
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

Families of FPGA-based accelerators for approximate
string matching q

Tom Van Court *, Martin C. Herbordt

Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA

Available online 27 April 2006

Abstract

Dynamic programming for approximate string matching is a large family of different algorithms, which vary significantly in purpose,
complexity, and hardware utilization. Many implementations have reported impressive speed-ups, but have typically been point solu-
tions – highly specialized and addressing only one or a few of the many possible options. The problem to be solved is creating a hardware
description that implements a broad range of behavioral options without losing efficiency due to feature bloat. We report a set of three
component types that address different parts of the approximate string matching problem. This allows each application to choose the
feature set required, then make maximum use of the FPGA fabric according to that application’s specific resource requirements. Multi-
ple, interchangeable implementations are available for each component type. We show that these methods allow the efficient generation
of a large, if not complete, family of accelerators for this application. This flexibility was obtained while retaining high performance: we
have evaluated a sample against serial reference codes and found speed-ups of from 150· to 400· over a high-end PC.
� 2006 Elsevier B.V. All rights reserved.

1. Introduction

Approximate matching (AM) between strings is essen-
tial to many important applications. In text databases, it
allows searching on words that may be misspelled, that
have variant spellings, or that are rendered into English
in different ways. Bioinformatics applications use AM to
find similarities between DNA (nucleotide) or protein (ami-
no acid) sequences that have diverged through mutation or
evolution. Hamming distance, the number of differing
characters, is one way to measure differences between two
strings, but does not tolerate insertions or deletions
(indels). More generalized edit distances, with indels as well
as character substitutions, are commonly handled using
dynamic programming (DP) techniques.

Although hardware design for DP-based approximate
string matching has been well studied over the last 20 years

[1–10], little is in general use. This is surprising, perhaps, giv-
en that as early as 1989, special purpose hardware for gen-
ome analysis appeared ready to become a mainstream
technology [3]. But there were two problems: the develop-
ment of fast, non-DP, heuristic algorithms (BLAST being
the best known) and the brittleness of the hardware solu-
tions. The first of these is no longer an issue: although the
various versions of BLAST remain the most widely used
sequence processing programs, DP-based algorithms have
also become firmly established in a complementary role.
The problem of brittleness remains, however. The issue is
as follows: DP-based AM is not a single algorithm, but
rather a family of algorithms. As a result, there has been
too great a gulf between what biologists actually do and what
designers of application-specific hardware have supplied.

Actual DP AM usages vary widely in their input sets,
scoring functions, recurrence relations, and output of inter-
est. Typical hardware realizations implement just one set of
parameters and behavioral variations, often without stat-
ing which assumptions and variations have been chosen.
This does not meet the needs of the many potential users,
it limits the applicability of the realization, and it locks
out customizations that may be needed during exploratory

0141-9331/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2006.04.001

q This work was supported in part by the National Science Foundation
through award 9702483 and the NIH through award RR020209-01; it was
also facilitated by donations from Xilinx Corporation.

* Corresponding author. Tel.: +1 617 353 2840.
E-mail addresses: tvancour@bu.edu (T. Van Court), herbordt@bu.edu

(M.C. Herbordt).

www.elsevier.com/locate/micpro

Microprocessors and Microsystems 31 (2007) 135–145

Aut
ho

r's

pe
rs

on
al

co

py

use of a string application. The fundamental problem,
therefore, is not the implementation of a single high-perfor-
mance solution, but rather of a family of solutions that
span the application domain while retaining high perfor-
mance, and only add incremental design cost.

This paper presents a family of structures that imple-
ment various DP AM algorithms. The architecture defines
three component types that address three major distinc-
tions between different algorithms. Any one realization of
a DP AM accelerator consists of one compile-time choice
of component definition in each type, plus parameter set-
tings where appropriate. This way, users of the string
matching hardware get maximum freedom of choice in
algorithms without cost in clock rate or hardware alloca-
tion due to unused features or over-generalization. The
solution’s flexibility derives from the application of tech-
niques common in software engineering, such as use of
design patterns and data encapsulation, and an unconven-
tional use of VHDL’s strong typing. The two primary con-
tributions of our work are the family of DP AM string
matching algorithms and the demonstration of the underly-
ing design techniques.

The techniques demonstrated here draw on object-ori-
ented (OO) design and analysis. A survey of the application
of these techniques to hardware description languages can
be found in [26]. In order to make our result widely appli-
cable, we base it on the semantics of the standardized syn-
thesizable subset of a standardized hardware description
language, VHDL [27]. That choice precludes use of non-
standard OO vehicles, such as stream-oriented ASC [28],
or one of the many research systems. It also precludes
use of standardized OO hardware languages such as Sys-
temC [29] and SystemVerilog [30], for which no standard
synthesizable subset currently exists and for which vendor
support varies widely. This choice, however, does not imply
that other systems could not work equally well.

The rest of this paper is organized as follows. Section 2
briefly reviews DP AM hardware implementations while
Section 3 outlines the algorithm family. Section 4 decom-
poses the DP AM problem along three axes of behavior.
It identifies component types that capture each of these cat-
egories of behavior, and shows how a DP string matching
system is built in terms of the three abstract component
types. Section 5 describes specific implementations of each
component type. This section also addresses finer levels of
parameterization for customizing the detailed behavior of
each component type, and describes solutions to problems
in implementing this family design using only standard
VHDL. We conclude by reporting time and space perfor-
mance for a subset of the string matching systems that
can be built from the component libraries, showing perfor-
mance gains of from 180· to 500· relative to a high-end PC.

2. Previous work

When the Needleman–Wunsch (NW) algorithm for
DP AM was published in 1970 [13], it soon became the

standard technique for AM in biological sequence match-
ing. It also spawned many variations, including the
Smith-Waterman (SW) technique for local alignment, a
theoretically unbounded number of strategies for penaliz-
ing insertions and deletions [15], and ‘‘end space free’’
variants [14] that address cases where one string has a
prefix or suffix not found from the other. Because of its reg-
ular structure and limited data types, DP AM has been a
target for hardware acceleration at least since 1986 [1–10].

Although each variation on DP AM answers a different
biological question, reports on DP AM acceleration general-
ly have not indicated the specific task being accelerated or its
biological significance. Only one implementation [8] appears
to address more than one matching task. Even that is limited
to SW nucleotide comparisons with scoring constants limit-
ed to 0 or 1, whereas at least eight different evolutionary
models underlie scoring for DNA string comparison [16].
Amino acid scoring is no less complex. This creates a gulf
between accelerator design and the biologist’s control over
what question is being answered. The combinatorics of the
problem explain much of the gap: there are just too many
useful variations. If a fully generalized accelerator could be
designed, it would lose efficiency due to feature bloat. No
one implementation can address all AM problems efficiently,
so a family of implementations is required.

3. DP/AM overview

The Needleman–Wunsch algorithm for aligning two
strings is normally presented as a 2D array, like that shown
in Fig. 1. Each axis represents one of the strings to be
aligned, and steps along each axis represent character posi-
tions within the string. The algorithm proceeds as if there
were a cursor in each string. When both cursors step con-
currently, that represents a match in one character posi-
tion, whether or not the characters in that position are
the same. If one string’s cursor steps but the other cursor
holds its position, that represents a character in the first
string being skipped, i.e., a gap being opened in the com-
parison. Fig. 1 illustrates the comparison of two hypothet-
ical sequences GCGATCT and GCATTTA.

The aligned strings are written as GCGATcT- and
GC-ATtTA, following the convention that a gap is written
as a hyphen, and exact matches as uppercase. This align-
ment demonstrates three significant features. First is the
indel at the third position in the alignment. The name indel
comes from the assumption that these two strings descend

Fig. 1. Alignment example.

136 T. Van Court, M.C. Herbordt / Microprocessors and Microsystems 31 (2007) 135–145

Aut
ho

r's

pe
rs

on
al

co

py

from a common parent, which no longer exists. The indel
could represent insertion of the letter G into the first string,
or deletion of a letter G from the second. Lacking knowl-
edge of the common ancestor, the insertion and deletion
are equally likely. The second interesting feature is the mis-
match at the sixth position of the alignment. Here, the mis-
match is assumed a change of character, rather than
insertion or deletion, because of the high-quality matches
flanking the mismatch. Again, available information gives
no reason to pick one or the other as being the ‘right’ value.
The third interesting feature is the indel at the end of the
strings. In English, it is relatively common to see a prefix
or suffix on a word, leaving the root word readily recogniz-
able. Likewise, genetic events that cut a string short or
append new letters are also relatively common, and may
have less biological importance than other kinds of differ-
ences. Although this ‘end gap’ is written the same way as
an interior gap, it may not have the same biological
significance.

The alignment is drawn as one path through the 2D
array of possibilities. Finding the path is an iterative pro-
cess that scores all cells of the array and determines the
highest-scoring path through the array. Comparison starts
as if the cursors in the two strings were set to position 0, the
position just before the first character in each string. The
score Si, j for grid cell (i, j) is computed using the following
recurrence relation [15]:

Equation 1: Needleman–Wunsch recurrence relation

Line (1) is the base step of the recurrence. It happens
before any comparison and initializes the score. Lines (2)
and (3) represent the left end gap, where one string may
have a prefix that the other lacks, i.e., where one string’s
cursor is inside the string but the first character of the other
string is not yet involved in the alignment. Lines (4a–c) rep-
resent the interior of the array, where the decision is made
to extend the alignment by one position along both strings
(4a), or to assume a gap in one string or the other (4b or c).
The comparison function s (qi, rj) determines goodness of
match between two characters, one from the query string
(qi) and one from the reference string (rj). Depending on
the problem at hand, the function (or substitution matrix)
is chosen to emphasize small differences between close
relatives, find small similarities between distant relatives,
compare chemical or structural similarity of amino
acids, accommodate background probabilities of string
symbols, or represent other biological and mathematical
assumptions.

The Sgap value represents the penalty for skipping part
of a string in performing the alignment, i.e., for assuming
that the alignment includes a gap in one of the strings. In
fact, the Sgap value is often an affine function of the form
Sgap = Sopen + Scont * len, for gap lengths len P 1, and
Sopen > Scont. That reflects the intuition that cutting the
string at all (opening the gap) is more significant than the
number of characters that continue the gap.

Different gap costs – possibly zero – may be applied at
one or both ends of the string, though this possibility is
not shown in Eq. (1). The end gap penalty is typically much
lower than the interior gap penalty, representing the idea
that a prefix or suffix changes the string’s root meaning less
than an interior misspelling.

The score at the lower-right corner, Si, j, represents the
end-to-end goodness of match between the two strings.
When asking the question, ‘‘Is string A more similar to B

or to C?’’, the result depends only on the scores for the
A/B alignment and the A/C alignment. Other times, how-
ever, the experimenter is interested in seeing which parts
of the two strings are similar. In that case, a second pass
is made over the computation array, starting with that final
score Si, j. According to lines (4a–c) of Eq. (1), that score
could have been derived from either Si�1, j�1, Si�1, j, or
Si, j�1. The traceback step determines which of those scores
is highest, i.e., which represents the best partial alignment
up to that point. Traceback continues, following the high-
est preceding score, back to the upper-left corner where
computation began. That path, consisting of upwards, left-
wards, and upper-left diagonal steps, represents the
sequence of cursor positions along the two strings that
led to the optimal alignment.

4. DP string matching

4.1. Basic implementation

We follow the usual practice of considering DP AM as a
rectangular grid of computation cells, with positions along
each axis corresponding to character positions in the two
strings, the reference string R and the query string Q. Each
(i, j) position in the array represents alignment of character
ri with character qj, so the array as a whole compares every
reference string character to every character in the query
string. Because of the dependencies in the DP recurrence
relation of Eq. (1), computation can proceed in a wave-
front fashion along a diagonal across the grid shown in
Fig. 2A. Only the computation cells on that diagonal
require hardware, at any one time. Fig. 2B shows those
computation cells, along with storage for the previous
results on which those computations depend.

Each time step in the computation array computes all
elements of a diagonal. The scoring results computed for
diagonal N at one time step become inputs from diagonal
N � 1 at the next step and input N � 2 at the time step
after. Computation cells, labeled N in Fig. 2B, each hold
two characters, one from each of the strings. At each time

T. Van Court, M.C. Herbordt / Microprocessors and Microsystems 31 (2007) 135–145 137

Aut
ho

r's

pe
rs

on
al

co

py

step, the query string shifts across the array by one charac-
ter position. At the end of the computation, every query
string character has been co-resident with every test string
character in some computation cell. That means that the
computation corresponding to each cell in the 2D array
has been represented, at one time or another, in the linear
computation array.

Fig. 3 illustrates the three major ways in which DP
string matching algorithms differ from each other. First
and lowest level is the component that defines the character

rule. This embodies the type of each character in the string.
It also defines the substitution matrix that rewards exact or
near matches and penalizes mismatches between two char-
acters. The second difference between algorithms is the
matching cell, the component that implements one unit of
the 2D recurrence relation by which whole strings are com-
pared. Any matching cell can work with any string rule,
since the recurrence relation depends on alignment score
values and not on the type of the strings being matched.
The highest level component is the sequencer, which con-
trols the basic flow of string data and matching results
through the system. The sequencer, in turn, works the same
way irrespective of the matching cell used.

Although Fig. 3 uses object-oriented (OO) notation, we
implement the DP AM application in VHDL which is not
an OO language. Still, some features of OO design match
well to VHDL. The VHDL ‘component’ declaration, for

example, defines the interface to an entity, its IOs and their
types, without specifying an implementation. That corre-
sponds to the OO notion of an abstract class. An architec-
ture that implements the component interface corresponds
to a concrete class. UML class parameterization corre-
sponds closely to VHDL generics. Structural VHDL is
based on hierarchies of components containing other com-
ponents, which corresponds to nested object composition.
Object names in that figure are descriptive only, and do
not necessarily appear as programming symbols in the
VHDL code. The number of matching cells is indetermi-
nate, since it depends on resource availability in the FPGA
and the resources claimed by each instance of each cell
types chosen.

4.2. Character rule components

A character rule implements the abstract data type rep-
resenting the basic symbol in the strings being compared.
One string, the reference string, has each of its characters
stored in a character rule instance. The other string, the test
string, flows systolically past the reference string for com-
parison. In bioinformatics applications, the most common
datatypes are:

• Amino acids, 20 common ‘characters’ in a protein’s one-
dimensional structure,

Fig. 2. AM computation array. (A) 2D structure of the computation, showing the order in which grid cells can be evaluated. (B) Linear computation
structure corresponding to evaluatable cells at one time step.

Fig. 3. Logical structure of DP AM application family.

138 T. Van Court, M.C. Herbordt / Microprocessors and Microsystems 31 (2007) 135–145

Aut
ho

r's

pe
rs

on
al

co

py

• Nucleotides: A, C, G, and T (in DNA) or U (in RNA),
• Nucleotide wildcards, typically the IUPAC nucleotide

ambiguity codes, and
• Codons, the nucleotide triplets that encode amino acids

in the genome.

Characters in the two strings need not be of the same
type. For example, the reference and query strings may
be wildcards and literals, or amino acids and codons. An
additional constraint is not shown in Fig. 3. In any one sys-
tem, all character rule instances must be of the same type
(or VHDL architecture).

The substitution matrix is also part of the character rule.
It is the scoring function that measures goodness of match
between corresponding characters in the two strings.
Despite its name, it may be implemented as a logical func-
tion instead of an actual matrix lookup table. Different
substitution matrices represent different models of evolu-
tion, chemical function, statistical features, and evolution-
ary distance between the sequences. Some matrices are
defined in terms of parameters, for example the Kimura
matrix for DNA with a parameter representing uneven
AT/GC background probabilities [16].

Many more character rules exist than are shown in
Fig. 3. DNA strings may be aligned using Jukes–Cantor,
Kimura, Tamura–Nei, or other rules [13]. Proteins may
be aligned using BLOSUM, PAM, and other substitution
matrices [17].

4.3. Matching cell components

The matching cell is the recurrence relation that defines
the DP matching algorithm. Eq. (1) shows the recurrence
relation for the NW global alignment. Note that this recur-
rence does not itself use the test and reference string data –
it uses a function that uses them. That means that the
matching cell definition has no knowledge of the character
type or inner structure of the s (r,q) function; it needs to
know only the range of scores returned by s. The Sgap val-
ues in lines (2, 3, 4a, and c) may be non-trivial functions of
the gap length. Affine gap penalties are common, and have
the form Sgap = {Sopen if length = 0, elseScont}. The Sopen

term penalizes opening of a gap, and Scont penalizes each
increment of gap length. Finally, the i = 0 and j = 0 expres-
sions vary according to scoring policies that skip the begin-
ning of one or both strings, and other expressions (not
shown) implement policies for skipping the ends of the
strings. Indels at the beginning or end of a sequence may
have different significance than interior gaps, so may be
scored differently.

The matching cell also generates backtracking state.
Once the score for the best alignment has been found,
traceback data determines the character relationships that
led up to that score. For example, strings abcde and
abcabxde might be aligned in two ways depending on scor-
ing policy. Traceback state determines which alignment
was best (capitalization shows matches):

ABCabxDE or abcABxDE

ABC---DE --- ABcDE

NW and SW alignment have different recurrence rela-
tions. Local alignment uses saturated arithmetic for scor-
ing, where negative alignment scores become zero. Local
alignment also has fixed rules regarding end gaps, where
global alignment allows several different choices of end
gap treatment. The bigger difference is in the backtracking
state needed for recovering the best alignment, illustrated
in Fig. 4. SW matching may find substrings anywhere as
the best local match. Traceback remembers the path
through current substring match as in NW, but must also
remember the globally best substring score and where it
occurred. We implement this as a different matching cell
altogether. Rules for backtracking must also be different
because of the different results generated, so backtracking
is logically part of the matching cell component. As with
the character rule, Fig. 3 omits the requirement that, in
any one system implementation, all instances of the match-
ing cell must be of the same type: NW or SW.

4.4. Sequencing component

The third component distinguishes between two major
uses of matching: scoring and alignment. Scoring is a
one-pass algorithm that just reports goodness of match
values, for example in phylogenetic applications [11,12].
Alignment performs that forward scoring pass, then a
backward pass to recover the exact character and gap posi-
tions that gave the best score.

The sequencing component directs the flow of data in
each case. Clearly, the alignment sequencer is more com-
plex than the scoring sequencer. The scoring sequencer
can discard the traceback state and logic that generates
it, but the alignment sequencer must store the traceback
information. When the forward pass is complete, the back-
tracking sequencer re-reads the stored traceback informa-
tion in LIFO order.

The matching cell’s definition does not depend on the
type of character data being matched, as long as the match-
ing cell can pass characters of arbitrary type to the charac-
ter rule. Likewise, the sequencer can be defined

Fig. 4. NW vs. SW backtracking rules.

T. Van Court, M.C. Herbordt / Microprocessors and Microsystems 31 (2007) 135–145 139

Aut
ho

r's

pe
rs

on
al

co

py

independently of the matching cells that it coordinates. The
data types of scores (saturating or not) and traceback state
(for global or local alignment) are irrelevant to the
sequencer. All that matters to the sequencer is that there
are scoring and traceback data, and that the matching cell
translates saved traceback state into an alignment.

4.5. String matching accelerator

A DP string matching accelerator is built from three
independent component types: a string rule, a matching
cell, and a sequencer, as shown in Fig. 5. This indepen-
dence comes from the fact that much of the data passed
between them is opaque to the other components. A com-
ponent that handles data opaquely may transfer or store
the data, but can not perform any other operation on it.
Unlike transparent data, opaque data has no accessible
inner structure. Even the number of bits in the value may
be unknown to the component that carries it, though the
size may be known implicitly by the compilation tools.

Fig. 5 is a simplified diagram of the traceback sequencer
component. Other logic, not shown, handles the host inter-
face, end-of-string logic, and other housekeeping functions.
Note that this component is not a ‘leaf’ component; it is a
control component that aggregates and coordinates inner,
leaf components. The ‘Recent Scores’ registers and ‘Trace-
back LIFO’ RAM blocks store data values defined by the
matching cell. Even though they are defined by the
sequencer and inside it, the sequencer knows only the
names of the opaque data types. The sequencer uses these
storage elements to hold data that is specific to the match-
ing cell, and that is only ever passed between matching
cells. The numbered connections in Fig. 5 are:

1. Traceback results (transparent). During the second pass,
the matching cell interprets the stored traceback infor-
mation as a path through the 2D DP array.

2. Test string characters (opaque), being streamed past the
systolic matching array.

3. Reference string characters (opaque). This pathway is
used only for loading the reference string.

4. Comparison scores (transparent). This is a signed
numeric value indicating goodness of match between a
reference string symbol and a test string symbol.

5. Traceback state (opaque). During the forward pass, this
records whether skipping or matching a character gave a
better matching score. It may include other state: for
example, the SW matching cell must first work back to
the best substring match, then report on that substring
alignment.

6. Scoring data (opaque). These values contain data needed
for recording the best match, including scores of nearby
characters, data for computing gap scores, etc. Different
matching cells, implementing different policies defining
‘best’, require different data for computing the best
score. This is a VHDL record that contains transparent
and opaque data elements. The transparent data
includes the numeric score representing the best match,
i.e., the scalar result required by the host application.

Lines (1–3) send data to or accept data from the host.
The scoring sequencer (not shown) is simpler than the
traceback sequencer. It does not contain the Traceback
RAM or line 1 for reporting the traceback path. Fig. 5
shows that one instance each of the character rule and
matching cell components, plus book-keeping data, form
a single unit. The systolic matching array consists of a lin-
ear sequence of these blocks. The number of blocks will
normally be the largest supported by available resources.
The exact number depends on the resources required by
each block, the resources claimed by the sequencer and
overhead logic, and the capacity of the FPGA in which
the array is implemented.

5. Component implementation

The core of the DP AM logic consists mainly of the
three component types described above. The challenge is
to encapsulate the differences between implementations of
each component type, so that switching one component
type has no effect on other system components.

5.1. Component type selection

Careful use of VHDL allows one component definition
to handle many disparate concrete implementations. For
example, our matching cell component declaration
includes:

Fig. 5. Traceback sequencer component structure.

140 T. Van Court, M.C. Herbordt / Microprocessors and Microsystems 31 (2007) 135–145

Aut
ho

r's

pe
rs

on
al

co

py

component match port (Fragment1
prev1, prev2: in score1;
prev12: in score2;
. . .
tbOut: out traceback);

The prev1, prev2, and prev12 values represent the
Si � 1, j, Si, j � 1, and Si � 1, j � 1 matching cell results. The
score1 type records the Si,j-1 or Si-1,j score and score2

is the Si � 1, j � 1 score. The definitions of the score1

and score 2 data types are not defined here, because they
differ for NW and SW algorithms. NW matching uses dec-
larations somewhat like the following:

subtype score2 is Fragment2
integer range -MAXVAL to MAXVAL;

type score1 is record

scoreVal: score2;

gap1, gap2: boolean;

end record score1;

subtype traceback is tbDir;

The score1 type records more than just a matching
score. For affine gap scoring, it also notes whether a gap
has already been opened and in which string. Traceback
data (tbDir) indicates whether the i, j, or (i, j) direction
produced the best score. SW matching requires more state:

subtype alnScore is Fragment3
natural range 0 to MAXVAL;

type score2 is record

scoreCur, scoreBest: alnScore;

end record score2;

type traceback is record

toCur, toBest: tbDir;

isBest: boolean;

end record traceback;

The score1 record is syntactically the same as before,
even though the score2 value within it has a different def-
inition. SW alignment scores (unlike NW scores) are non-
negative, as shown by alnScore. The score2 record
notes the alignment score for the substring being processed
and also the globally best alignment score, as seen from the
current point. SW traceback data notes the direction of this
substring’s best alignment score, whether the current posi-
tion is the best score known so far, and the direction
towards the best substring alignment previously known.
The important fact here is that these NW and SW type def-
initions are interchangeable in the sequencer, where they
are used as opaque types.

VHDL cannot handle this change of type definition
within the architecture/configuration or generic parameter
model. One practice [18] would handle such differences by

declaring the component port signals as std_logic_
vector bitstring values. Scatter and gather logic in the
entity body would break out or re-assemble fields
within the bitstring signals. Pervasive use of bitstrings is
effectively the same as using untyped data, however. It
makes the intent of each signal impossible to determine
without examination of all origins and uses of that value
– a maintenance nightmare, reminiscent of abuses of
PL/1’s unspec () or C’s type casting. VHDL is a strongly
typed language, and we prefer not to defeat that feature of
the language.

Instead, we change matching cells outside of VHDL by
replacing the pair of files that defines the cell. The first of
those files is the matching cell’s package definition, including
the types shown. The second file contains the component
body. The component definition in Fragment 1 is in a sepa-
rate file and that is not replaced – it just uses the definitions in
the replaced files. The same technique is used to select among
sequencer and character rule implementations.

5.2. Component hierarchy

In common usage, the terms ‘component’ and ‘leaf com-
ponent’ seem interchangeable. Traditional thinking holds
that ‘‘Reuse is in the first place a matter of reusing function-

ality, not structure’’ [19]. Parameterization is defined in
terms of ‘‘. . . feature [s] that can be modified . . . without

affecting the application’s essential functionality,’’ where
examples include buffer sizes or ROM dimensions [20].

In this application, the sequencers are reusable non-leaf
components that define structure. They are reused by
selecting the inner components they aggregate, which crit-
ically modify the functionality. Using components for
structure and using behavior as a parameter is common
in software design. This specific form of structure reuse
demonstrates the Strategy design pattern [21], in which
control flow and low-level behavioral elements are indepen-
dently swappable. Compile-time selection of strategy
objects is an admissible form of the design pattern, and is
suited to hardware implementation. Other authors have
also recognized the value of design patterns in hardware
design [22–24], so one may look forward to support for
these high-level design constructs in the future.

5.3. Component customization

VHDL compile-time customization is typically based on
generic parameters. Generic parameter values may be selec-
tor values that choose between different component behav-
iors or may be numeric values. Character rule components
use generic values to control the substitution matrices.
Matrices usually map log-probabilities into some range of
integer scores, using some parameterized function. Many
models have additional parameters describing statistical
or biological assumptions. The Jukes–Cantor model, for
example, is defined in one parameter that lumps all evolu-
tionary effects together [13]. The Tamura–Nei model has

T. Van Court, M.C. Herbordt / Microprocessors and Microsystems 31 (2007) 135–145 141

Aut
ho

r's

pe
rs

on
al

co

py

several different parameters describing nucleotide and
mutation probabilities.

Each different implementation of the character rule
requires a different number of generic parameters, with dif-
ferent data types and meanings, for proper parameteriza-
tion. This is difficult to represent using standard VHDL,
however. The most natural VHDL representation would
use one ‘component’ declaration for the arbitrary character
rule, and a different architecture for each specific rule.
VHDL language rules, however, require that the compo-
nent declaration and all architecture declarations have
exactly the same set of generic parameters.

This leads to maintenance problems. An architecture
that implements a character rule with fewer generic param-
eters must define all the generic parameters needed by all
other character rules, in order to match the shared compo-
nent declaration. If a new character rule (and correspond-
ing architecture) requires a new generic parameter, then the
component declaration must be modified – as well as the
entity declarations for all other architectures of the charac-
ter rule, in order to be syntactically compatible with their
shared component declaration.

The Dependency Inversion Principle [25] of design states
that interfaces are the stable architectural elements and
concrete implementations are subsidiary to the interface
definitions. Changing the component interface for each
new implementation would violate this principle. It would
also violate the Open-Closed Principle, that the system
should be open to new component implementations but
closed to modification of known-good components.

For now, we address this problem by using one string-
valued generic parameter for the character rule component.
That string encodes control values of any number and type.
Each character rule implementation parses that one generic
differently, using string-handling functions written in stan-
dard VHDL. This allows flexible lists of control values
within an inflexible list of generic parameters. An object-
oriented language would have used type polymorphism
to implement parameter flexibility within an inflexible
parameter list; this imitates type flexibility using strings
of flexible format.

We use the same scheme for parameterizing the match-
ing cells. Our implementation of NW supports different
policy options for comparisons where the end of one string
overhangs the end of the other. These options do not apply
to SW matching.

A different solution would use VHDL’s facilities for
checking generic parameter numbers, types, and values.
Instead, this solution here requires all checking to be done
by the component architecture that parses the control
string. This solution is necessary, however, to support
any future parameter set within a fixed interface definition.

6. Results

We have implemented the scoring sequencer, SW and
NW matching cells, and eight character rules. Together,

these allow the generation of 256 different AM accelera-
tors. This does not include the additional capabilities of
varying the substitution matrices (e.g., BLOSUM vs.
PAM) and the numbers of bits in the scoring data paths.

Our target system is a standard PC with a PCI plug-in
board: the Annapolis Micro Systems WildstarII-Pro, which
has two Xilinx Virtex-II-Pro XC2VP70-5 FPGAs. Only
one of the FPGAs is currently used. The reference sequence
is preloaded onto the target FPGA. Database sequences
are streamed using DMA routines from the Annapolis
Micro Systems software library. The maximum size of
the reference string is given by the number of processing
cells that fit on the XC2VP70. This is somewhat smaller
than the maximum size of query sequences in use, but is
solved in the next generation of FPGA technology or by
using multiple FPGAs.

Since the communication is that of a one dimensional
systolic array, the latter is a simple, well-understood exten-
sion. Performance scales linearly with the additional hard-
ware. Communication with the host is pipelined with the
FPGA computation; start-up overhead is insignificant for
large databases.

We now discuss performance with respect to four
issues: performance, programmability, performance plus
flexibility, and generality.

1. Performance. We implemented a sample of these acceler-
ators as described and evaluated them with respect to
chip utilization and basic clock rates. These results, as
well as comparisons with a 2004-era PC, are shown in
Table 1. Performance is measured in units of 109 cell
updates per second (GCUPS), where one cell update
represents computing a result for one cell of the grid
shown in Fig. 2A. The goal of this study was to explore
performance gains due to design flexibility, so design
blocks have not been tuned for maximum performance.
To maintain uniformity and some degree of technology
independence, post-synthesis numbers are presented.
Full implementations achieve performance within 20%
of post-synthesis results, yielding speed-ups from
150· to 400·. Disk I/O is not counted in either imple-
mentation, but could be expected to have a greater rela-
tive impact on the accelerated implementations than on
those using the PC alone. In a production system, we
envision one of two alternatives: either the limit to
disk-transfer performance will prove satisfactory, or
the FPGAs will be integrated directly into the I/O (as
is currently being explored, e.g., in [31]). In general,
ranges of alignment score values can vary the width of
the score datapaths, but were held constant in these
tests. The repeated unit consists of a matching cell and
an instance of the character rule component, so results
are reported for the pair. The ‘Cells’ column in Table
1 reports the number of these cells (assuming no over-
head logic) that would fit into a Xilinx Virtex-II Pro
XC2VP70 FPGA. The character rules are now
described. The IUPAC wildcard character rule allows

142 T. Van Court, M.C. Herbordt / Microprocessors and Microsystems 31 (2007) 135–145

Aut
ho

r's

pe
rs

on
al

co

py

the reference string to accept any of the 15 non-null sub-
sets of nucleotides at each character position, so com-
pares four-bit wildcard encodings to two-bit nucleotide
encodings. RAM table character rules have substitution
tables that can be reloaded in a running system. A ‘fixed
table’ is a symmetric substitution matrix implemented as
ROM lookup or logic evaluation, according to compiler
choice. ‘Exact match’ and ‘IUPAC wildcard’ character
rules are implemented as logic functions, not lookup
tables.

2. Programmability. Perhaps the most critical issue is how
much logic designer time is required to create an FPGA
accelerator for a complex logic family. These applica-
tions were created in less then six months by a graduate
student with modest logic design experience. This time
includes developing tools and infrastructure. However,
the most important metric is not design-hours; rather,
it is the number of design-hours per accelerator use. In
this context, there are two benefits of the approach
described here over standard HDL-based logic design.
The first is that dozens to hundreds of accelerators can
now be generated and optimized to the capacity of the

FPGA with no further intervention by the logic designer.
These accelerators can, of course, be generated by any
number of independent end users, and as their own
experiments require. The second benefit occurs if logic
designer intervention is again needed for a unique new
feature. Since the structures are already in place, little
additional time is required beyond the design of the par-
ticular component.

3. Performance plus flexibility. The speed-ups are satisfying
given the logic design effort and the importance of the
applications. However, for any one application instance,
a hand-crafted circuit-level solution would certainly
yield even better performance. Perhaps our key result
is that this is of little consequence: time and again,
high-performance point solutions have been introduced,
but found to be too brittle for production use. In con-
trast, we achieve speed-ups of two orders of magnitude
over entire ranges of family members.

4. Generality. This addresses the question: for an application
family, should a single accelerator be built that does every-
thing, i.e., that supports all of the applications within the

family, or should accelerators be generated and optimized
independently? Examining Table 1, we observe a range
greater than 2:1 in the number of processing elements
per FPGA, and a range near 2:1 in clock speed. Suppose,
for the moment, that one PE could handle all of the string-
matching tasks addressed in Table 1. In that case, the ‘‘ex-
act match/DNA’’ case would be forced to run more than
4· slower than necessary. Instead, we show performance
for each variation on the theme in terms of an accelerator
specific to that variation. Simpler computations do incur
the cost of circuitry needed for more complex compari-
sons. At the same time, complicated operations are not
constrained to the PE cell area and datapath width of
the simplest operation.

7. Conclusion

7.1. Summary

Hardware implementations of approximate string
matching algorithms have typically ignored the variety
of tasks to which DP matching is applied. We show that
a family of hardware components, tuned for interopera-
bility with each other, is a practical way to offer a wide
variety of options. In particular, we present component
choices at different levels of design hierarchy, not just
at the leaf component level. We also show that, by
tailoring each component to a specific task, the ‘‘general-
ity penalty’’ can be avoided: each application pays only
the cost of its own requirements, not the cost of other
possible options.

We also observed that several object-oriented (OO)
design principles were very helpful in this implementation,
including the Open-Closed principle, the Dependency
Inversion principle, and use of the Strategy design pat-
tern. These were directly applicable to standard VHDL
and a standard development environment. This gives real
cause for optimism about the transferability of modern
software design techniques to large, complex hardware
design, and suggests several ways in which minor tool
changes could have significant effect on design productiv-
ity. At this writing, the main stream of logic design
practice does not have access to hardware description

Table 1
Performance (post-synthesis)

Matching cell Character rule String type Logic per cell (slices) Clock (ns) PEs per XC2VP70 Speed GCUPS Speed-up

NW 3 GHz Xeon PC implementation (all NW models) 0.046 –
NW Exact match DNA 109 12.9 303 23.48 510
NW IUPAC wildcard DNA 108 13.7 306 22.33 485
NW Fixed table DNA 111 14.6 298 20.41 443
NW RAM table DNA 108 16.8 306 18.21 395

SW 3 GHz Xeon PC implementation (all SW models) 0.029 –
SW Exact match DNA 190 13.3 174 13.08 451
SW Fixed table DNA 193 15.9 171 10.75 370
SW Exact match Protein 205 13.0 161 12.38 426
SW Fixed table Protein 239 25.5 138 5.41 186

T. Van Court, M.C. Herbordt / Microprocessors and Microsystems 31 (2007) 135–145 143

Aut
ho

r's

pe
rs

on
al

co

py

languages with OO features in their synthesizable subsets.
This case study shows a number of specific ways in which
object orientation will support complex, highly configura-
ble logic designs.

7.2. Future work

There are large numbers of configuration options, such
as NW end costs and score bit-widths that can also be
varied; costs have not been established for all combina-
tions. New character rules are possible, such as codons
vs. amino acids. They raise new issues, such as the possi-
bility of gap penalties that penalize codon frame shifts.
These implementations all allow the reference strings to
be reloaded in a running system. Comparisons would be
simpler and faster, however, if the reference strings were
hard-coded into the logic of the character rule cells as
in other systems [8,9]. The current implementations are
not highly tuned, so resource usage and clock rates may
improve in the future. In the long run, this mechanism
offers an unprecedented vehicle for exploring tradeoffs
of hardware efficiency vs. application features.

Smith-Eggerton (SE) repeated matching [15] is an inter-
esting variation, but is based on a calculation wavefront
that lies vertically across the DP grid. These DP calcula-
tions are based on a wave-front running diagonally across
the logical grid. SE could be probably accommodated with
a different organization of the DP grid, but we have not
investigated the changes that would be required. We have
examined a modified SE algorithm with a diagonal wave-
front, but have not fully characterized that algorithm’s
string-matching performance.

The most important area for future exploration may
be in applying techniques from object-oriented system
design to highly configurable computing. Object-oriented
hardware design languages (HDLs) are only beginning
to gain acceptance, and some of those lack OO features
in their synthesizable subsets. As synthesizable OO
features become available, their effective use will depend,
in part, on examples that show the value of OO tech-
niques in logic design. Reports on OO HDLs generally
focus on the languages rather than non-trivial examples.
This case study and others like it serve a complementa-
ry purpose: not to show specific syntax but to demon-
strate how and why the OO features are put to
practical use.

Acknowledgements

We thank the anonymous reviewers for their many help-
ful comments.

References

[1] Richard Liptov, Daniel Lopresti, Comparing long strings on a short
systolic array, in: Will Moore, Andrew McCabe, Roddy Uquhart
(Eds.), Systolic Arrays, Adam Hilger, 1986.

[2] Daniel P. Lopresti, P-NAC: a systolic array for comparing nucleic
acid sequences, Computer 20 (7) (1987) 98–99.

[3] Leslie Roberts, New chip may speed genome analysis, Science 244
(12) (1989) 655–666.

[4] E. Chow, T. Hunkapiller, J. Peterson, Biological information signal
processor, in: Proceedings of Application Specific Array Processors,
1991.

[5] Dzung T. Hoang, Searching genetic databases on SPLASH 2, in:
Proceedings of the Workshop on FPGAs for Custom Computing
Machines, 1993.

[6] Manjit Borah, Raminder S. Bajwa, Sridhar Hannenhalli, Mary Jane
Irwin, A SIMD solution to the sequence comparison problem on the
MGAP, in: Proceedings of Application Specific Array Processors,
1994.

[7] H.-M. Blüthgen, T.G. Noll, A programmable processor for approx-
imate string matching with high throughput rate, in: Proceedings of
Application Specific Systems, Architectures, and Processors, 2000.

[8] Steven A. Guccione, Eric Keller, Gene matching using JBits�, in:
Proceedings of 12th Field Programmable Logic and Applications,
Springer, Berlin, 2002.

[9] C.W. Yu, K.H. Kwong, K.H. Lee, P.H.W. Leong, A Smith-
Waterman systolic cell, in: Proceedings of the 13th Field-Program-
mable Logic and Applications, Springer, Berlin, 2003.

[10] Stefan Dydel, Piotr Bała, Large scale protein sequence alignment
using FPGA reprogrammable logic devices, in: Proceedings of FPL,
2004.

[11] Joseph Felsenstein, Inferring Phylogenies, Sinauer Associates, Inc.,
Sunderland, MA, 2004.

[12] D.M. Roderic Page (Ed.), Tangled Trees, The University of Chicago
Press, Chicago IL, 2003.

[13] S.B. Needleman, C.D. Wunsch, A general method applicable to the
search for similarities in the amino acids sequences of two proteins, J.
Mol. Biol. 48 (1970) 443–453.

[14] Dan Gusfield, Algorithms in Strings, Trees, and Sequences, Cam-
bridge University Press, Cambridge, UK, 1997.

[15] R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids,
Cambridge University Press, Cambridge, UK, 1998.

[16] Masatoshi Nei, Sudhir Kumar, Molecular Evolution and Phyloge-
netics, Oxford University Press, Oxford, UK, 2000.

[17] David W. Mount, Bioinformatics: Sequence and Genome Analysis,
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY,
2001.

[18] Xilinx, Inc. Synthesis and Verification Guide, ISE 6.2i. Xilinx Inc.,
San Jose, CA, 2003.

[19] Patrick Schaumont, Radim Cmar, Serge Vernalde, Marc Engels, Ivo
Bolsens, Hardware reuse at the behavioral level, in: Proceedings of
DAC 99, 1999.

[20] Tony D. Givargis, Frank Vahid, Parameterized System Design,
CODES, 2000.

[21] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Springer,
Berlin, 1994.

[22] Pontus Åström, Stefan Johansson, Peter Nilsson, Application of
software design patterns to DSP library design, in: Proceedings of
ISSS ’01, ACM, 2001.

[23] Robertas Damaševičius, Giedrius Majauskas, Vytautas Štuikys,
Application of design patterns for hardware design, in: Proceedings
of DAC 03, ACM, 2003.

[24] A. DeHon, J. Adams, M. DeLorimier, N. Kapre, Y. Matsuda, Design
patterns for reconfigurable computing, in: Proceedings of Field-
Programmable Custum Computing Machines, 2004.

[25] Robert C. Martin, Agile Software Development: Principles, Pat-
terns, and Practices, Pearson Education, Upper Saddle River, NJ,
2003.

[26] Tom VanCourt, LAMP: Tools for Creating Application-Specific
FPGA Coprocessors, Doctoral dissertation, Boston University,
2005.

144 T. Van Court, M.C. Herbordt / Microprocessors and Microsystems 31 (2007) 135–145

Aut
ho

r's

pe
rs

on
al

co

py

[27] Institute for Electrical and Electronic Engineers, IEEE STD 1076.6-
1999: IEEE Standard for VHDL Register Transfer Level (RTL)
Synthesis, 1999.

[28] Oskar Mencer, ASC: a stream compiler for computing with FPGAs,
IEEE Trans. Computer Automated Design, 2006.

[29] Open SystemC Initiative. Draft Standard SystemC Language Refer-
ence Manual, Open SystemC Initiative, 2005.

[30] Accellera Organization, Inc. SystemVerilog 3.1a Language Reference
Manual: Accellera’s Extensions to Verilog�, Accellera Organization,
Inc., Napa, CA, 2004.

[31] Richard Chamberlain, Embedding Applications within a Storage
Appliance, in: Proceedings of High Performance Embedded Com-
puting Workshop, 2005.

T. Van Court, M.C. Herbordt / Microprocessors and Microsystems 31 (2007) 135–145 145

