on the analysis of the EUAF and SW scores of the missing sequences compared
to their corresponding threshold. Since the SW threshold is not changed the reduced
databases sizes (DB”) are not significantly changed. As a result, the post-filter timing
remains the same. Reducing the EUAF threshold increases the FPGA streaming time
slightly. The accuracy, however, is improved to 100% (no misses) but with a reduction
in performance.

Test 3.. The Evalue is reduced from the default value of 10 to 1.0E-5 such that the
returned sequences are more statistically meaningful. An Evalue of 10 is generally
considered too permissive for this size database. This test assesses the effect of the
Evalue on the performance and accuracy. As in Test 1, the thresholds used by CAAD
BLAST are those calculated by NCBI BLAST during ungapped and gapped extension.
The reduction in Evalue has little effect on the FPGA streaming time. The post-FPGA
processing time is reduced, however, producing slightly better speedup. The number of
false negatives, however, increases to higher than the original.

Test 4.. The EUA threshold is reduced by 20%. Also, both reference and CAAD
BLAST are tested with -max target seqs 50 which forces the tool to report the top
50 sequences only. The selection of 20% reduction as the EUAF threshold, as opposed
to a constant reduction of 12 (in Test 2), is based on the analysis of the scores of the
missing sequences in Test 3. Since in Test 3 we used a more restrictive Evalue, the de-
fault thresholds are increased. The comparison of the scores of the missing sequences
and the default thresholds in the other tests shows that with a 20% reduction in EUA
threshold we can achieve 100% agreement. Overall this use case shows optimal per-
formance and accuracy results.

Table IV shows results from Tests 2 and 4 for a set of 600 queries selected randomly
from NR. We note that the end-to-end speed-up of CAAD BLAST is around 5x when
using a single FPGA and over 11x when using 4 FPGAs. Included in the time is over-
head in loading the sequence and in computing and loading all parameters and tables.
As is usual when reporting BLASTP results we assume that the database has already
been formatted and loaded. Also, as is usual in FPGA studies, we do not include config-
uration time. In the case of CAAD BLAST this may be a drawback since configurations
are optimized for ranges of query sizes.

8. DISCUSSION

This work builds on substantial previous efforts, in the overall design, the filters them-
selves, and in integration with both hardware (the FPGA-based accelerators) and soft-
ware (NCBI BLAST). As this project has evolved and matured, so has the complexity of
the design, especially in coupling the stages logically and for load balancing, which in
turn required applying more sophisticated methods of design, optimization, and inte-
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gration. The result is what we believe to be the fastest BLASTP in terms of per socket
acceleration.

The results themselves are necessarily a snapshot of a particular level of technology
which has already been surpassed for both CPU and FPGA. We have found that CPU-
only NCBI BLASTP continues to scale well as cores are added (8 cores and 8 threads
tested so far). Since BLAST in general is trivially parallelizable over the number of
streams, we also expect CAAD BLAST to fully scale with emerging FPGA technologies,
assuming that no drastic changes are made in resource balance.
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