
Binarized ImageNet Inference in 29µs
Tong Geng*†, Ang Li*, Tianqi Wang†, Shuaiwen Leon Song*, Martin Herbordt†

*Pacific Northwest National Laboratory; †Boston University

1 INTRODUCTION
The past decade has witnessed the emergence of Deep Neural Net-
works (DNNs) and their widespread adoption in, not only image
processing and speech recognition, but also supercomputing scenar-
ios such as extreme big-data processing for in-situ analysis. To ob-
tain improved prediction accuracy, DNNs are becoming deeper and
more complex, leading to increasingly long processing latency and
high resource demand. So far, the use of accelerators has achieved
only limited benefit in real-time domains with strict latency con-
straints [2], such as autonomous driving and robotic control.

Since DNNs can often tolerate some inaccuracy, researchers
have begun exploring reduced bit-width for DNN training and
inference. Many new designs have been proposed; the Binarized-
Neural-Network (BNN) [7] is particularly attractive. BNNs use a
single bit to encode each neuron, significantly reducing compute
complexity and memory demand, giving the potential to reduce
inference delay by orders-of-magnitude. BNNs map particularly
well to FPGAs: their configurability enables millions of one-bit
ALUs to be implemented on a single device. In contrast, a report
from Intel reports only 10% peak performance when running a BNN
on a Xeon CPU and 7% for a Titan X GPU (with batch size of 10; a
smaller batch size of about four is generally expected [6]).

Despite the attractiveness of FPGAs for BNNs, creating a good
design is still a major challenge, especially for a large network with
big data (e.g., AlexNet on ImageNet). To the best of our knowledge,
the shortest reported latency of AlexNet inference is 1.16ms [5],
which is still far from real-time. The delay is mainly due to:
1.The critical batch-normalization layer (NL) [1, 7] uses full-precision
floating point (i.e., 2 FP MUL/DIV + 3 FP ADD/SUB).
2. To efficiently process a large BNN with a single FPGA, ideally
(a) each layer is optimally designed (all control-flow-graphs are
configured) and (b) layers do not need to be reconfigured. To the best
of our knowledge, no existing work has achieved both objectives.
3. Almost all previous systems accelerate BNNs by exploiting data
parallelism with layers processed sequentially. Hence, the overall
latency of a network is the accumulated latency of every layer
in addition to the communication and reconfiguration overhead.
As a result, the latency expands with network depth. In addition,
since a layer cannot start processing until the completion of the
previous layer, huge on-chip storage is required to buffer all of the
intermediate image data between layers.

Our main result is to address these three difficulties and demon-
strate a single-FPGA design that can finish AlexNet BNN inference
in 29us. We achieve this performance with the following contribu-
tions: 1.We completely remove floating-point from the NL through
layer fusion. 2. By using model parallelism rather than data paral-
lelism, we can simultaneously configure all layers and control flow
graphs. Also, the design is flexible enough to achieve nearly perfect
load balancing, leading to extremely high resource utilization. 3.
All convolution layers are fused and processed in parallel through
inter-layer pipelining. Therefore, when the pipeline is full, latency
is just the delay of a single convolution layer plus the FC layers.
Note that the dependency pattern of the FC layer prevents it from
being integrated into the current pipeline.

2 METHODS
Intra-Layer Fusion: The original BNN structure has 5 sub-layers
in each CONV/FC layer: XNOR, POPCOUNT, Activation (ACT),
NL, and the Binarization Layer (BL). Normalized outputs from NL,
which are floating-point, are binarized in BL by being compared
with 0. To eliminate the precision gap between NL (FP32) and BL
(0/1), we fuse ACT, NL, and BL and replace them with a Compar-
ison Layer (CL) (Fig. 1). In the simplified network, data from the
POPCOUNT layer are binarized directly by a comparison with an
integer threshold computed according to Eq. 1. The threshold is a
floating point number, but since xi, j is the result of POPCOUNT,
max(xi, j , 0) in BNN is an integer. When comparing an integer with
a floating-point threshold, the threshold can be rounded up to an
integer. The 1-bit output of CL is used as the input of the next
CONV/FC layer. There is no accuracy loss during this simplifica-
tion. With this intra-layer fusion, two comparisons from ACT and
BL, along with 5 floating point operations from NL, are replaced by
a single integer compare.

Figure 1: Optimized BNN with intra-layer fusion

yi, j =

−1 ifmax(xi, j , 0) < E∗, j −
βj ·

√
Var [x∗, j ]+ϵ

γj
1 otherwise

(1)

Implementation Details: Optimal designs of all layers are con-
figured simultaneously. For full utilization, each CONV/FC layer is
designed so that producer and consumer rates match.

Parameterized Architecture for single CONV layer. Fig. 2
illustrates the architecture of a single CONV layer. The parameters
PIC and POC refer to the numbers of input and output channels
processed in-parallel; SIC and SOC refer to the numbers of input
and output channels processed sequentially. K denotes the kernel
size. Data from all the input channels of the previous layer are
buffered in the Shared Input Data Memory (SIDM). When the next
layer starts being processed, PIC ∗ K data from the data memory
are broadcast to the POC PEs.

Each PE has an XNOR engine, a POPCOUNT engine, and a com-
parator coupled with a local threshold buffer which is a distributed-
RAM-based shift register. All PEs work in lockstep under direction
of a control unit. PEs gather weights from shared weight mem-
ory. In order to provide enough weights to service the POC PEs,
POC∗PIC∗K ∗K weights must be accessed in parallel. We use Block
RAMs (BRAM) in addition to Distributed RAM to buffer weights. To
give BRAMs enough concurrency, weights for 32 different channels
are packed. If there is a pooling layer, outputs of PEs are cached in
a shared pooling buffer to wait for the data to be compared. The
shared data memory and pooling buffer are designed in the same
way as weight memory. Input/output data for 32 input/output chan-
nels are packed before they are buffered. Input, output, and weights
for the channels which are processed sequentially are stored in



interleaved order. Data memory is implemented by K sets of FIFOs
linked head-to-tail to support the sliding of kernel window.

Balancing data generation/consumption. For high utiliza-
tion, SIC and SOC for each layer are tuned according to the data
generation rate of the previous layer so that data generation and
consumption rates match. For example, SIC ∗ SOC of a module
following a 2 ∗ 2 pooling layer is scaled down by a factor of 4.

Figure 2: Parameterized architecture of single CONV layer:
SOC, SIC, POC, and PIC can be tuned to degrade the paral-
lelism for high utilization

Inter-layer fusion: A fine-grained inter-layer pipeline is used to
fuse all CONV layers and the first FC layer, leading to overlapped
latencies among these layers. With this pipeline, an operation in a
layer is processed immediately when necessary inputs are available
rather than waiting for the completion of the previous layer. Hence,
all layers except the last couple of FC layers are processed in parallel
and their latencies are overlapped to the point that their overall
latency is that of a single layer in addition to the time waiting for
the dependent inputs. Fig. 3(A) shows the data dependency of BNN.
Fig. 3(B) illustrates the inter-layer pipeline: it not only reduces
the latency greatly but also reduces storage demand because the
activations are propagated and consumed quickly between layers.

Figure 3: Data dependency of BNN and the proposed fine-
grained inter-layer pipelining for inter-layer fusion

3 EXPERIMENTAL RESULTS
We use a Virtex VCU118 FPGA to evaluate performance, energy
efficiency, utilization, and latency; the application is inference of
AlexNet. We compare with existing work on BNN acceleration

on GPUs, CPUs, and FPGAs. As GPUs and CPUs are extremely
underutilized when executing BNNs in no-batch mode, the critical
comparison is with the current state-of-the-art FPGA-based BNN
accelerator. As shown in Table 1, our latency is 40× better than
that design. The performance is evaluated with respect to Images/s.
Using our design, 34480 224*224 images can be inferred per second.
Energy efficiency is evaluated with Images/J. Our result is at least
32.7× better than the existing work. The utilization of our design
is 99.7%, i.e., the percentage of idle stages in pipeline is only 0.3%.
The resource usage for the implementation of AlexNet is listed in
Table 2. The operating frequency is 200MHz.

Table 1: Comparison of Latency, Performance, and Energy
Efficiency using GPU, FPGA, CPU for AlexNet inference

CPU GPU FPGA
Platform Xeon E5-

2640 [5]
Tesla K40
[5]

Stratix V
[5]

Ours:
VCU118

Latency (ms) 10789 1257 1.16 (1x) 0.029 (40x)
Performance 0.093 0.80 862 (1x) 34480 (40x)
(Images/s)
Energy Efficiency 0.00098 0.0034 32.9 (1x) 1078 (32.7x)
(Images/J)

Table 2: Resource Usage of LUT, FF, BRAM and DSP for the
implementation of AlexNet
LUT FF BRAM DSP
635k/1182k
(53.7%)

1527k/2364k
(64.6%)

1459/2160
(67.5%)

5808/6840
(84.9%)

4 CONCLUSION
In this work, a single-FPGA-based accelerator for ultra-low-latency
inference of ImageNet is proposed. The design can complete the
inference of Binarized AlexNet within 29µs with accuracy compara-
ble to other BNN implementations. For extensions of some of these
ideas to FPGA clusters [4] see [2, 3].

ACKNOWLEDGMENTS
This research was funded by Deep Learning for Scientific Discovery
Investment Pacific Northwest National Laboratory’s Laboratory Di-
rected Research and Development Program. The Pacific Northwest
National Laboratory is operated by Battelle for the U.S. Department
of Energy under contract DE-AC05-76RL01830.

REFERENCES
[1] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. 2016. Binarized

neural networks: Training deep neural networks with weights and activations
constrained to +1 or -1. arXiv preprint arXiv:1602.02830 (2016).

[2] T. Geng, T. Wang, A. Sanaullah, C. Yang, R. Xu, R. Patel, and M.C. Herbordt. 2018.
FPDeep: Acceleration and Load Balancing of CNN Training on FPGA Clusters. In
Int. Symp. Field-Programmable Custom Computing Machines. 81–84.

[3] T. Geng, T. Wang, A. Sanaullah, C. Yang, R. Xuy, R. Patel, and M.C. Herbordt. 2018.
FPDeep: A Framework for CNN Training Acceleration on FPGA Clusters. In Proc.
IEEE Conf. on Field Programmable Logic and Applications.

[4] A. George, M. Herbordt, H. Lam, A. Lawande, J. Sheng, and C. Yang. 2016. Novo-
G#: A Community Resource for Exploring Large-Scale Reconfigurable Computing
Through Direct and Programmable Interconnects. In IEEE High Perf. Extreme
Computing Conf.

[5] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei. 2018. FP-BNN: Binarized neural network
on FPGA. Neurocomputing 275 (2018), 1072–1086.

[6] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and D. Marr. 2016.
Accelerating binarized neural networks: comparison of FPGA, CPU, GPU, and
ASIC. In Int Conf Field-Programmable Technology. 77–84.

[7] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. 2016. XNOR-net: Imagenet
classification using binary convolutional neural networks. In European Conference
on Computer Vision. 525–542.

2


	1 Introduction
	2 Methods
	3 Experimental Results
	4 Conclusion
	Acknowledgments
	References

