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The Problem
Potential performance of FPGAs for HPC is enormous:

– Parallelism (up to 10,000x for low precision computations)
– Payload per computation, rather than control  (about 10x)

Challenges (that we can’t do anything about):
– Low operating frequency   ( 1/10 x )
– Amdahl’s law

Therefore 
Performance of HPC using FPGAs is therefore unusually 
sensitive to the quality of the implementation.

Or more bluntly 
The potential performance is enormous, but it’s much  
easier to get nothing at all.
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How hard is it? (from Snyder86*)

Fundamental Law of Parallel Computation
A parallel solution utilizing  P processors can improve the best 

sequential solution by at most a factor of  P.

Corollary of Modest Potential
Physical problems tend to have 3rd or 4th order complexity.
Parallel Computation therefore offers only modest benefit (P1/3 or P1/4).

Thesis
Overhead must be scrupulously avoided in the implementation of 

parallel systems, both in languages and in architectures.  Because 
the benefit is so modest, the whole force of parallelism must be
transferred to the problem, not converted to “heat” in 
implementational overhead.

Application FPGA is much harder than Application MPP

*Ann. Rev. of Computer Science (1986)
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How hard is it, cont.

… and also portability, productivity …
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Overview

Body of talk:
12 ways to avoid generating heat as derived from our 

experiences with BCB

Motivation 1:
the 2x to 100x losses in performance avoided are important

Motivation 2:
if we want to automate application development, then these 

must be made part of that process (if we are to do more 
than struggle to break even)
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Some ways to avoid generating “heat”
1. Use the correct programming model.
2. Use an appropriate (FPGA) algorithm.
3. Speed match sequences of functionally different computations.
4. Scale computation to use maximal chip resources.
5. Hide latency of independent functions.
6. Use appropriate constructs.
7. Use FPGA resource types appropriately.
8. Arithmetic 1:  Use appropriate precision.
9. Arithmetic 2:  Use appropriate operations
10. Arithmetic 3:  Use appropriate mode
11. Support application family, not point solution
12. Proper memory access

Note:  these are not exhaustive, they overlap, but not one has anything 
to do (necessarily) with Verilog/VHDL !
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Speed-Matching1,2

Scenario 1: Data passes through sequence of functions, where timing 
of functions varies drastically

Example:  (From microarray analysis) CIR 10x faster than DPS

Vector Data
Memory (VDM)

Distribution
Network

Dot Products 
and Sums (DPS)

Covariance,
Inverse and 

Regression (CIR)

Result 
Memory

DMA DMA

Vector processing Scalar processing
1.  FPL 2003
2. JMM 2004
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Speed-Matching, cont.

FPGA Solution: Replicate slower units 10x for each fast unit

Host
Host
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Hide Latency of Independent Functions3,4,5

Scenario 2: Independent functions  (e.g. that generate parameters)
Example: 

– In object finding (docking), rotate 3D image (molecule) for each correlation
– Method:  retrieve voxels in “rotated” order

– Express (i,j,k) in (x,y,z) basis
i=(xi, yi, zi)     j=(xj, yj, zj)    k=(xk, yk, zk)

– Traverse (i,j,k) index space
– Find (x,y,z) from (i,j,k)

xi       xj xk i           x
yi yj yk j     =  y
zi zj zk k          z

– Round and range check
– Pipelined, parallel computation

gives ~0 ns overhead for rotation

x
y

i

j

3. FPL 2004a
4. CAMP 2005
5. JASP 2006
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Hide Latency, cont.

A solution:  precompute indices and load as needed.

Problem:  1MB per pose, thousands of poses, lots of data!

FPGA Solution: Separate hardware computes “rotated” indices and 
delivers them just-in-time to voxel fetch unit.
– 20 parameter function, but only takes a few percent of VP70

– can be pipelined to generate indices at operating frequency
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Select FPGA-Optimal Algorithm3,5

Scenario 3:Scenario 3: multiple known algorithms for a task; different ones are 
optimal for RAM and FPGA

Example:  Modeling interactions of rigid molecules with correlation

From:http://www.biograf.ch/images/publications/chemmedchem/2006_1
Lill, et al.  ChemMedChem  1  (2006)3. FPL 2004a

5. JASP 2006
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Algorithm Selection, cont

Serial processor preferred method:  Fourier transform F
– A ⊗ B = F -1( F(A) x F(B) )

FPGA Solution: Direct application of correlation
– RAM FIFO

FIFO
F(a,b)
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Take Advantage of FPGA Hardware6

Scenario 4: FPGA has unusual but extraordinarily powerful features, 
such as hundreds of independently accessible quad-ported memories 
(VP100)

Example:  Use highly parallel memory access in trilinear interpolation

6. FPL 2006a
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C style: Sequential RAM access

FPGA Solution: App-specific interleaving

FPGA Hardware, cont.

(x,y,z)

(x,y,z)
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Scenario 5: Scale application to maximal size given target 
hardware
– Hardware (invariably) varies

• Scaling depends on:
– FPGA capacity
– Application details
– Computing array

Scaling applications to FPGAs7

7. FPL 2006b
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Scaling Applications, cont.
Scaling is often open-ended and complex, rather 

than fixed function:

Nopt = argmax U(N)(2)N | V(N) ∧ {∀j : rj
F ≥ Sj(N, B) }

FPGA Solution: build into design tools 
– Support for complex parameterization
– Fast (synthesis) estimation of component 

attributes size, timing

N

A: Linear array.
One structural 
parameter

N2

B: Rectangular array.
N1 × N2 PEs

N1

N

D: Tree of depth N.
2N-1 PEs 

N

C: Coupled structures.
Related sizes N, N2, N3

Growth laws for computing arrays specified in 
terms of structural parameters

Logic RAM

E: Multiple FPGA resources,
with dependencies between

allocation amounts
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Use Appropriate Precisionall

Scenario 6: Application data type size is non-standard

Examples:
Amino acid                                           5-6 bits
Nucleic acid                                         2-4 bits
Microarray spot intensity (log ratio)     2-4 bits
Spatially mapped steric component    1-2 bits
MD measures                                       25-45 bits

FPGA Solution: trade off (unneeded) precision for parallelism
– Datapath uses what’s needed
– Extra FPGA components used for datapath replication
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Use Appropriate Precision, cont.8

sel

Force pipeline

Force pipeline

Force pipeline

pj

pj

pj

Pi

M
U
X

MUX0

MUX0

MUX0

Accele-
ration

Memory

Position 
& Type
Memory

sel
Pair-controller

Combination Logic

sel

sel
…… …

8. IEE CDT 2006

Example:
In MD force computation,
varying precision changes
possible number of
parallel pipelines
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Use Appropriate Arithmetic Mode9

Scenario 7: integer or floating point not always optimal

Example1:  log-based arithmetic 

Example 2:  MD force computation 
– precision critical, but not canonical (e.g. 24,32,53,64)
– dynamic scaling critical, but over a limited predictable range

FPGA Solution: “Semi” Floating Point
– Exponent known from index into look-up table
– Table entries have predetermined ranges

9. FPL 2006c
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Use Appropriate Arithmetic Mode, cont.

Find most significant 1 to:
•get format
•extract a
•extract (x-a)

((C3*(x-a)+C2)*(x-a)+C1)*(x-a)+C0 Coefficient 
Memory

r-14, r-8 or r-3

Format (x-a)

a

r2
OP1

…

Adder OP1

Switch

OP2

…

Adder OP2

Switch

Adder Result

Switch
Result

Format
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Applications (often) come in families,
not point solutions10,11

Scenario 8: Application has large number of complex variations
– Passes function as parameter

Example:  Approximate string matching using dynamic programming

FPGA Solution: True object-oriented support

Abstract    

Concrete 

A implements B

A contains B

Y

X

BA

BA

Sequencer CharRule

ScoreOnly

Traceback

MatchCell

Needleman-
Wunsch

Smith-
Waterman

DNA

IUPAC 
wildcards

Protein

…

N 1 1

Logical structure of DP AM application family

Param Param

Param

Param

Param

Param

Param

Param

10. ASAP 2004
11. JMM 2006
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good SW data structure ≠ good HW structure12

Scenario 9: FPGA implementation of common software 
data structures and constructs

Examples:
• FIFO, Priority Queue, Tree, Stack
• Search
• Reduction
• Parallel Prefix
• Suffix Trees
• Corner Turning   (thanks Duncan!)

FPGA Solution: Various well-known hardware structures
12. FPL 2004b



RSSI 2006BCB with FPGAs

Standard HW structures, cont.

Example:  Finding palindromes of various lengths, and with 
arbitrary gap size, at streaming rate

• Use well-known palindrome structure

=

cOUT

cIN gap

len=2
len=3

+ + 
+ + 
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good SW mode  ≠ good FPGA mode13

Scenario 10: common modes of computation

Basic examples:  

– Good software modes:  random access, pointer following (as long 
as we stay in cache)

– Good FPGA modes:  streaming, systolic arrays, associative 
computing, fine-grained automata

13. FCCM 2006
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Modes of Computation, cont.

Example:   BLAST

Serial solution:  random access into database to extend seeds

FPGA solution: stream database through 2D systolic structure

Operation:
• Query string held in place, database 

streams over it
• On each cycle (alignment), one 

ScoreSequence generated
• ScoreSequences evaluated 

systolically by the tree structure

8-2-3 -3 -3 -1 8-2

M

C

C

G

L

W

K

W

K

W

W

M

Y

Y

F

FC

Leaf Leaf Leaf Leaf

Intern. Intern.

Intern.

local alignment score

Query String

Database

ScoreSequence
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Relative cost of arithmetic

Scenario 11: Software division & multiplication have 
different relative costs versus FPGA division & 
multiplication

Example:  FPGA division is painfully expensive, while 
multiplication is handled with hard-wired components

FPGA solution:
– Rewrite expressions to avoid division
– Use hard multipliers
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HPC = HP data access14

Scenario 12: dense, non-standard memory access pattern

Example:  size-3 subsets of vectors

C Style:  

FPGA Solution:

for i = 0 to N
for j = 0 to i

for k = 0 to j
// use x[i],x[j],x[k]

…

14. BARC 2004
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Summary – Scenarios handled with …

EDA – language, synthesis, P&R:
– Applications with realistic (oo) parameterization
– Scaling to use resources
– Sizing for speed-matching
– Non-standard data types for FPGA-specific computation modes
– Generators for commonly used function types (memory reference)
– Function parallelism

Libraries
– Non-standard arithmetic
– “data” and computation structures

Programmer/Designer Training:  FPGA-Awareness
– Algorithm selection, creation
– Arithmetic:  rewriting expressions, choosing appropriate precision
– Use of libraries

Programmer/Designer:  Logic-Awareness … that’s another talk!
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Questions?


