
RSSI 2006BCB with FPGAs

Case Studies in FPGA Acceleration of
Computational Biology and their

Implications to Development Tools*

Martin Herbordt Tom VanCourt Yongfeng Gu
Bharat Sukhwani Josh Model Al Conti

Doug DiSabello

Computer Architecture and Automated Design Laboratory
Department of Electrical and Computer Engineering

Boston University
http://www.bu.edu/caadlab

*This work supported, in part, by the U.S. NIH, the Naval Research Lab, and by Lincoln Labs

RSSI 2006BCB with FPGAs

The Problem
Potential performance of FPGAs for HPC is enormous:

– Parallelism (up to 10,000x for low precision computations)
– Payload per computation, rather than control (about 10x)

Challenges (that we can’t do anything about):
– Low operating frequency (1/10 x)
– Amdahl’s law

Therefore
Performance of HPC using FPGAs is therefore unusually
sensitive to the quality of the implementation.

Or more bluntly
The potential performance is enormous, but it’s much
easier to get nothing at all.

RSSI 2006BCB with FPGAs

How hard is it? (from Snyder86*)

Fundamental Law of Parallel Computation
A parallel solution utilizing P processors can improve the best

sequential solution by at most a factor of P.

Corollary of Modest Potential
Physical problems tend to have 3rd or 4th order complexity.
Parallel Computation therefore offers only modest benefit (P1/3 or P1/4).

Thesis
Overhead must be scrupulously avoided in the implementation of

parallel systems, both in languages and in architectures. Because
the benefit is so modest, the whole force of parallelism must be
transferred to the problem, not converted to “heat” in
implementational overhead.

Application FPGA is much harder than Application MPP

*Ann. Rev. of Computer Science (1986)

RSSI 2006BCB with FPGAs

How hard is it, cont.

… and also portability, productivity …

RSSI 2006BCB with FPGAs

Overview

Body of talk:
12 ways to avoid generating heat as derived from our

experiences with BCB

Motivation 1:
the 2x to 100x losses in performance avoided are important

Motivation 2:
if we want to automate application development, then these

must be made part of that process (if we are to do more
than struggle to break even)

RSSI 2006BCB with FPGAs

Some ways to avoid generating “heat”
1. Use the correct programming model.
2. Use an appropriate (FPGA) algorithm.
3. Speed match sequences of functionally different computations.
4. Scale computation to use maximal chip resources.
5. Hide latency of independent functions.
6. Use appropriate constructs.
7. Use FPGA resource types appropriately.
8. Arithmetic 1: Use appropriate precision.
9. Arithmetic 2: Use appropriate operations
10. Arithmetic 3: Use appropriate mode
11. Support application family, not point solution
12. Proper memory access

Note: these are not exhaustive, they overlap, but not one has anything
to do (necessarily) with Verilog/VHDL !

RSSI 2006BCB with FPGAs

Speed-Matching1,2

Scenario 1: Data passes through sequence of functions, where timing
of functions varies drastically

Example: (From microarray analysis) CIR 10x faster than DPS

Vector Data
Memory (VDM)

Distribution
Network

Dot Products
and Sums (DPS)

Covariance,
Inverse and

Regression (CIR)

Result
Memory

DMA DMA

Vector processing Scalar processing
1. FPL 2003
2. JMM 2004

RSSI 2006BCB with FPGAs

Speed-Matching, cont.

FPGA Solution: Replicate slower units 10x for each fast unit

Host
Host

RSSI 2006BCB with FPGAs

Hide Latency of Independent Functions3,4,5

Scenario 2: Independent functions (e.g. that generate parameters)
Example:

– In object finding (docking), rotate 3D image (molecule) for each correlation
– Method: retrieve voxels in “rotated” order

– Express (i,j,k) in (x,y,z) basis
i=(xi, yi, zi) j=(xj, yj, zj) k=(xk, yk, zk)

– Traverse (i,j,k) index space
– Find (x,y,z) from (i,j,k)

xi xj xk i x
yi yj yk j = y
zi zj zk k z

– Round and range check
– Pipelined, parallel computation

gives ~0 ns overhead for rotation

x
y

i

j

3. FPL 2004a
4. CAMP 2005
5. JASP 2006

RSSI 2006BCB with FPGAs

Hide Latency, cont.

A solution: precompute indices and load as needed.

Problem: 1MB per pose, thousands of poses, lots of data!

FPGA Solution: Separate hardware computes “rotated” indices and
delivers them just-in-time to voxel fetch unit.
– 20 parameter function, but only takes a few percent of VP70

– can be pipelined to generate indices at operating frequency

RSSI 2006BCB with FPGAs

Select FPGA-Optimal Algorithm3,5

Scenario 3:Scenario 3: multiple known algorithms for a task; different ones are
optimal for RAM and FPGA

Example: Modeling interactions of rigid molecules with correlation

From:http://www.biograf.ch/images/publications/chemmedchem/2006_1
Lill, et al. ChemMedChem 1 (2006)3. FPL 2004a

5. JASP 2006

RSSI 2006BCB with FPGAs

Algorithm Selection, cont

Serial processor preferred method: Fourier transform F
– A ⊗ B = F -1(F(A) x F(B))

FPGA Solution: Direct application of correlation
– RAM FIFO

FIFO
F(a,b)

RSSI 2006BCB with FPGAs

Take Advantage of FPGA Hardware6

Scenario 4: FPGA has unusual but extraordinarily powerful features,
such as hundreds of independently accessible quad-ported memories
(VP100)

Example: Use highly parallel memory access in trilinear interpolation

6. FPL 2006a

RSSI 2006BCB with FPGAs

C style: Sequential RAM access

FPGA Solution: App-specific interleaving

FPGA Hardware, cont.

(x,y,z)

(x,y,z)

RSSI 2006BCB with FPGAs

Scenario 5: Scale application to maximal size given target
hardware
– Hardware (invariably) varies

• Scaling depends on:
– FPGA capacity
– Application details
– Computing array

Scaling applications to FPGAs7

7. FPL 2006b

RSSI 2006BCB with FPGAs

Scaling Applications, cont.
Scaling is often open-ended and complex, rather

than fixed function:

Nopt = argmax U(N)(2)N | V(N) ∧ {∀j : rj
F ≥ Sj(N, B) }

FPGA Solution: build into design tools
– Support for complex parameterization
– Fast (synthesis) estimation of component

attributes size, timing

N

A: Linear array.
One structural
parameter

N2

B: Rectangular array.
N1 × N2 PEs

N1

N

D: Tree of depth N.
2N-1 PEs

N

C: Coupled structures.
Related sizes N, N2, N3

Growth laws for computing arrays specified in
terms of structural parameters

Logic RAM

E: Multiple FPGA resources,
with dependencies between

allocation amounts

RSSI 2006BCB with FPGAs

Use Appropriate Precisionall

Scenario 6: Application data type size is non-standard

Examples:
Amino acid 5-6 bits
Nucleic acid 2-4 bits
Microarray spot intensity (log ratio) 2-4 bits
Spatially mapped steric component 1-2 bits
MD measures 25-45 bits

FPGA Solution: trade off (unneeded) precision for parallelism
– Datapath uses what’s needed
– Extra FPGA components used for datapath replication

RSSI 2006BCB with FPGAs

Use Appropriate Precision, cont.8

sel

Force pipeline

Force pipeline

Force pipeline

pj

pj

pj

Pi

M
U
X

MUX0

MUX0

MUX0

Accele-
ration

Memory

Position
& Type
Memory

sel
Pair-controller

Combination Logic

sel

sel
…… …

8. IEE CDT 2006

Example:
In MD force computation,
varying precision changes
possible number of
parallel pipelines

RSSI 2006BCB with FPGAs

Use Appropriate Arithmetic Mode9

Scenario 7: integer or floating point not always optimal

Example1: log-based arithmetic

Example 2: MD force computation
– precision critical, but not canonical (e.g. 24,32,53,64)
– dynamic scaling critical, but over a limited predictable range

FPGA Solution: “Semi” Floating Point
– Exponent known from index into look-up table
– Table entries have predetermined ranges

9. FPL 2006c

RSSI 2006BCB with FPGAs

Use Appropriate Arithmetic Mode, cont.

Find most significant 1 to:
•get format
•extract a
•extract (x-a)

((C3*(x-a)+C2)*(x-a)+C1)*(x-a)+C0 Coefficient
Memory

r-14, r-8 or r-3

Format (x-a)

a

r2
OP1

…

Adder OP1

Switch

OP2

…

Adder OP2

Switch

Adder Result

Switch
Result

Format

RSSI 2006BCB with FPGAs

Applications (often) come in families,
not point solutions10,11

Scenario 8: Application has large number of complex variations
– Passes function as parameter

Example: Approximate string matching using dynamic programming

FPGA Solution: True object-oriented support

Abstract

Concrete

A implements B

A contains B

Y

X

BA

BA

Sequencer CharRule

ScoreOnly

Traceback

MatchCell

Needleman-
Wunsch

Smith-
Waterman

DNA

IUPAC
wildcards

Protein

…

N 1 1

Logical structure of DP AM application family

Param Param

Param

Param

Param

Param

Param

Param

10. ASAP 2004
11. JMM 2006

RSSI 2006BCB with FPGAs

good SW data structure ≠ good HW structure12

Scenario 9: FPGA implementation of common software
data structures and constructs

Examples:
• FIFO, Priority Queue, Tree, Stack
• Search
• Reduction
• Parallel Prefix
• Suffix Trees
• Corner Turning (thanks Duncan!)

FPGA Solution: Various well-known hardware structures
12. FPL 2004b

RSSI 2006BCB with FPGAs

Standard HW structures, cont.

Example: Finding palindromes of various lengths, and with
arbitrary gap size, at streaming rate

• Use well-known palindrome structure

=

cOUT

cIN gap

len=2
len=3

+ +
+ +

RSSI 2006BCB with FPGAs

good SW mode ≠ good FPGA mode13

Scenario 10: common modes of computation

Basic examples:

– Good software modes: random access, pointer following (as long
as we stay in cache)

– Good FPGA modes: streaming, systolic arrays, associative
computing, fine-grained automata

13. FCCM 2006

RSSI 2006BCB with FPGAs

Modes of Computation, cont.

Example: BLAST

Serial solution: random access into database to extend seeds

FPGA solution: stream database through 2D systolic structure

Operation:
• Query string held in place, database

streams over it
• On each cycle (alignment), one

ScoreSequence generated
• ScoreSequences evaluated

systolically by the tree structure

8-2-3 -3 -3 -1 8-2

M

C

C

G

L

W

K

W

K

W

W

M

Y

Y

F

FC

Leaf Leaf Leaf Leaf

Intern. Intern.

Intern.

local alignment score

Query String

Database

ScoreSequence

RSSI 2006BCB with FPGAs

Relative cost of arithmetic

Scenario 11: Software division & multiplication have
different relative costs versus FPGA division &
multiplication

Example: FPGA division is painfully expensive, while
multiplication is handled with hard-wired components

FPGA solution:
– Rewrite expressions to avoid division
– Use hard multipliers

RSSI 2006BCB with FPGAs

HPC = HP data access14

Scenario 12: dense, non-standard memory access pattern

Example: size-3 subsets of vectors

C Style:

FPGA Solution:

for i = 0 to N
for j = 0 to i

for k = 0 to j
// use x[i],x[j],x[k]

…

14. BARC 2004

RSSI 2006BCB with FPGAs

Summary – Scenarios handled with …

EDA – language, synthesis, P&R:
– Applications with realistic (oo) parameterization
– Scaling to use resources
– Sizing for speed-matching
– Non-standard data types for FPGA-specific computation modes
– Generators for commonly used function types (memory reference)
– Function parallelism

Libraries
– Non-standard arithmetic
– “data” and computation structures

Programmer/Designer Training: FPGA-Awareness
– Algorithm selection, creation
– Arithmetic: rewriting expressions, choosing appropriate precision
– Use of libraries

Programmer/Designer: Logic-Awareness … that’s another talk!

RSSI 2006BCB with FPGAs

Work Referenced
• L. Snyder (1986): “Type Architectures, Shared Memory, and the Corollary of Modest Potential", Annual

Review of Computer Science.

• Y. Gu, T. VanCourt and M.C. Herbordt (2006): “Accelerating Molecular Dynamics Simulations with
Configurable Circuits,” IEE Proc. Computers and Digital Technology, 153 (3). (extended version of FPL 2005)

• T. VanCourt, M.C. Herbordt (2006): “Families of FPGA Accelerators for Approximate String Matching,”
Microprocessors and Microsystems. (extended version of ASAP 2004)

• T. VanCourt, Y. Gu, V. Mundada, M.C. Herbordt (2006): “Rigid Molecule Docking: FPGA Reconfiguration for
Alternative Force Laws,” Journal on Applied Signal Processing. (extended version of FPL 2004)

• T. VanCourt, M.C. Herbordt, R.J. Barton (2004): “Microarray Data Analysis Using an FPGA-Based
Coprocessor,” Microprocessors and Microsystems 28 (4). (extended version of FPL 2003)

• Y. Gu, T. VanCourt, M.C. Herbordt (2006): “Improved Interpolation and System Integration for FPGA-Based
Molecular Dynamics Simulations,” FPL 2006.

• T. VanCourt, M.C. Herbordt (2006): “Application-Specific Memory Interleaving for FPGA-Based Grid
Computations: A General Design Technique,” FPL 2006.

• T. VanCourt, M.C. Herbordt (2006): “Sizing of Processing Arrays for FPGA-Based Computation,” FPL 2006.

• M.C. Herbordt, J. Model, Y. Gu, B. Sukhwani, T. VanCourt (2006): “Single Pass, BLAST-Like, Approximate
String Matching on FPGAs,” FCCM 2006.

• T. VanCourt, M.C. Herbordt (2005): “Three Dimensional Template Correlation: Object Recognition in 3D Voxel
Data,” CAMP 2005.

• A. Conti, T. VanCourt, M.C. Herbordt (2004): “Processing Repetitive Structures with Mismatches at Streaming
Rate,” FPL 2004.

• T. VanCourt, M.C. Herbordt (2004): “Processor-Memory Networks Based on Steiner Systems,” BARC 2004.

RSSI 2006BCB with FPGAs

Questions?

