

Design Tradeoffs of Single Chip Multi-computer Networks

A Thesis

Presented to the Faculty of the Department of Computer Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in Computer Engineering

by

Kurt Olin

December 1999

 ii

Design Tradeoffs of Low-cost Multi-computer Networks

Kurt Olin

 Approved:

Committee Members:

Chairman of the Committee
Martin Herbordt, Professor,
Electrical and Computer Engineering

Pauline Markenscoff, Professor,
Computer and Systems Engineering

Lennart Johnsson, Professor,
Electrical and Computer Engineering

C. Dalton, Associate Dean,
Cullen College of Engineering

L. S. Shieh, Professor and Chairman,
Computer and Systems Engineering

 iii

Acknowlegements

Special thanks and gratitude to Dr. Martin Herbordt for his guidance, encouragement, and insight.

Special thanks to Dr. Markenscoff and Dr. Johnsson for taking time from their schedules to be on

my committee.

 iv

Design Tradeoffs of Single Chip Multi-computer Networks

An Abstract of a

A Thesis

Presented to the Faculty of the Department of Computer Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in Computer Engineering

by

Kurt Olin

December 1999

 v

Abstract

A comparison is made among a number of embedded network designs for the purpose of

specifying low-cost yet cost-effective multi-computer networks. Among the parameters varied are

switching mode, number of lanes, buffer size, wraparound, and channel selection. We obtain

results using two methods: 1) RTL cycle-driven simulations to determine latency and capacity

with respect to load, communication pattern, and packet size and 2) hardware synthesis to a

current technology to find the operating frequency and chip area. These results are also

combined to yield performance/area measures for all of the designs.

We find that lanes are just as likely to improve performance of virtual cut-through as wormhole

networks, and that virtual cut-through routing is preferable to wormhole routing in more domains

than may have been previously realized. Other results are deeper understanding of virtual cut-

through in terms of deadlock properties and the capability of dynamic load balancing among

buffers.

 vi

Table of Contents

Acknowlegements ..iii

Abstract .. v

List of Figures..vii

List of Tables.. viii

1 Introduction ... 1
1.1 Problem/motivation... 1

1.2 Methods.. 6

1.3 Results.. 7

1.4 Impact...Error! Bookmark not defined.
2 Design Space.. 10

2.1 Basic Network Assumptions and Parameters .. 10

2.1.1 Immediate Constraints and Assumptions .. 10

2.1.2 Derived Issues ... 12

2.1.3 Measured issues.. 14

2.2 Deadlock Prevention .. 21

2.3 Differences between Wormhole and Virtual Cut-Through ... 23

3 Hardware Issues ... 26
3.1 Node Architecture... 26

3.2 Input Buffer Implementation ... 28

3.3 Output Implementation ... 35

3.4 Buffer Sharing Options ... 37

4 Simulation ... 39
5 Results .. 42

5.1 Simulated Performance.. 42

5.2 Latency ... 46

5.3 Area .. 48

5.4 Timing... 53

5.5 Cost-Effective Designs ... 56

5.6 Buffer Sharing... 61

5.7 Comparison to an Output Queue Design ... 63

5.8 Experiments and Observations .. 63

6 Conclusions... 69
7 References.. 70

 vii

List of Figures

Figure 1 Sample Chip Organization...3

Figure 2 Packet Structure ..Error! Bookmark not defined.
Figure 3 Portion of a sample network, bidirectional virtual cut-through...13

Figure 4 Crossbar comparison for WH (top) and VCT (bottom) ..18

Figure 5 Packets A, dark shade, and B, light shade, are traveling in the X dimension, but are

blocked because packet A can’t turn into a busy Y dimension, black shade.19

Figure 6 With an extra lane in the X dimension, packet B is not blocked by packet A because it

can us the extra lane...20

Figure 7 Difference between WH and VCT, bidirectional and unidirectional nodes. In the WH

nodes the double arrows represent the two virtual channels. These two virtual channels

share a single physical channel. WH and VCT have the same size physical channel.24

Figure 8 Organization of 4-lane bidirectional virtual cut-through cascaded crossbar node...........26

Figure 9 Register implementation of FIFO...29

Figure 10 RAM implementation of FIFO. ...31

Figure 11 Filling and emptying the FIFO..32

Figure 12 Path selection logic..35

Figure 13 Sample arbitration logic for a 4 lane design ..36

Figure 14 Shown is a graph of latency versus applied load for a number of switching designs with

the random communication pattern and a packet size of 5 flits. Measurements were taken

using the RTL simulator. The three ‘bundles’ of series correspond to the unidirectional torus

wormhole, the mesh wormhole, and the bidirectional wormhole configurations respectively.41

Figure 15 Packet latency through node. ...46

Figure 16 Visual Basic code for bidirectional VCT area. ...50

Figure 17 Legend for capacity versus area graphs. ...56

Figure 18 Capacity versus area graph for a random pattern with a packet size of 6, top, and 24,

bottom. ..57

Figure 19 Capacity versus area graph for a hot-spot pattern with a packet size of 6, top, and 24,

bottom. ..58

Figure 20 Capacity versus area graph for a near pattern with a packet size of 6, top, and 24,

bottom. ..59

Figure 21 Buffer sharing capacity versus area graphs for random and hot-spot patterns with a

packet size of 6. ..62

 viii

List of Tables

Table 1 Load imbalance in the standard virtual channel selection algorithm for the unidirectional

wormhole torus. Virtual channel 0 is the wrap-around channel and virtual channel 1 is the

direct channel. The counts indicate the number of source-destination paths that go through

the particular channel in each node..16

Table 2 Load imbalance in the T3D-inspired virtual channel selection algorithm for the

unidirectional wormhole torus. Virtual channel 0 has node 0 as a dateline and virtual channel

1 has node 4. ..17

Table 3 FIFO valid bit control...29

Table 4 Performance with random communication pattern and a packet size of 6.43

Table 5 Performance with random communication pattern and a packet size of 24.43

Table 6 Performance with hot-spot communication pattern and a packet size of 6.44

Table 7 Performance with hot-spot communication pattern and a packet size of 24.44

Table 8 Performance with near communication pattern and a packet size of 6.45

Table 9 Performance with near communication pattern and a packet size of 24.45

Table 10 Area of designs with no input buffer sharing...51

Table 11 Area of designs with input buffer sharing between lanes. ..51

Table 12 Area of designs with input buffer sharing within a physical channel...............................52

Table 13 Area of designs with input buffer sharing within the entire node.52

Table 14 Cycle time summary. ..54

Table 15 Cost-effective designs...60

Table 16 Cost-effective designs with sharing. ...61

Table 17 Output Queue Design Characteristics. ...63

 1

1 Introduction

1.1 Problem and Motivation

As advances in process technology continue with only modest slowdowns expected in the next

decade, one of the fundamental questions in computer architecture remains how best to use

newly available resources. Several possible approaches have been proposed, although they

mostly fall into one of two categories: i) enhancing microprocessors with increased speculative

capability, instruction-level parallelism and/or multi-threading and ii) multiprocessing on a chip,

that is, integrating multiple discrete microprocessors or digital signal processors (DSPs) on a

chip. The latter approach is likely to be preferable for computationally intensive tasks and is our

primary interest here.

Currently, the focus in building multiprocessor systems on a chip (SOCs) is, understandably, on

taking advantage of existing processor and memory designs and the electronic design

automation (EDA) technology which makes them easy to replicate and integrate. SOCs based on

replicating microprocessors have included studies of symmetric multiprocessors (SMPs) on a

chip. Others multiprocessor SOCs have taken a completely different approach, being based on

enhancing memory by integrating a large number of simple processing elements (PEs).

A critical issue for multiprocessor SOCs that has received very little attention is the question of

how the removal of chip boundaries might change the design of the multiprocessor system,

including both the design of the components as well as how they are integrated. Since it was the

fact that an entire processor could be placed on a single chip--thereby removing long

intraprocessor signaling delays--that spurred the microprocessor revolution, it seems possible

that removal of packaging boundaries might cause a similar paradigm shift with multiprocessors.

At the very least, there is likely to be a major shift in the design space as the distribution of

propagation delays and the ratio of propagation delay to switching time is fundamentally altered.

 2

The problem we address in this thesis is the design of a network appropriate for a single chip

multiprocessor. This problem is important because the changing ratio of switching to propagation

time is likely to have a significant effect on the relative benefits of various design choices. The

single-chip assumption is also interesting from a methodological standpoint as it allows us to use

standard workstation EDA tools for accurate circuit-level simulations. When these are combined

with cycle-level simulations as we do in this thesis, it becomes possible to examine a large

number of design alternatives without compromising accuracy.

In this thesis, a large number of parallel processor network router designs are made and

compared in terms of cycle-by-cycle performance, cell area, and cycle time. Although these

designs are directed to parallel processor networks for use on a single substrate, they are also

applicable to other design situations. The designs are based on a single basic design framework

with a large number of different options. By comparing the designs that result from these options,

a designer can make deductions about the relative cost and performance benefits of particular

options and make decisions about which design to use for his particular situation.

1.2 The Basic Model

 We envision these multiprocessors on a chip as having dozens of nodes on a silicon substrate,

increasing to hundreds as technology allows. Such a chip would have an array of processor

node pairs, each with a connection to near neighbors. All processor-to-processor data transfers

take place in the network nodes using the following scenario: i) the source processor transfers

the data packet to its associated network node, ii) the packet is transferred from network node to

network node until it reaches the destination network node, and iii) the packet is then transferred

from the destination network node to its associated processor. All processor instruction and

control transfers are outside the network and we do not consider them here. The design of the

off-chip connections depends on the details of the design external to the chip and the particular

 3

pin constraints of the chip’s package. Since this is very design specific we do not consider the

details here, except to note that the off-chip connections are allowed for in our designs.

While designs with (2N)2 nodes, and array of 2N on a side, may be easier to program than other

sizes, our designs do not depend on any particular size. But, our simulated performance is only

applicable for designs with the same number of nodes on each side. The following figure shows

at a high level how such a chip might be organized.

 Processor

 Network
 Node

 Processor

 Network
 Node

 Processor

 Network
 Node

 Processor

 Network
 Node

 Processor

 Network
 Node

 Processor

 Network
 Node

 Processor

 Network
 Node

 Processor

 Network
 Node

Figure 1 Sample Chip Organization

 4

Because the processors and network nodes are on a single chip and arranged in a 2 dimensional

array with short interconnections, the data transfer between one node to another is very fast.

This, combined with the network nodes’ simple and efficient design, presents the opportunity for a

design with a short cycle time, and therefore, high performance. The regular organization of the

chip simplifies the design and testing of the actual implementation.

We assume small fixed size packets and deterministic routing. The routers’ designs are allowed

to take advantage of this particular environment whenever possible. The resulting routers are

simple, low-cost, and suitable for parallel processor systems on a single substrate.

We generally assume input buffering, but to be sure that we are not going down the wrong path,

we also study a design that has output buffering. Output buffering has higher performance when

considering network throughput per cycle, but the design is more complex and managing the

buffer at the output results in a much longer critical path. To see whether the increase in

throughput per cycle compensates for the increase in cycle time we evaluate a network with

nodes with output queuing, similar to the IBM SP2 design [21], but which still taking advantage of

our particular environment.

1.3 Previous Work

Although there has been extensive work in the area of switch design and multiprocessor

networks, relatively few studies include hardware costs, either in their effect on chip area or on

operating frequency. Of the studies that do pay attention to cost, even fewer do so quantitatively,

or for more than one particular implementation of a design.

An exception is Chien [1, 6], who has performed a detailed hardware cost and operating

frequency analysis for a particular class of routers in terms of the number of inputs or outputs,

 5

number of virtual channels and routing freedom. But, this analysis does not account for some of

the options we would like to consider such as virtual cut-through routing, unidirectional vs.

bidirectional switches, the varying buffer sizes, dynamic buffer sharing between lanes and does

not address the network performance achieved by varying these parameters.

Another gap is that virtual cut-through switching has not been explored to nearly the extent of

wormhole switching. This is especially important since even a preliminary glance at the problem

of low-cost networks, points to virtual cut-through as a way of cutting down on the number of

virtual channels and thereby getting more switch for your silicon. Some that do, Duato et al [x],

do not perform a hardware cost analysis or have a design that is not suited for our particular

environment.

We are designing for an environment where the node to node delay is very small because the

nodes are on the same chip and are placed adjacent or very near their communication neighbors.

Little work has been done for this environment. (Even Dally’s Torus Routing Chip [10] had off-

chip delays between nodes and couldn’t operate faster than the off-chip and wire delays.) The

Abacus SIMD Array [4] is one that uses network nodes on the same chip, but this network is

much too simple for our purposes.

Much work is done for nodes that are more featured and complex than we use. The SP2 is an

example. Its design is more complex than we use and that makes the operating frequency lower

than we are able to achieve. The SP2 design uses this complexity to increase its performance for

its particular environment and this is good. The reason is that the SP2 has very long node to

node delays and even with extensive pipelining one could not possibly achieve the small cycle

times we do for our design. So the additional complexity probably does not affect the operating

frequency.

 6

And finally, there are just too many parameters. Even if you could try everything, the analysis

would be prohibitive. In other words, the questions we need answers for had not been answered.

1.4 Methods

Because our focus is how to build an embedded network for single chip coprocessors, we

concentrate on low-cost, cost-effective mechanisms: The routing is deterministic dimension

order. The topology is either a 2D mesh or torus. A single physical channel exists between

nodes per direction per dimension. The packets are small and have fixed size, 6 and 24 flits in

our experiments. These sizes approximate transfers of single words or cache lines.

Even so, there are still a large number of router design options to consider: These include:

• Whether the switching mode is wormhole (WH) or virtual cut-through (VCT)

• Whether the connections are unidirectional or bidirectional

• Whether the crossbars are full or cascaded

• The optimal number of virtual lanes per channel.

• The optimal FIFO buffer size.

• Whether to share FIFO buffer space for more than 1 lane in the same RAM.

We evaluate the design alternatives in terms of both the cost in chip area and the performance in

terms of effect on network capacity and operating frequency. This requires using three different

methods, which are now described.

To determine network capacity, we use a cycle-driven simulator and simulate a network of

reasonable size, 8 by 8. We determine network capacity by assigning injectors a fixed capacity

(load) and run enough cycles to determine if the network saturates with this load. We believe our

method is more representative of real systems, even if it requires more computer time per design.

A simulation run consists of a single network type / load / routing pattern / packet size

 7

combination. After performing multiple runs with different loads, we determine the network

capacity in terms of flits/node/cycle. The routing patterns we use for performance evaluation are

standard synthetic patterns: random, hot-spot, and near-random.

To determine cell area we represent the designs in Verilog High-level Design Language, HDL,

then perform logic synthesis targeting LSI Logic’s G10-p 0.18 micron technology. The logic

synthesis package we use, from Synopsys, is very good at deriving a design with optimum cell

area. Not all designs are evaluated completely; we take advantage of the hardware design’s

modularity to evaluate some of the modules separately. For example, the number of ports in the

output queue can be evaluated for many design points and a formula for cell area based on the

number of ports generated. These formulas are used in the designs instead of generating a

complete Verilog HDL for each design option. Combining these formulas yields a cell area for

each design option.

To determine cycle time, the designs are evaluated and critical paths determined manually. The

logic design involving these critical paths is done by hand and timed using gate delay for the

target technology. We do this manually because the logic synthesis package we use, from

Synopsys, is not very good at deriving a design with optimum timing.

1.5 Results

The results we present in this thesis include some key observations about virtual cut-through

routing, performance of the designs with a cycle-driven simulator, router cell area, and router

cycle time analysis. The results presented show the effect of these options on the routers’ cell

area and cycle timing when mapped into a current generation 0.18 micron technology, LSI Logic’s

G10-p Cell-Based ASIC technology.

This work adds to previous studies in that it accounts for:

 8

• Variations in the number of lanes in the VCT configurations.

• Not only bidirectional tori, but meshes and unidirectional tori are considered.

• Deadlock and timing considerations unique to VCT.

• Static virtual channel selection versus dynamic lane selection methods.

• Both physical properties, such as critical path timing and layout area, and latency/bandwidth

results from register transfer level simulations.

Some of the key results we present are:

• Lanes are as useful to VCT networks as they are to wormhole networks.

• When operating frequency is factored in, increasing the number of lanes beyond 2 per

physical channel is not likely to be cost effective.

• For equal numbers of buffers and space per buffer, VCT switching is likely to have better

performance than WH switching. The reason is that the space guarantee associated with

VCT switching is easy to implement for small packets and has powerful consequences in

load balancing among lanes and, to a lesser extent, flow control latency.

• All the designs described are evaluated with respect to area/performance for each workload

and the cost-effective ones enumerated.

While investigating the design framework, it was necessary to work out some issues that are

themselves contributions. These are:

• Observations about VCT deadlock and how to prevent it.

• The application of virtual channel load balancing to unidirectional WH torus networks.

1.6 Significance

Our designs take advantage of many of the characteristics of single chip parallel systems and our

results are directly applicable to the environment of our primary interest, single chip parallel

systems. We believe our results also provide useful insight into other, more general, design

 9

areas including SIMD and distributed shared memory. While our designs are mapped to a

current technology for evaluation in this paper, we believe the results will be applicable to future

ASIC technologies.

Although we show the results in tabular form, the equations we have generated for cell area allow

network designers to determine some characteristics for designs that have slightly different

options than the particular ones we have chosen. For example, it is a simple matter to determine

the cell area of a router with a different buffer size, flit size, or crossbar matrix than what we

present here.

1.7 Outline

The rest of the thesis is organized as follows:

 10

2 Design Space

We now present the details of our network design space. Since some of the configurations are

new and others have non-trivial motivation, we also discuss deadlock in wormhole, WH, and

virtual cut-through, VCT, networks and virtual channel selection in WH networks. We end this

section with an analysis of the design consequences of the choice between WH and VCT

switching.

2.1 Basic Network Assumptions and Parameters

Any parameter study, especially one on such a well-studied area as switch design has to be

constrained. These constraints are critical since you will never solve everybody's problem! Of

course, the constraints also have to be credible since all aspects of the design need to be

reasonable if you are going to analyze any particular feature. We divide the parameter space into

three categories:

1. The immediate constraints and assumptions following immediately from our domain.

2. The derived decisions which followed from a small amount of analysis or experimentation.

3. The parameters we measured.

2.1.1 Immediate Constraints and Assumptions

1. We have constrained our designs to only have two dimensions. The nodes we are

connecting are not boxes or boards to be wired together with copper, but rather, on-chip

modules. A two dimensional topology is significantly less expensive, in terms of chip area,

because a chip is built in two dimensions.

2. The area used by our network node matters. Although we have much more chip area than,

say, Dally did when designing the Torus Routing Chip, we do have a constraint: the more

space we spend on the routers, the fewer the processors we can fit on the chip.

 11

3. The communication modes we will support are fine-grained message passing and

dataparallel communication operations.

4. Our packets are small and fixed size. A packet is made up of N data plus 2 address 8-bit

flits. A packet’s route is determined at the source processor before the packet is inserted into

the network. Two address flits are pre-pended to the packet. These address flits contain the

X and Y destination nodes and the direction the packet is to take to get to these nodes.

7 6 5 4 3 2 1 0
+ - Next X Node Destination
+ - Next Y Node Destination

Data flit 0
Data flit 1

•
•
•

Data flit N-1

Where + and - indicate which direction to go when entering the X
dimension or the Y dimension. And Next indicates that the address
will match at the next node and a turn should take place.

Figure 2 Packet Structure

5. When a packet travelling in the X dimension reaches its X node destination, the X node

destination flit is removed from the packet and the Y node destination flit becomes the

packet’s first flit. When the Y destination node is reached, the Y node destination flit is

removed and only the data flits are forwarded to the destination processor.

6. Our analysis strives for reasonable technology independence. Since we do not know what

the technology will be when these results are used, nor what our timing and area constraints

will be, we want to make our study at least moderately technology independent. We have

mapped our designs into a standard CMOS 0.18 micron technology. This should be

representative, with scaling, of ASIC technologies for some time.

 12

7. The entire network operates on a single clock. Single chip clock distribution is very well

understood and clocked systems are simpler than unclocked systems. Bolotski, et. al.

present several novel techniques for dealing with this [4].

8. The inter-switch transfer time is on the order of the switch time or smaller. Because our

switching nodes are on the same chip and our routing is mesh or torus, the distance, and

therefore the transfer time, between nodes is very small.

9. The header flit takes two cycles while the other flits take one cycle to traverse the switch. This

constraint turns out to be a good balance between minimizing slack and keeping the number

of cycles to a minimum. Although this constraint is not “immediate” and will be discussed

further below, we introduce it here since it has fundamental design implications.

2.1.2 Derived Issues

Topology

Our prime directive of working in two dimensions eliminates all topologies but one-dimensional

and two-dimensional meshes as the longer wire lengths for the other choices cannot be justified,

especially if there is any locality at all in the communication. This decision will only be truer with

advancing process technology causing wires to cause an increasing fraction of the delay.

Because the design is intended for parallel processors on a single chip substrate, the designs are

simple and low-cost. The network structure is either two dimensional mesh or torus. Each node

has one physical channel connection to each neighboring node for each direction. The physical

channel is 1 flit, 8 bits, wide with extra handshaking signals. A router node is associated with

each processor, and that processor has separate input and output channels to the node. All

nodes are considered identical, except for the nodes’ particular address. There is no attempt to

simplify any particular node, e.g. edge or corner nodes. The following figure shows a portion of a

sample network.

 13

X- in
X+ in

X+ out
X- out

Y- in Y- out

Y+ out Y+ in

X- in
X+ in

X+ out
X- out

Y- in Y- out

Y+ out Y+ in

X- in
X+ in

X+ out
X- out

Y- in Y- out

Y+ out Y+ in

X- in
X+ in

X+ out
X- out

Y- in Y- out

Y+ out Y+ in

X- in
X+ in

X+ out
X- out

Y- in Y- out

Y+ out Y+ in

X- in
X+ in

X+ out
X- out

Y- in Y- out

Y+ out Y+ in

X- in
X+ in

X+ out
X- out

Y- in Y- out

Y+ out Y+ in

X- in
X+ in

X+ out
X- out

Y- in Y- out

Y+ out Y+ in

X- in
X+ in

X+ out
X- out

Y- in Y- out

Y+ out Y+ in

P PP

P P

P

P

P P

Figure 3 Portion of a sample network, bidirectional virtual cut-through

Routing Algorithm

The constraints applicable here are:

• a two dimensional mesh,

• minimize area cost, and

• small fixed sized packets.

The standard choices in routing are between dimension order, random, and adaptive, and all their

combinations. The problem with all methods other than dimension order routing is that they

cause some additional complexity and so may slow down the clock, cause an increase in area, or

both. Although for the simplest random algorithm this is perhaps not true since all the

computation can be overlapped.

But a more important reason is that dimension order routing causes packets to make the fewest

possible turns and turns in two dimensions can cause more congestion than they alleviate. We

still have a bit to learn about adaptive algorithms, but Leighton's classic result for store-and-

 14

forward is persuasive [17]. While single shot dimension order routing causes virtually no

congestion with very high probability, random shortest path causes O(log N) slowdown with very

high probability. Because the places where blocking is initiated tend to be where packets try to

turn but can't. For small packets and non-trivial buffers, this result applies here as well.

We therefore use dimension order routing.

Buffering Mechanism

We use input buffering and its multi-lane variations exclusively. This is not because output

buffering is not effective; it is just not optimal for everything. Output buffering carries more

inherent overhead than does input buffering which you can hide completely with long packets and

long inter-switch transfer times, but not with short packets and short inter-switch transfer times.

We therefore use input buffering with space sharing.

Crossbar

There is a choice between single and cascaded crossbars. To make the decision, we performed

timing and simulation studies which can be summarized as follows: for two dimensional meshes

with small numbers of lanes per channel, it does not make much difference. We use cascaded

crossbars because they have a faster operating frequency.

2.1.3 Measured Issues

Switching mode

We consider two switching modes, wormhole, WH, and virtual cut-through, VCT, in our designs.

A few points however:

1. The only real difference between wormhole and virtual cut-through, is that in virtual cut-

through, the receiving node provides a guarantee that, if it receives the packet header, it can

receive the rest of the packet.

 15

2. As a consequence, deadlock prevention is significantly easier in virtual cut-through since

preventing deadlock in wormhole routing likely to require using virtual channels.

However, beyond these basic differences, they have much in common:

3. For a given buffer size, as long as there is enough space to provide the space guarantee,

the buffer size choice in virtual cut-through is not constrained.

4. A similar point for can be made for virtual channels (or lanes) in wormhole routing: once

you have enough to prevent deadlock, there are no more constraints. Nor are there ever

constraints on lanes in virtual cut-through, again, as long as the space guarantee can be

provided.

5. For our domain with small fixed sized packets, the basic hardware support between

wormhole and virtual cut-through is nearly identical.

6. VCT has fewer constraints on virtual channel selection. We discuss this in section 2.3.

Virtual Channel Selection in Wormhole Switching

A very important issue in getting decent performance out of an input buffered wormhole routing

network is virtual channel selection. In an early work on virtual channels, Dally proposed the

following selection algorithm, all packets that can proceed to their destination (in the dimension)

without wraparound use virtual channel 0 while the others use virtual channel 1 until the

wraparound point at which time they transfer to channel 0 to complete the route [11]. Bolding

noticed that this algorithm leads to an extreme imbalance in buffer usage [2]. It turns out that

distributing the load between virtual channels is very important and Scott and Thorson have a

very effective way of addressing this problem for bidirectional torus networks with the introduction

 16

of datelines and off-line channel selection [20]. We have extended this idea to unidirectional

torus networks.

The method is a straightforward extension of the bidirectional technique with the exception that

no pair of datelines exists such that all packets cross at most one dateline. We address this

problem by requiring packets that cross both datelines to switch channels once. This is not as

elegant a solution as is available in the bidirectional case, but provides for a substantial

improvement in load balance between channels. The initial load imbalance is shown in Table 1

and the load imbalance after the application of the T3D technique is shown in Table 2.

We have also made one change to the basic T3D technique. We perform inter-dimension

channel selection dynamically and based on availability. Since the inter-dimensional channels do

not form a ring, this does not alter the deadlock properties of the network. It does, however,

improve network capacity by 3 to 5%.

Another critical point is that this load balancing assumes a uniform communication pattern. It is

not necessarily optimal for other patterns. The reason why this is so important here, and this is

one of the key results of this work, is that virtual cut-through does not have this problem since

deadlock considerations do not play a role in lane selection.

Table 1 Load imbalance in the standard virtual channel selection algorithm for the
unidirectional wormhole torus. Virtual channel 0 is the wrap-around channel and
virtual channel 1 is the direct channel. The counts indicate the number of source-
destination paths that go through the particular channel in each node.

Node Virtual
channel 0 1 2 3 4 5 6 7

Average
Imbalance

Max
Imbalance

0 0 0 1 3 6 10 15 21
1 28 28 27 25 22 18 13 7

Imbalance 1.0 1.0 .93 .79 .57 .28 .07 .5 .64 1.0

 17

Table 2 Load imbalance in the T3D-inspired virtual channel selection algorithm for the
unidirectional wormhole torus. Virtual channel 0 has node 0 as a dateline and virtual
channel 1 has node 4.

Node Virtual
channel 0 1 2 3 4 5 6 7

Average
Imbalance

Max
Imbalance

0 7 9 13 16 21 19 15 12
1 21 19 15 12 7 9 13 16

Imbalance .50 .26 .07 .14 .50 .26 .07 .14 .24 .50

Crossbar Switches

The choice of switching mode also affects the crossbar. Here is an example of the crossbar

matrices for two lane wormhole node and a four lane virtual cut-through node. Since there are

fewer constraints on virtual channel selection in virtual cut-through, there are more possible lane

choices and therefore more crosspoints.

It turns out that this is not a bad thing. In comparison to the space we are going to spend on

buffering and because of the regular shape, the difference between being 5/9ths and 7/9ths full is

less than 1% of the total switch area.

 18

X0+a X1+a X0-a X1-a C0a C1a
 X0+b X1+b X0-b X1-b C0b C1b

Y0+a
Y0+b
Y1-a
Y1-b

Y0+a
Y0+b
Y1-a
Y1-b

X0-a
X0-b
X1-a
X1-b

X0+a
X0+b
X1+a
X1+b

P1a
P1b

Y0+a Y1+a Y0-a Y1-a P0a P1a
 Y0+b Y1+b Y0-b Y1-b P0b P1b

P0a
P0a

X+a X+c X-a X-c Ca Cc
 X+b X+d X-b X-d Cb Cd

Y-a
Y-b
Y-c
Y-d

Y+a
Y+b
Y+c
Y+d

X-a
X-b
X-c
X-d

X+a
X+b
X+c
X+d

Pc
Pd

Y+a Y+c Y-a Y-c Pa Pc
 Y+b Y+d Y-b Y-d Pb Pd

Pb
Pa

Figure 4 Crossbar comparison for WH (top) and VCT (bottom)

Which 2D Topology?

The choices are between unidirectional and bidirectional mesh and between mesh and torus.

The advantage of the mesh is that it by itself prevents deadlock and so allows you to do

 19

wormhole routing without virtual channels. Tori can be constructed without long wires by using

the standard interleaving trick. In other words, whatever virtual channels you do have, the

selection can be completely dynamic depending only on which one is free. The idea of the

unidirectional mesh makes sense in this context since even if it does lead to a great deal of

congestion, it can have double the internode bandwidth and much smaller internal buffering.

Lanes for Performance

There have already been many studies that point to the benefits of having multiple lanes per

channel. The reason is because, as is shown below, they allow packets to avoid being blocked.

We investigate one, two, and four lanes per virtual channel.

Figure 5 Packets A, dark shade, and B, light shade, are traveling in
the X dimension, but are blocked because packet A can’t turn into

a busy Y dimension, black shade.

 20

Figure 6 With an extra lane in the X dimension, packet B is not
blocked by packet A because it can us the extra lane.

Buffer Size

Increasing buffer size improves performance because it gets blocked packets out of the way.

This is a cruder use of chip area than increasing the number of lanes, but does not require adding

ports in the crossbar. For maximum speed, we want register-based FIFOs. For maximum area

use we want to use RAM. For our reference process, and LSI Logic 0.18 micron standard cell,

small fast register files in RAM are 6 to 8 times smaller, but a factor of 2 slower than the register

equivalent. We use hybrid buffers. This is a technique allows hiding with a wide bus. Five flit

slots are registers while all the rest are RAM. See section 3.4.

Dynamic Space Sharing

We investigate space sharing among buffers. Again, this is all done on the input side. The

rationale here is that if larger buffers are good, we should use that space as efficiently as

possible. We should not have extra flit slots that are unused.

We look at four scenarios for wormhole routing, the virtual cut-through circuits are slightly less

complex in that there is only one virtual channel, so option 3, below, is the same as option 2:

1. No sharing,

 21

2. Sharing space among buffers in a channel,

3. Sharing space among buffers in a dimension, and

4. Sharing space among buffers in the whole switch.

All of these schemes can be implemented with no slowdown as long as the buffer is at least a

certain minimum size. For 2), sharing is simple because we can get at most one flit per cycle

input on a physical channel. The other sharing options are more complex.

2.2 Deadlock Prevention

We begin by defining the switching modes:

Wormhole Routing - Packets are divided into flits which are transmitted contiguously. When

the head of the packet is blocked, the flits remain in place. In practice, space for more than

one flit per node is required. Two is usually the minimum needed to handle handshaking and

communication of `blocked-ness' back through the worm so as to prevent flits from being

overwritten.

Virtual Cut Through Routing - Packets are divided into flits and travel through the network

as in WH routing. When blocked, however, the entire packet is queued as in packet-switched

routing.

In practice WH routing networks usually have larger buffers than two. The term buffered

wormhole routing was used to describe the IBM SP2 network in which a node can buffer several

good-sized packets, but which provides no guarantee that an entire packet will be able to reside

there [21].

In the simplest case, VCT implies that any packet arriving at a node can be queued there in its

entirety. In parallel computers it is much more likely that the queue will be bounded to a fixed

number of packets. We propose the term virtual cut-through with limited buffers to refer to

networks with the following property, a blocked packet is guaranteed to be buffered in a single

 22

node in its entirety, but a packet is not guaranteed to be blocked only because a channel is

unavailable.

Deadlock can occur when there is the possibility of a circular request for resources. For WH

routing on torus networks, deadlock as a result of circular path requests is a well-known problem.

With dimension order routing, DOR, the simplest method of preventing deadlock is to use virtual

channels. For mesh WH networks using DOR, there is no circular dependency and deadlock is

not a problem. Virtual channels are therefore not required for mesh WH networks.

It has been stated numerous times that VCT is inherently deadlock free and this is true for the

infinite buffer case. It is not true, however, for VCT with limited buffers. The problem is that

although no circular request can occur for channels, it can occur for buffers. See, e.g. [12]. We

know of two solutions. But. first a definition, we refer to the combined output/input FIFOs in a

lane/direction/dimension as a buffer and assume that each buffer has a capacity of n packets.

Strict/Local Solution - If there are n-1 headers in a buffer, the nth header can only come

from the current dimension.

The second solution to the VCT deadlock prevention problem is based on the observation that we

only really need one packet slot per direction per dimension to guarantee freedom from deadlock.

Relaxed/Distributed Solution - If there are n-1 headers in a buffer, and all other buffers

have n headers, then the nth header can only come from the current dimension.

In the above scenario progress is still made as the `hole' travels backwards and packets inch

their way forwards. The advantage of the first solution is its simple hardware requirement,

the advantage of the latter its performance.

 23

2.3 Differences between Wormhole and Virtual Cut-Through

Since we assume small fixed length packets and dimension order routing, the differences

between WH and VCT networks are small but very significant. In particular, in a VCT network:

• the buffer size should be a multiple of the packet size,

• a mechanism must exist to prevent entering packets from filling up all the buffers and causing

deadlock, and

• in a synchronous switch, once a header has been permitted to transmit to the next input FIFO

there is a guarantee that there will always be a flit buffer free for all succeeding flits in the

packet.

In a WH torus network:

• deadlock must be prevented through the use of virtual channels and

• a channel selection strategy should be used to balance buffer usage.

It is important to note that just about everything else can remain identical. In particular, nothing

prevents the use of lanes in VCT networks to improve performance, although this is one of the

issues not discussed in previous comparisons between WH and VCT switching [19][12].

The basic switch variations are shown in Figure 6. If we assume similar buffer requirements for

networks of either switching mode, an assumption we will show is very reasonable, and a simple

packet header counting mechanism for VCT, then there are two principal differences. These are:

i) the virtual channel requirement of WH tori and the concomitant increase in switching

complexity, and ii) the guarantee of flit space in VCT that allows us to group the physical channel

arbitration with the lane arbitration.

 24

X- in

X+ in

X+ out

X- out

Y- in Y- out

Y+ out Y+ in

P

Bidirectional WH Node

Xin X out

Y in

Y out

Unidirectional WH Node

P

X- in

X+ in

X+ out

X- out

Y- in Y- out

Y+ out Y+ in

P

Bidirectional VCT Node

Xin X out

Y in

Y out

Unidirectional VCT Node

P

Figure 7 Difference between WH and VCT, bidirectional and unidirectional
nodes. In the WH nodes the double arrows represent the two virtual channels.
These two virtual channels share a single physical channel. WH and VCT have
the same size physical channel.

Channel Selection

Since the physical channel bandwidth is not affected by the switching mode, the question arises

whether the freedom from virtual channels is actually an advantage, after all, virtual channels

have been found to be effective for flow control [8], especially when used with an optimized load

balancing strategy [20]. We show that the answer is often yes, and for two reasons:

• Not requiring virtual channels means that particularly low cost switches can be built for VCT

networks for which there is no WH equivalent.

 25

• For the same total number of buffers, VCT switching allows for more dynamic load balancing

among buffers. For example, assume a pair VCT and WH switches with an equal number of

lanes per dimension per direction. One such pair would be i) a bidirectional WH torus with

two virtual channels per direction per dimension and one lane per virtual channel and ii) a

bidirectional VCT torus with no virtual channels but with two lanes per direction per

dimension. In the first case, static selection is effected between buffers (virtual channels). In

the second case, the dynamic selection is effected between buffers (lanes). Although static

load balancing for virtual channels is effective, it is not as effective as dynamic load balancing

among lanes.

Combined Arbitration

Since, in VCT, a packet transfer can only be initiated if there is a guarantee of space for the entire

packet in the next node, and because we assume synchronous switches, there is no need for

internode flow checking beyond that for the header flit.

 26

3 Hardware Issues

In this chapter we discuss the hardware design issues. We start with an overview of the

components that comprise a switch and then describe the issues in their design and how we

addressed them.

3.1 Node Architecture

A diagram of a sample follows that shows the major node components and how they are

connected.

Pin

Input BuffersX+in

X-in Input Buffers

Input Buffers

Output X+out

Output X-out

Output

Y-in

Input Buffers

Y+in Input Buffers

Input Buffers

Output Pout

Output Y+out

Output Y-out

Figure 8 Organization of 4-lane bidirectional virtual cut-through cascaded
crossbar node.

In the basic node design, packet flits come into the node and are latched in the input buffer. They

then get transferred to the appropriate output buffer. If for some reason they cannot transfer

immediately, or if sometime during the packets transfer its output path becomes blocked, flits are

 27

buffered in a FIFO located on the input side of the node. The collection of the input latches and

the FIFO buffer is called the input buffer. Each lane of each virtual channel has an input buffer.

While latched in the input buffer, the contents of the first flit of a packet are compared to the

node’s address. Based on the results of this comparison, an output for the packet is selected.

This is called path select.

When a path has been selected, a request is made to the selected output. Based on the

requests made to it, the output port will select a requestor. This process is called arbitration.

Each output lane has a separate arbitration.

When an input buffer wins arbitration for an output, it begins transferring flits through the

crossbar. The crossbar is distributed among the output ports. Being implemented as a set of

large multiplexors, and not as a single large block of logic. Transfers will occur until the end of

the packet.

Because the node knows what the packet size is, it can determine which flits are the first and last

flits of a packet. The first flit gets a head indicator that trails along with it, and the last flit gets a

tail indicator that trails along with it. Actually, the tail indicator appears before the last flit so the

hardware can prepare for it a cycle ahead of time.

Wormhole/Virtual Cut-Through

Flow control for wormhole routing is on a flit basis. The sending and receiving node exchange

flow control signals for each flit transferred. On each cycle the node’s control logic determines if

its input buffers can accept another flit.

 28

Flow control for virtual cut-through is on a packet basis. The sending and receiving node

exchange flow control signals only for the first flit in a packet. While flow control is conceptually

simpler for VCT, the amount of hardware required by VCT and WH is similar.

Unidirectional/Bidirectional

Both unidirectional router nodes and bidirectional router nodes are investigated. A unidirectional

node has half the number of inputs and outputs as the bidirectional node. To make the

comparison between the two fair, the physical channel size is doubled, from 1 flit wide in the

bidirectional case, to 2 flits wide for the unidirectional case.

3.2 Input Buffer Implementation

Register FIFO

We are not proposing that the FIFO elements be completely implemented as registers, but if we

consider this for a moment, it makes it easier to understand the RAM implementation.

The FIFO elements can be implemented as registers. These registers are strung together in a

line with Buffer0 at the bottom and BufferN-1 at the top. The FIFO registers are always filled from

the bottom to the top with no gaps between filled positions. With each buffer register is an

associated Valid bit. To determine which buffer register gets loaded with the next input data, the

Valid bits are examined. The buffer register with the lowest not valid bit is loaded next. The FIFO

is always emptied from the bottom, Buffer0.

 29

Buffer 1

Buffer 0

Buffer N-1

Buffer N-2

Buffer N-3

To
Output Queue

From
Previous Node

Figure 9 Register implementation of FIFO.

Each buffer register was a width of flit size+3. The three bits are for Valid, Head indicator, and

Tail indicator.

The decision each buffer register makes is simple and is based on 5 inputs as shown in the

following table. The Valid bits are for this register and the one above and below it. In is if a flit

enters the FIFO, Out is if a flit exits the FIFO. The buffer registers on the ends are simplifications

of this table.

Table 3 FIFO valid bit control.

Assume Buffer Number J
Valid Bits

J+1 J J-1 In Out Action
- - - 0 0 Same

 30

- - - 0 1 Shift down from J+1
- 0 0 1 0 Invalid
- 0 1 1 0 Load from Input
- 1 1 1 0 Same
- 0 0 1 1 Invalid
- 0 1 1 1 Invalid
0 1 1 1 1 Load from Input
1 1 1 1 1 Shift down from J+1

RAM FIFO

The technology we use and our design is such that the RAM read and write time are two cycles.

To slow down the cycle time to accommodate a one cycle read and write would reduce

performance too much to make up for any complexity or cell savings. This means that the RAM

is two flits wide and read and written two flits at a time. The RAM used has two ports, read and

write, that operate independently and simultaneously.

The FIFO RAM has registers for write and read staging. The design also has a flit buffer for the

case when a flit comes into the node while a write is taking place. These registers are fashioned

into the model of the Register FIFO as shown. Because the RAM is read while write, there is no

bypass of the RAM.

 31

Buffer 1

Buffer 0

Buffer 4

RAM

Buffer 3

Buffer 2

To
Output Queue

From
Previous Node

Figure 10 RAM implementation of FIFO.

The operation is similar to the Register FIFO with the exception that whenever Buffer3 is valid a

write occurs. The register read address increments at the end of a read operation and doesn’t

change until the end on the next read operation. So the RAM output is valid for the second cycle

after the previous read. Since the read address doesn’t change this output remains valid until it’s

needed.

The following two timing diagrams illustrate the operation of the FIFO RAM in the filling and the

emptying operations. The first timing diagram assumes that a new flit is entering the node on

each cycle. The second timing diagram assumes there is a flit exiting the FIFO on each cycle.

The FIFO will operate with a mixture of these. They are shown separately for viewing clarity.

Additionally, the timing diagrams show consecutive cycles.

 32

Buf 4

Buf 3

Buf 2

Buf 1

Buf 0

RAM

Rd Adr

Wt Adr

-

-

-

-

Flit0

-

0

0

-

-

-

Flit1

Flit0

-

0

0

-

-

Flit2

Flit1

Flit0

-

0

0

-

Flit3

Flit2

Flit1

Flit0

0

0

Flit4

Flit3

Flit2

Flit1

Flit0

0

0

-

Flit5

Flit4

Flit1

Flit0

0

1

Flit6

Flit5

Flit4

Flit1

Flit0

0

1

-

Flit7

Flit6

Flit1

Flit0

0

2

Flit8

Flit7

Flit6

Flit1

Flit0

0

2

---Write--- ---Write--- ---Write---

RAM FIFO Filling

Buf 4

Buf 3

Buf 2

Buf 1

Buf 0

RAM

Rd Adr

Wt Adr

-

-

Flit8

Flit1

Flit0

0

3

-

-

Flit8

-

Flit1

0

3

-

-

Flit8

Flit3

Flit2

1

3

-

-

Flit8

-

Flit3

1

3

-

-

Flit8

Flit5

Flit4

2

3

-

-

Flit8

-

Flit5

2

3

-

-

Flit8

Flit7

Flit6

3

3

-

-

-

Flit8

Flit7

3

3

-

-

-

-

Flit8

3

3

----Read---

RAM FIFO Emptying

----Read--- ----Read---

Figure 11 Filling and emptying the FIFO.

The read address register and the write address register increment and wrap around. But, the

increment isn’t arithmetic, it uses a linear feedback shift register to avoid critical timing paths.

FIFO Size Options

We have examined 4 different buffer size options, 6 flits, 12 flits, 24 flits, and 48 flits. For the

RAM FIFO implementation a change in FIFO size is a simple matter of adding RAM words. This

slows the RAM’s operation time, but this isn’t the critical path. As the number of words increases

beyond each 2k, another bit is required in the RAM’s read and write address registers.

 33

Incrementing the address register length doesn’t affect the timing because of its linear feedback

shift register incrementer.

For those buffer sizes where the size of the RAM would be less than or equal to 2 words, a

Register FIFO implementation is used. As the overhead for managing the buffer is larger than

two flit registers.

Path Select Operation

While latched in the input buffer, the contents of the first flit of a packet are compared to the

node’s address. Based on the results of this comparison, the Next bit is set in this address flit.

This is performed in each node for the address of the next node. Then when the next node is

reached the Next bit can be used directly, instead of waiting for the address compare to take

place.

Based on the Next bit, a destination output for the packet is selected. If the Next bit is off; i.e.

this dimension’s destination address does not match this node’s address, the selection is simple.

The packet requests an output in the same direction. If the Next bit is set, this flit is discarded by

the select logic and on the following cycle the path selected is determined by the +/- bits. For the

cascaded crossbar implementations, the cascade stage is inserted between the X and Y

dimension. This has the effect of simplifying the logic.

Figure 11 is representative of the logic used. It shows the address match and path select logic

for the P input of a bidirectional VCT cascaded crossbar node. Other node types and other input

buffers have similar implementations. Varying in number of request destinations, lower NAND

fan-in, and misc. fan-outs. The signals used for control are described below.

 34

Go for Cascade

Eat Flit

Won Arbitration

X Adr in Buffer
Address Match

V H T Data

Request X+ Request X- Request Cascade

T
H
V

Next Control

Block for Previous X+ Request

Requests From Other Lanes

Block for Previous X- Request

Block for Previous C Request

Set Next

Signal Meaning
Request_X+ Signals that this flit wants to go in the X+ direction. This signal goes

to arbitration logic in the X+ output queues.
Request_X- Signals that this flit wants to go in the X- direction. This signal goes

to arbitration logic in the X- output queues.
Request_Cascade Signals that this flit wants to go to the Cascade output queue. This

signal goes to arbitration logic in the Cascade output queues.
Eat_Flit Signals to advance the buffer but keep head bit. It’s used when

turning form X to Y or Y to P and we need to get rid of the address
flit. It is essentially Address_Match on the cycles when we have a
head and haven’t “eaten” all the address flits.

Set _Next Signals that the Next bit should be set.
Address_Match Signals that the address matches the next node’s address.
X_Adr_in_Buffer Signals that we haven’t “eaten” the X address flit yet.
Block_for_Previous_X+
Request

Signals that a lane in this channel already has a request for the X+
channel active. It blocks any requests by this lane.

Block_for_Previous_X-
Request

Signals that a lane in this channel already has a request for the X-
channel active. It blocks any requests by this lane.

Block_for_Previous_C
Request

Signals that a lane in this channel already has a request for the
Cascade channel active. It blocks any requests by this lane.

Requests from other Requests from other lanes of this channel. These signals are used

 35

lanes to determine Block_for_previous_Request.
Go_for_Cascade Signals that we have matched and “eaten” the X address flit and this

packet is destined for the Cascade output queue.
Won_Arbitration Signals that this request, whichever one is active, has won

arbitration at an output queue. This is the OR of all the appropriate
output queues’ arbitration won for this input buffer.

Figure 12 Path selection logic.

3.3 Output Implementation

Arbitration

Based on the requests made to it, the output port will select a requestor. This process is called

arbitration. Each output lane has a separate arbitration. If multiple lanes are sharing a physical

channel, only one can send a flit on any one cycle. The design of the arbitration logic takes

advantage of this. An arbitration is only allowed to take place on the cycles prior to the cycle

when the lane is able to send a flit on the physical channel. This allows only one of the lanes to

perform an arbitration at any one time.

The crossbar connections for an output, see Figure 4, determine which requests participate in the

arbitration. First, if there are multiple lanes per channel, all the requests from lanes of each

channel are ORed. Recall from the previous section that only one of these will be active. Then

one of the ORed requests creates a winner, see Figure 12. The results of the arbitration, the

winner signals, are distributed to three places:

• back to the path select logic, so a path can know if it won the arbitration,

• to the crossbar gating controls, so the flit can be gated to the output, and

• to the output queue control logic, to update the state machine control.

 36

X+ Wins X- Wins P Wins

Only 2 and 4 lane
designs have

these OR gates.

X+ Request (Lane D)

X+ Request (Lane C)

X+ Request (Lane B)

X+ Request (Lane A)

X- Request (Lane D)

X- Request (Lane C)

X- Request (Lane B)

X- Request (Lane A)

P Request (Lane D)

P Request (Lane C)

P Request (Lane B)

P Request (Lane A)

Allow Arbitration

Figure 13 Sample arbitration logic for a 4 lane design

Crossbar Structure and Connections

Two crossbar types are investigated, full-crossbar and cascaded-crossbar. In a cascaded-

crossbar design there are two crossbars. The first has P and X inputs and X and Cascade

outputs. There can be many P and X inputs and outputs depending on VCT/WH,

Bidirectional/Unidirectional, and the number of lanes. The second has Cascade and Y inputs and

Y and P outputs. The crossbar structure and connections have a great affect on the area and

timing of a router node.

 37

3.4 Buffer Sharing Options

No sharing

The first sharing option is no sharing. In this case each lane of each virtual channel has its own

dedicated RAM. In this implementation, the FIFO design uses an efficient design that uses 5 flit

registers and a RAM, and can operate without any wait cycles, even into and out of the RAM.

The RAM size needed is the size of the desired FIFO minus 4. The extra flit register is used only

while writing the RAM. The 5 flit registers are arranged like a hardware FIFO and are numbered

0, 1, 2, 3, and 4, with 0 being closest to the FIFO output and 4 closest to the FIFO input. The

RAM input and output is positioned between registers 2 and 1. Anytime flit registers 2 and 3 are

full, the RAM is written. It is continually read. The read address is changed when only register 0

is valid and it’s being read this cycle. Once flits go into the RAM, following flits must go into the

RAM to preserve the FIFO order, until the RAM runs dry. Because RAM cells take smaller area

than register bits in random logic, this implementation reduces the FIFO area by 1/6th on sizes

greater than 4.

Sharing within lanes of a channel

The second sharing option is sharing is within lanes of a virtual channel. If there is one lane per

virtual channel there is no sharing. If there are 2 or 4 lanes per virtual channel, these 2 or 4 lanes

share a single RAM and the RAM positions are shared between the lanes. The size of the RAM

is, (lanes sharing) * ((buffers per lane) – 4).

This implementation breaks the RAM into 8 or 16 partitions, depending on if 2 or 4 lanes are

sharing. A real design will use a RAM whose size is a power of 2, our area estimations don’t do

this. If we did, we would be forcing a particular characteristic of the ASIC technology on the

results, making them less general. The partitions are assigned to a lane on an ‘as needed’ basis.

A small linked list is used to keep track of which lane is assigned to each RAM partition and which

partitions are free. This linked list it implemented with register bits because it needs to operate in

a single cycle, and the RAM elements require 2 cycles to operate. The RAM partitioning allows

 38

plenty of assignment freedom and keeps the cost down. The design takes advantage of the fact

that only one flit is transferred per cycle to any of the lanes. So the RAM width can remain 2 flits.

Each lane now requires more than 5 flit registers though, depending on a worst case analysis of

flit arrival patterns. These extra flit registers and the RAM assignment linked list logic constitute

the overhead of sharing the RAM. As more lanes are shared, both components of the overhead

get larger.

Sharing within lanes and virtual channels of a physical channel

The third sharing option is sharing within lanes of a virtual channel and virtual channels within a

channel. This affects the wormhole router only. Because the virtual channels share a physical

channel, there is still only 1 flit per cycle transferred. This sharing case is similar to the one

above, except that now up to 8 lanes can share a RAM buffer and in the 8 lane case, the RAM is

partitioned into 32 partitions.

Sharing within all lanes and channels

The fourth sharing option is within the entire node, excluding the processor inputs. In the

bidirectional wormhole case, there are 4 physical channels into the node that the shared RAM

must serve. This means that 4 flits can enter the node and all may need to go into the RAM. So

the RAM datapath must be 8 flits wide. This makes the design very expensive. Now instead of 5

flit registers per lane, there must be 16 plus whatever number is needed to hold flits that a lane

can receive while other lanes are writing the RAM. A worst case analysis shows that in the 1 lane

per virtual channel case, 14 extra flit registers are needed. This is the big area adder. In

addition, the RAM needs additional output ports, 4 total, if we are to keep the same performance.

 39

4 Cycle-Level Network Simulation

We use a register transfer level simulator to measure capacity and latency. Since our designs are

synchronous, the simulator can be cycle-driven and validation with the hardware model is simple.

We assume an internode routing time of one cycle, based on our assumption from section 2.1.1.

We use three communication patterns: random, hot-spot, and random-near. For the random

load, all destinations are equally probable. For the hot-spot load, we use a similar scheme as

described in [3], four destinations are four times as likely as the others. For the near-random

load, the coordinates of the destination are chosen independently for each dimension, likelihood

of a destination is inversely proportional to its distance from the source.

We use two packet sizes, 6 flits and 24 flits. These sizes were chosen to represent the transfer of

a word and a small cache line transfer, respectively. Also, the smaller packets typically span a

small number of nodes in transit while the larger packets span the entire path through the

network. Together they offer two qualitatively different workloads.

The load is presented in terms of the expected number of flits injected per node per cycle. We

prefer this measure to that of fraction of overall capacity in that it forces separate evaluation for

each communication pattern.

Our primary choice of performance measure is network load capacity. One reason for this is its

intrinsic importance. The other is the observation, repeated numerous times, that the switching

mode, buffer size, number of lanes, and other parameters which are the objects of this study all

have only a small effect on latency until saturation is approached and then the effect is quite

predictable [12]. The latency/load graph in Figure 13 depicts this effect. There are three

`bundles' of series: one each for unidirectional WH, bidirectional mesh WH, and bidirectional

torus WH. The bundles are formed around configurations with matching internode bandwidth.

 40

The bidirectional and unidirectional VCT series, if shown, would be superimposed on their WH

counterparts. Within each bundle, the capacity measure, which indicates where the series

becomes vertical, is therefore sufficient to characterize the particular series.

A run consists of a single combination of network, load, communication pattern, and packet size.

A run terminates either after 80,000 cycles or when the network goes into saturation. The first

50,000 cycles are used for transient removal; thereafter latencies are recorded. Generally,

steady-state is reached after only a few thousand cycles: the extra cycles are used to increase

the sensitivity of the saturation point measurement by making it more likely that a network running

even slightly above capacity will saturate.

Saturation is determined to have taken place if the injector queue of any node overflows its

capacity of 200 flits. This criterion is justified because it can only be caused by prolonged back

pressure that is very unlikely to be caused by a local hotspot created in a load significantly less

than the saturation point.

Each combination of network, communication pattern, and packet size was simulated with

respect to a number of loads (typically 12-15) which converged about the saturation point. Thus

most of the latency/load points recorded are at and beyond the knees of the latency/load graphs

where maximum sensitivity is required. The maximum load that does not cause saturation is

determined to be the capacity of the network. The standard deviation on the capacity measure

was found to be .011 flits per node per cycle.

 41

Figure 14 Shown is a graph of latency versus applied load for a number of switching
designs with the random communication pattern and a packet size of 5 flits.
Measurements were taken using the RTL simulator. The three ‘bundles’ of series
correspond to the unidirectional torus wormhole, the mesh wormhole, and the
bidirectional wormhole configurations respectively.

 42

5 Results

We present results for simulated performance, latency, area, timing, and some cost-effective

designs. Then we present some results on buffer sharing, a comparison to an output buffered

design, and finally some observations on our experiments.

5.1 Simulated Performance

Results are presented in several tables each having a similar but slightly obscure format. To

save space in the captions we describe that format here and thereby also summarize the switch

configurations we have tested. Each cell contains a measured attribute, e.g. capacity or

frequency, for a particular switch design.

The columns are differentiated by switching mode (VCT or WH), wiring (unidirectional or

bidirectional), wraparound or not (mesh/torus), and other attributes particular to a switching mode.

For WH, we measured both standard and T3D-style virtual channel selection (marked whSt and

whT3D). For VCT we measured both deadlock prevention strategies, strict and relaxed (marked

vctStr and vctRel). There is only a single column for the mesh topology: it is much more likely to

be advantageous for wormhole networks and it does not require virtual channel selection.

The rows are differentiated by total lanes per dimension and by buffer size. Each design is

duplicated for 1, 2, and 4 lanes per (virtual) channel. The offsets are because i) bidirectional

networks have double the channels as unidirectional networks and because ii) WH torus

networks have two virtual channels per direction per dimension while VCT networks only have

one.

The following tables 4 to 9 show the performance, in flits / cycle, for the design options

investigated.

 43

Table 4 Performance with random communication pattern and a packet size of 6.

 Unidirectional Bidirectional
Lns/Bfsz whSt whT3D vctStr vctRel mshwh whSt whT3D vctStr vctRel

1 / 6
1 / 12 0.088 0.161
1 / 24 0.155 0.189
1 / 48 0.188 0.211
2 / 6 0.287
2 / 12 0.171 0.199 0.180 0.227 0.333 0.422 0.442
2 / 24 0.197 0.229 0.221 0.239 0.367 0.514 0.526
2 / 48 0.212 0.241 0.246 0.255 0.390 0.585 0.596
4 / 6 0.389 0.441 0.546
4 / 12 0.223 0.240 0.236 0.247 0.427 0.525 0.638 0.632 0.712
4 / 24 0.244 0.255 0.253 0.255 0.450 0.605 0.722 0.750 0.769
4 / 48 0.253 0.264 0.270 0.268 0.471 0.675 0.780 0.797 0.792
8 / 6 0.441 0.626 0.694
8 / 12 0.251 0.263 0.465 0.712 0.780 0.750 0.784
8 / 24 0.263 0.272 0.484 0.788 0.804 0.825 0.820
8 / 48 0.272 0.277 0.490 0.825 0.839 0.838 0.848
16 / 6 0.710 0.739
16 / 12 0.792 0.780
16 / 24 0.827 0.804
16 / 48 0.837 0.832

Table 5 Performance with random communication pattern and a packet size of 24.

 Unidirectional Bidirectional
Lns/Bfsz whSt whT3D vctStr vctRel mshwh whSt whT3D vctStr vctRel

1 / 6
1 / 12
1 / 24
1 / 48 0.165 0.166
2 / 6 0.189
2 / 12 0.126 0.096 0.240
2 / 24 0.152 0.171 0.266
2 / 48 0.172 0.197 0.209 0.198 0.309 0.358 0.445
4 / 6 0.268 0.272 0.315
4 / 12 0.176 0.190 0.319 0.295 0.347
4 / 24 0.195 0.213 0.343 0.403 0.446
4 / 48 0.216 0.233 0.227 0.234 0.413 0.480 0.484 0.512 0.523
8 / 6 0.298 0.341 0.352
8 / 12 0.213 0.225 0.334 0.401 0.422
8 / 24 0.232 0.239 0.392 0.465 0.491
8 / 48 0.244 0.258 0.429 0.485 0.510 0.520 0.534
16 / 6 0.386 0.377
16 / 12 0.450 0.416
16 / 24 0.476 0.502
16 / 48 0.486 0.506

 44

Table 6 Performance with hot-spot communication pattern and a packet size of 6.

 Unidirectional Bidirectional
Lns/Bfsz whSt whT3D vctStr vctRel mshwh whSt whT3D vctStr vctRel

1 / 6
1 / 12 0.141 0.094
1 / 24 0.157 0.134
1 / 48 0.163 0.157
2 / 6 0.206
2 / 12 0.144 0.161 0.172 0.154 0.225 0.234 0.244
2 / 24 0.159 0.176 0.178 0.172 0.237 0.246 0.270
2 / 48 0.169 0.183 0.246 0.255 0.242 0.270 0.297
4 / 6 0.266 0.326 0.363
4 / 12 0.176 0.176 0.176 0.174 0.284 0.361 0.388 0.390 0.439
4 / 24 0.184 0.183 0.182 0.188 0.298 0.384 0.418 0.422 0.463
4 / 48 0.186 0.190 0.187 0.188 0.309 0.405 0.441 0.458 0.474
8 / 6 0.289 0.401 0.417
8 / 12 0.187 0.186 0.302 0.435 0.433 0.427 0.465
8 / 24 0.188 0.192 0.312 0.450 0.450 0.454 0.464
8 / 48 0.191 0.195 0.319 0.463 0.469 0.463 0.478
16 / 6 0.429 0.450
16 / 12 0.448 0.448
16 / 24 0.469 0.469
16 / 48 0.474 0.474

Table 7 Performance with hot-spot communication pattern and a packet size of 24.

 Unidirectional Bidirectional
Lns/Bfsz whSt whT3D vctStr vctRel mshwh whSt whT3D vctStr vctRel

1 / 6
1 / 12
1 / 24
1 / 48 0.188 0.211
2 / 6 0.162
2 / 12 0.117 0.096 0.182
2 / 24 0.134 0.148 0.203
2 / 48 0.154 0.165 0.169 0.159 0.227 0.225 0.273
4 / 6 0.225 0.230 0.253
4 / 12 0.152 0.162 0.239 0.268 0.279
4 / 24 0.166 0.169 0.258 0.322 0.359
4 / 48 0.176 0.178 0.176 0.178 0.286 0.375 0.390 0.380 0.432
8 / 6 0.242 0.309 0.315
8 / 12 0.169 0.176 0.277 0.360 0.364
8 / 24 0.186 0.180 0.293 0.389 0.398
8 / 48 0.188 0.188 0.307 0.420 0.435 0.450 0.472
16 / 6 0.322 0.330
16 / 12 0.373 0.384
16 / 24 0.427 0.416
16 / 48 0.455 0.461

 45

Table 8 Performance with near communication pattern and a packet size of 6.

 Unidirectional Bidirectional
Lns/Bfsz whSt whT3D vctStr vctRel mshwh whSt whT3D vctStr vctRel

1 / 6
1 / 12 0.107 0.173
1 / 24 0.169 0.206
1 / 48 0.206 0.225
2 / 6 0.317
2 / 12 0.189 0.214 0.186 0.246 0.380 0.462 0.490
2 / 24 0.218 0.246 0.238 0.263 0.429 0.553 0.605
2 / 48 0.234 0.262 0.270 0.274 0.465 0.645 0.684
4 / 6 0.458 0.530 0.666
4 / 12 0.244 0.261 0.258 0.270 0.506 0.619 0.772 0.761 0.829
4 / 24 0.265 0.277 0.277 0.281 0.558 0.724 0.834 0.885 0.860
4 / 48 0.281 0.287 0.292 0.291 0.591 0.788 0.868 0.881 0.879
8 / 6 0.527 0.745 0.788
8 / 12 0.277 0.285 0.570 0.848 0.853 0.855 0.885
8 / 24 0.292 0.295 0.579 0.887 0.876 0.877 0.893
8 / 48 0.298 0.302 0.615 0.893 0.889 0.895 0.891
16 / 6 0.806 0.825
16 / 12 0.887 0.900
16 / 24 0.893 0.888
16 / 48 0.888 0.902

Table 9 Performance with near communication pattern and a packet size of 24.

 Unidirectional Bidirectional
Lns/Bfsz whSt whT3D vctStr vctRel mshwh whSt whT3D vctStr vctRel

1 / 6
1 / 12
1 / 24
1 / 48 0.133 0.173
2 / 6 0.212
2 / 12 0.141 0.120 0.263
2 / 24 0.169 0.185 0.312
2 / 48 0.190 0.214 0.216 0.223 0.362 0.394 0.458
4 / 6 0.300 0.311 0.328
4 / 12 0.191 0.209 0.349 0.390 0.450
4 / 24 0.212 0.232 0.417 0.463 0.448
4 / 48 0.244 0.251 0.262 0.246 0.459 0.503 0.499 0.504 0.535
8 / 6 0.319 0.371 0.401
8 / 12 0.234 0.246 0.380 0.448 0.488
8 / 24 0.253 0.259 0.436 0.540 0.506
8 / 48 0.272 0.277 0.499 0.510 0.546 0.530 0.556
16 / 6 0.411 0.414
16 / 12 0.459 0.488
16 / 24 0.553 0.499
16 / 48 0.539 0.540

 46

5.2 Latency

In order for a packet to come into the node there must be room in the node for the packet. There

is some handshaking that goes on between the transmitter node and the receiver node. For VCT

this handshaking is simple and can be easily spread over multiple cycles. Because the nature of

VCT guarantees that packets can’t be halted mid-packet. For WH this handshaking is more

complex and can be spread across two or more cycles by careful management of buffer space.

The requirements of the handshaking time are less stringent than the other times, so this really

doesn’t play into the latency.

Flit 3
Flit 4

-

Flit 2

Flit 2
Flit 3

-

Flit 1

Flit 1
Flit 2

-

Flit 0

Flit 0
Flit 1

-

-

Flit 0
-
-

-

-
-
-

-

InBuf 0
InBuf 1
InBuf 2

•
•
•

OutBuf

Select Path
Arbitrate

Crossbar

1 2 3 4 5 6

Figure 15 Packet latency through node.

When a packet comes into the node we first must decide which input buffer to place it in. We

start filling buffers from Buffer 0. Buffers are filled in order, that is, if Buffer 2 has valid data, then

Buffer 1 and Buffer 0 must also have valid data. In order to decide which buffer to place an

incoming flit in we do three two things. Firstly, we determine if a flit is being transferred from

Buffer 0 to a node output. This determination is simple for all but the first flit of a packet. In the

case of the first flit, this is the end of the arbitration path. Second, we determine which is the

lowest numbered empty buffer. This is equivalent to a priority encode of the number of buffers.

The logic design is optimized for the path that results when the first flit wins its output arbitration

and starts transmitting data.

 47

When the flit in Buffer 0 is a packet head we must determine where it wants to go. First, its

destination address is compared to this node’s address. (Say, X address) Since we assume

each node is specifically designed for its address this path reduces to an inverter and AND gate.

If the address doesn’t match, the packet continues in the same direction. If the address matches,

this flit is “eaten” and on the next cycle the address is compared to this node’s address of the next

dimension. (Say, Y address) In any case, a request is made to the appropriate output queue.

We’ve called this address decode.

Because of lane multiplexing, at most one new header flit will enter the node on each physical

channel at a time. Path selection for an output channel by one header flit block path selection

requests for this same output channel from all other input buffers from the same input channel.

e.g. If in the X+ input channel, lane A requests an X+ output channel, all other lanes of the X+

input channel are blocked from making requests to the X+ output channel. They can make

requests to other output channels. When a packet completes it stops blocking. The packet that

arrived at its Buffer 0 next is then allowed to make a request. In the event of a tie (lane A and

lane were transmitting to different output queues and they finished at the same time and both

have packets behind them) a one packet, randomly chosen, is allowed to request.

Each output queue lane will receive a request from each lane of each input queue that can

transmit a packet to it. The output queue lane will arbitrate. If an output queue lane isn’t busy, it

will arbitrate among the requestors and choose one. Because of lane multiplexing only one lane

of an output queue will be ready to arbitrate at a time.. Finally, the results of this arbitration must

be fed back to the logic along the path. See the accompanying drawing for a visual explanation.

After an output has selected an input, it can transfer flits directly from the input queue’s Buffer 0 to

the output queue through the crossbar. Our crossbars are implemented as a multiplexer for each

 48

output with an input for each possible source. The path through the crossbar is directly related to

the number of inputs and how fact the logic reduce these inputs to one output.

We’ve divided this up into cycles that are practical. The latency through our nodes is three

cycles. The first cycle has the flit going into the input buffer. The second cycle had the address

decode and the arbitration. The third cycle is through the crossbar. Each cycle had the delay

time for the appropriate path plus the FlipFlop setup and output delay time plus the delay for clock

skew and jitter. By using a logic design trick, we’ve cut out a little time from the second and third

cycles by not actually latching between these cycles, but by making this delay part of a two-cycle

path. This saves us some setup, output delay, and clock skew time. Because we only arbitrate

when Buffer 0 has a head flit, this isn’t too hard to do. Our control state machines control when

we use this two-cycle path or not. Our cycle time ends up being defined by the greater of:

crossbar cycle path delay

or

address decode>arbitration->crossbar path delay

2

Note that in a cascaded crossbar node, the latency is 3 cycles for X to X, Y to Y, or Y to P. But is

6 cycles for X to Y, or X to P. Also note that for nodes that have multiple lanes per channel, the

latency can be higher because each lane has to share a physical channel.

5.3 Area

The cell area we determine is the area in mm2 that a router node would occupy in LSI Logic’s

G10-p Cell Based 0.18 micron technology. The base design was coded in Verilog HDL. The

Synopsys logic synthesis tools were run on this design using LSI Logic’s G10-p as the target

technology. This yielded area estimates for the base design. The router node design is very

 49

modular. There are input buffers, output queues, and a very small amount of logic in-between.

This makes evaluating the options easier because they are a change to one of the modules.

The design options were evaluated in either of two ways. Some options were coded into Verilog

and the cell area was determined with the Synopsys logic synthesis tools. The FIFO size,

crossbar, and lane multiplexing options were determined this way. The input buffer sharing

options were determined by investigating the logic of the base design and shared FIFO designs

and scaling.

The G10-p RAM cell characteristics were examined and a two port, 1read 1write, asynchronous

RAM was chosen as the one used for these designs. (M10P211LA) Using the data points for

RAM size in words and bit width and cell area, a formula was developed that would provide cell

areas for data points not listed in the databook. The RAM area is determined for all RAM options

without forcing the number of words to a power of 2. This would unnecessarily distort the area

results to an implementation in a particular technology and make the results less general.

Then formulas were created for the various design options. These formulas are in the form of

Visual Basic programs used in a Microsoft Excel spreadsheet. A sample program follows. This is

for a bidirectional virtual cut-through node with cascaded crossbar. The main function calculates

two major parts, fifoarea and crossbararea. fifoarea is basically a count of the number of input

queues from the Crossbar times the area for an input queue with the particular FIFO size ,

number of lanes, and sharing option. crossbararea is a count of the output queues times their

size. The functions IQ_bivct and OQ determine the size of a single input and output queue.

'bidirectional virtual cut-through, cascaded crossbar
Function bivct(lanes, fifo, share)
Dim l, fifoarea, crossbararea
If (s = 2) Then
 s = 1 'for bivct share 1 and 2 are the same
 End If
l = lanes
fifoarea = (6 * l) * IQ_bivct(fifo, l, share)
crossbararea = 2 * ((l * OQ(3 * l)) + ((2 * l) * OQ(2 * l)))
bivct = fifoarea + crossbararea

 50

End Function

Function IQ_bivct(fifo_int, lanes, share)
Dim Base, rm
Dim fifo
fifo = fifo_int * 1#
Base = cells2mm(7032#)
If (fifo <= 4) Then
 share = 0 'no sharing for fifos <= 4
 End If
If (share = 0) Then
 rm = 1#
 End If
If (share = 1) Then
 rm = Switch(lanes = 1, 1#, lanes = 2, 1.53, lanes = 4, 2.25) 'reg multiplier
 End If
If (share = 2) Then
 rm = Switch(lanes = 1, 1#, lanes = 2, 1.53, lanes = 4, 2.25) 'reg multiplier
 End If
IQ_bivct = (rm * Base) + (ramarea(lanes * (fifo - 4#) / 2, 20, lanes) / lanes)
If (share = 3) Then 'vct node sharing uses this
 rm = Switch(lanes = 1, 4.92, lanes = 2, 5.42, lanes = 4, 6.75)
 IQ_bivct = (rm * Base) + (1.75 * ramarea(lanes * (fifo - 4#) / 2, 20, lanes) / lanes)
 End If
End Function

' ram area with no increments on #words or #bits
' good for up to 512 words, 72 bits
' w - words in RAM
' b - bit width of RAM
' rd - number of read ports
Function ramarea(w, b, rd)
Dim Area
If (w <= 0) Then
 ramarea = 0
 End If
Area = (180.6 + (6.839 * w)) + (42.29 + (1.217 * w)) * b
ramarea = (Area * 0.0001) * ((1 + rd) / 2)
End Function

Function OQ(ports)
OQ = cells2mm(374.3 + (225.7 * ports))
End Function

Function cells2mm(cells)
cells2mm = (cells / 3.2) / 13082
End Function

Figure 16 Visual Basic code for bidirectional VCT area.

The following two pages show the cell areas, in mm2 for the design options investigated. They

are extracted from a Microsoft Excel spreadsheet.

 51

Table 10 Area of designs with no input buffer sharing.

 Bidirectional –Cascaded Crossbar Bidirectional – Full Crossbar
Lns/Bfsz mshwh whSt whT3D vctStr VctRel mshwh whSt whT3D vctStr vctRel

1 / 6 1.75 1.35
1 / 12 1.81 1.81 1.81 1.40 1.40 1.40
1 / 24 1.92 1.92 1.92 1.49 1.49 1.49
1 / 48 2.15 2.15 2.15 1.68 1.68 1.68
2 / 6 3.35 3.61 3.61 2.20 2.57 2.57
2 / 12 3.52 3.73 3.73 3.52 3.52 2.33 2.66 2.66 2.33 2.33
2 / 24 3.85 3.95 3.95 3.85 3.85 2.58 2.82 2.82 2.58 2.58
2 / 48 4.53 4.40 4.40 4.53 4.53 3.09 3.16 3.16 3.09 3.09
4 / 6 6.99 7.04 7.04 3.95 4.51 4.51
4 / 12 7.55 7.38 7.38 7.55 7.55 4.34 4.75 4.75 4.34 4.34
4 / 24 8.68 8.05 8.05 8.68 8.68 5.14 5.22 5.22 5.14 5.14
4 / 48 10.92 9.40 9.40 10.92 10.92 6.73 6.18 6.18 6.73 6.73
8 / 6 13.34 13.34 8.68 8.68
8 / 12 14.27 14.27 9.45 9.45
8 / 24 16.14 16.14 11.00 11.00
8 / 48 19.88 19.88 14.08 14.08

Table 11 Area of designs with input buffer sharing between lanes.

 Bidirectional –Cascaded Crossbar Bidirectional – Full Crossbar
Lns/Bfsz mshwh whSt whT3D vctStr vctRel mshwh whSt whT3D vctStr vctRel

1 / 6 1.75 1.35
1 / 12 1.81 1.81 1.81 1.40 1.40 1.40
1 / 24 1.92 1.92 1.92 1.49 1.49 1.49
1 / 48 2.15 2.15 2.15 1.68 1.68 1.68
2 / 6 3.35 3.61 3.61 2.20 2.57 2.57
2 / 12 4.59 3.73 3.73 4.59 4.59 2.33 2.66 2.66 2.33 2.33
2 / 24 4.92 3.95 3.95 4.92 4.92 2.58 2.82 2.82 2.58 2.58
2 / 48 5.60 4.40 4.40 5.60 5.60 3.09 3.16 3.16 3.09 3.09
4 / 6 6.99 7.04 7.04 3.95 4.51 4.51
4 / 12 12.59 9.52 9.52 12.59 12.59 4.34 6.26 6.26 4.34 4.34
4 / 24 13.72 10.19 10.19 13.72 13.72 5.14 6.74 6.74 5.14 5.14
4 / 48 15.96 11.54 11.54 15.96 15.96 6.73 7.69 7.69 6.73 6.73
8 / 6 13.34 13.34 8.68 8.68
8 / 12 22.67 22.67 16.38 16.38
8 / 24 24.54 24.54 17.92 17.92
8 / 48 28.28 28.28 21.01 21.01

 52

Table 12 Area of designs with input buffer sharing within a physical channel.

 Bidirectional –Cascaded Crossbar Bidirectional – Full Crossbar
Lns/Bfsz mshwh whSt whT3D vctStr vctRel mshwh whSt whT3D vctStr vctRel

1 / 6 1.75 1.35
1 / 12 1.81 1.81 1.81 1.40 1.40 1.40
1 / 24 1.92 1.92 1.92 1.49 1.49 1.49
1 / 48 2.15 2.15 2.15 1.68 1.68 1.68
2 / 6 3.35 3.61 3.61 2.20 2.57 2.57
2 / 12 4.59 4.18 4.18 4.59 4.59 3.13 2.66 2.66 3.13 3.13
2 / 24 4.92 4.40 4.40 4.92 4.92 3.38 2.82 2.82 3.38 3.38
2 / 48 5.60 4.85 4.85 5.60 5.60 3.89 3.16 3.16 3.89 3.89
4 / 6 6.99 7.04 7.04 3.95 4.51 4.51
4 / 12 12.59 11.49 11.49 12.59 12.59 7.91 4.75 4.75 7.91 7.91
4 / 24 13.72 12.17 12.17 13.72 13.72 8.71 5.22 5.22 8.71 8.71
4 / 48 15.96 13.52 13.52 15.96 15.96 10.30 6.18 6.18 10.30 10.30
8 / 6 13.34 13.34 8.68 8.68
8 / 12 40.27 40.27 9.45 9.45
8 / 24 42.14 42.14 11.00 11.00
8 / 48 45.88 45.88 14.08 14.08

Table 13 Area of designs with input buffer sharing within the entire node.

 Bidirectional –Cascaded Crossbar Bidirectional – Full Crossbar
Lns/Bfsz mshwh whSt whT3D vctStr vctRel mshwh whSt whT3D vctStr vctRel

1 / 6 1.75 1.35
1 / 12 6.26 6.26 6.26 5.11 5.11 5.11
1 / 24 6.46 6.46 6.46 5.28 5.28 5.28
1 / 48 6.85 6.85 6.85 5.60 5.60 5.60
2 / 6 3.35 3.61 3.61 2.20 2.57 2.57
2 / 12 13.25 13.64 13.64 13.25 13.25 9.63 10.09 10.09 9.63 9.63
2 / 24 13.84 14.04 14.04 13.84 13.84 10.07 10.39 10.39 10.07 10.07
2 / 48 15.01 14.82 14.82 15.01 15.01 10.95 10.98 10.98 10.95 10.95
4 / 6 6.99 7.04 7.04 3.95 4.51 4.51
4 / 12 32.31 32.20 32.20 32.31 32.31 21.88 22.33 22.33 21.88 21.88
4 / 24 34.28 33.38 33.38 34.28 34.28 23.27 23.16 23.16 23.27 23.27
4 / 48 38.20 35.73 35.73 38.20 38.20 26.05 24.83 24.83 26.05 26.05
8 / 6 13.34 13.34 8.68 8.68
8 / 12 71.19 71.19 56.41 56.41
8 / 24 74.46 74.46 59.11 59.11
8 / 48 81.01 81.01 64.51 64.51

 53

5.4 Timing

Timing is determined based on the designs being implemented in LSI Logic’s G10-p Cell Based

0.18 micron technology. Using the LSI Logic G10-p databook and Microsoft Excel, the delay for

NAND gates with various fan-in and fan-out are determined and put into a function. See

Appendix B. The paths were determined by inspection of the design. The logic is designed using

almost exclusively NAND gates. This simplifies the analysis and while it may alter the absolute

numbers to a small degree, it preserves the relative delays. Fan-in and fan-out are used as

parameters to the NAND delay function generated for Microsoft Excel. The paths are entered

into a Microsoft Excel spreadsheet and tabulated. See Appendix B.

The following table shows the resultant cycle times for some of the design options investigated.

The bidirectional nodes are cascaded crossbar, and the unidirectional nodes are full crossbar.

Refer to Appendix B for details on the components of the path delays and the determination of

the gate delays themselves.

As a general observation, the path delays are very small. This is because the router designs are

relatively simple compared to other kinds of logic, say like you’d find in a processor. The other

important observation is that the delay is roughly proportional to a constant, plus the log of the

number of ports in the crossbar,

k + .65 * log10(# crossbar ports).

Where k = .83 for the bidirectional case and k = .86 for the unidirectional case.

The constant is due to the path constants, flip-flop clock to output delay, setup time, clock skew

and jitter allotments, and the path delays that are independent of the number of ports (i.e.

address matching). The constant is slightly bigger for the unidirectional cases because these are

 54

implemented as full crossbars and the path selection logic has slightly more delay due to the

more turning options. The remainder of the path’s delay is in the arbitration and crossbar logic.

This logic has a delay proportional to the log of the number of ports in the crossbar.

Table 14 Cycle time summary.

 1 lane 2 lane 4 lane
Bidirectional VCT 1.18 1.39 1.50
Bidirectional Wormhole 1.39 1.49 1.70
Unidirectional VCT 1.18 1.39 1.53
Unidirectional Wormhole 1.42 1.53 1.73

Bidirectional Virtual Cut-Through

 1 lane 2 lane 4 lane
FIFO reg > CB > LM > Output reg
FIFO reg clk to output .41 .41 .41
Crossbar,lane multiplex .42 .63 .71
Output reg setup .10 .10 .10
clock skew, jitter .25 .25 .25

Total 1.18 1.39 1.47

FIFO > AD > PA > CB > LM > Output reg
FIFO reg clk to output .41 .41 .41
Addr match/path select .62 .58 .66
Path arbitrate .49 .73 .88
Crossbar,lane multiplex .42 .63 .71
Output reg setup .10 .10 .10
clock skew, jitter .25 .25 .25

Total 2.28 2.69 3.00
Total / 2 1.14 1.35 1.50

Cycle time (max of both) 1.18 1.39 1.50

Bidirectional Wormhole

 1 lane 2 lane 4 lane
FIFO reg > CB > LM > Output reg
FIFO reg clk to output .41 .41 .41
Crossbar,lane multiplex .63 .71 .92
Output reg setup .10 .10 .10
clock skew, jitter .25 .25 .25

Total 1.39 1.47 1.68

FIFO > AD > PA > CB > LM > Output reg
FIFO reg clk to output .41 .41 .41
Addr match/path select .70 .58 .66
Path arbitrate .67 .93 1.05
Crossbar,lane multiplex .63 .71 .92

 55

Output reg setup .10 .10 .10
clock skew, jitter .25 .25 .25

Total 2.76 2.98 3.39
Total / 2 1.38 1.49 1.70

Cycle time (max of both) 1.39 1.49 1.70

Unidirectional Virtual Cut-Through

 1 lane 2 lane 4 lane
FIFO reg > CB > LM > Output reg
FIFO reg clk to output .41 .41 .41
Crossbar,lane multiplex .42 .63 .71
Output reg setup .10 .10 .10
clock skew, jitter .25 .25 .25

Total 1.18 1.39 1.47

FIFO > AD > PA > CB > LM > Output reg
FIFO reg clk to output .41 .41 .41
Addr match/path select .63 .59 .67
Path arbitrate .53 .77 .92
Crossbar,lane multiplex .42 .63 .71
Output reg setup .10 .10 .10
clock skew, jitter .25 .25 .25

Total 2.33 2.74 3.05
Total / 2 1.17 1.37 1.53

Cycle time (max of both) 1.18 1.39 1.53

Unidirectional Wormhole

 1 lane 2 lane 4 lane
FIFO reg > CB > LM > Output reg
FIFO reg clk to output .41 .41 .41
Crossbar,lane multiplex .63 .71 .92
Output reg setup .10 .10 .10
clock skew, jitter .25 .25 .25

Total 1.39 1.47 1.68

FIFO > AD > PA > CB > LM > Output reg
FIFO reg clk to output .41 .41 .41
Addr match/path select .75 .63 .71
Path arbitrate .69 .96 1.08
Crossbar,lane multiplex .63 .71 .92
Output reg setup .10 .10 .10
clock skew, jitter .25 .25 .25

Total 2.84 3.05 3.47
Total / 2 1.42 1.53 1.73

Cycle time (max of both) 1.42 1.58 1.73

 56

5.5 Cost-Effective Designs

The following graphs show cost-effectiveness of each design option in terms of performance vs.

cell area for each combination of traffic pattern and packet size. The cost-effective designs,

those that have higher performance for a given cell area, are easy to spot because they are on

the top left frontier.

Figure 17 Legend for capacity versus area graphs.

 57

Figure 18 Capacity versus area graph for a random pattern with a packet size of 6, top,
and 24, bottom.

 58

Figure 19 Capacity versus area graph for a hot-spot pattern with a packet size of 6, top,
and 24, bottom.

 59

Figure 20 Capacity versus area graph for a near pattern with a packet size of 6, top, and
24, bottom.

 60

Table 15 Cost-effective designs.

Random, packet size of 6
 Unidirectional VCT – Relaxed, 1 lane, buffer size = 12
 Unidirectional VCT – Relaxed, 1 lane, buffer size = 24
 Unidirectional VCT – Relaxed, 1 lane, buffer size = 48
 Bidirectional VCT – Relaxed, 1 lane, buffer size = 12
 Bidirectional VCT – Relaxed, 1 lane, buffer size = 24
 Bidirectional VCT – Relaxed, 1 lane, buffer size = 48
 Bidirectional VCT – Relaxed, 2 lane, buffer size = 12
 Bidirectional VCT – Relaxed, 2 lane, buffer size = 24
 Bidirectional VCT – Relaxed, 2 lane, buffer size = 48
Random, packet size of 24
 Unidirectional VCT – Relaxed, 1 lane, buffer size = 48
 Bidirectional VCT – Relaxed, 1 lane, buffer size = 48
Hot-spot, packet size of 6
 Unidirectional VCT – Strict, 1 lane, buffer size = 12
 Unidirectional VCT – Strict, 1 lane, buffer size = 24
 Unidirectional VCT – Strict, 1 lane, buffer size = 48
 Bidirectional VCT – Relaxed, 1 lane, buffer size = 12
 Bidirectional VCT – Relaxed, 1 lane, buffer size = 24
 Bidirectional VCT – Relaxed, 1 lane, buffer size = 48
 Bidirectional VCT – Relaxed, 2 lane, buffer size = 12
 Bidirectional VCT – Relaxed, 2 lane, buffer size = 24
 Bidirectional VCT – Relaxed, 2 lane, buffer size = 48
Hot-spot, packet size of 24
 Unidirectional VCT – Relaxed, 1 lane, buffer size = 48
 Bidirectional WH T3D, 1 lane, buffer size = 24
 Bidirectional WH T3D, 1 lane, buffer size = 48
 Bidirectional VCT – Relaxed, 2 lane, buffer size = 48
Near, packet size of 6
 Unidirectional VCT – Relaxed, 1 lane, buffer size = 12
 Unidirectional VCT – Relaxed, 1 lane, buffer size = 24
 Unidirectional VCT – Relaxed, 1 lane, buffer size = 48
 Bidirectional VCT – Relaxed, 1 lane, buffer size = 12
 Bidirectional VCT – Relaxed, 1 lane, buffer size = 24
 Bidirectional VCT – Relaxed, 1 lane, buffer size = 48
 Bidirectional VCT – Relaxed, 2 lane, buffer size = 12
 Bidirectional VCT – Relaxed, 2 lane, buffer size = 24
Near, packet size of 24
 Unidirectional VCT – Relaxed, 1 lane, buffer size = 48
 Bidirectional VCT – Relaxed, 1 lane, buffer size = 48

 61

5.6 Buffer Sharing

Figure 20 shows the cost/benefit of buffer sharing for bidirectional WH networks. Table 16

identifies the cost-effective alternatives. Sharing has virtually no benefit for random loads but

some benefit for hot spot loads. This observation is similar to that of [3] although our sharing

schemes retain the deterministic routing algorithm. The sharing designs that prove cost-effective

under hot spot loads are those with a single lane per virtual channel and sharing between the pair

of lanes in a virtual channel pair. These have relatively low area overhead and no added latency.

Table 16 Cost-effective designs with sharing.

Random
 No sharing, 1 lane, 6 flit buffer
 No sharing, 1 lane, 12 flit buffer
 No sharing, 1 lane, 24 flit buffer
 No sharing, 1 lane, 48 flit buffer
Hot-spot
 No sharing, 1 lane, 6 flit buffer
 No sharing, 1 lane, 12 flit buffer
 No sharing, 1 lane, 24 flit buffer
 No sharing, 1 lane, 48 flit buffer
 Sharing among lanes in a virtual channel pair, 1 lane, 48 flit buffer
 Sharing among all lanes in a node, 1 lane, 24 flit buffer
 Sharing among all lanes in a node, 1 lane, 48 flit buffer

 62

Figure 21 Buffer sharing capacity versus area graphs for random and hot-spot patterns
with a packet size of 6.

 63

5.7 Comparison to an Output Queue Design

We investigate an output queue design, after the SP2 implementation [21], to verify that we aren’t

missing something fundamental. We try to keep the design optimized for our choice of

technology and application in the same manner as for our other designs. We discover that we

are not able to make some of the optimizations we had made for the input queue designs.

Particularly bothersome is the requirement that the pointer array be written or read in one cycle.

(Our input queue designs are able to spread an array read or write over two cycles.)

The cell area and timing characteristics of this design follow. When we use the upper bound on

performance of 1 flit per node per cycle to get an upper bound for the performance of the output

queue design, we see that it is not cost-effective for the Random or Near traffic patterns. For the

Hot Spot traffic pattern we believe that the performance of the output queue design will be

reduced by the same factors that reduced the performance of the other designs and that the

output queue design will not be cost-effective for the Hot Spot traffic pattern either.

Table 17 Output Queue Design Characteristics.

Buffer Size Area (mm2) Cycle Time Performance Upper Bound
6 Not practical because register portion exceeds buffer size.
12 2.38 3.05 ns .328 flit/node/ns
24 2.82 3.11 ns .322 flit/node/ns
48 3.69 3.19 ns .313 flit/node/ns

5.8 Experiments and Observations

Topology, latency, and capacity

For reasons discussed above, the only latency results presented are those shown in Figure 13.

With no congestion, latencies of the three topologies are related to the average path length: k for

the unidirectional torus, about 2/3 k for the mesh, and 1/2 k for the bidirectional torus. However,

since the injection time is a significant part of the latency, 2 times the packet size or 10 in Figure

 64

13, and identical for all three topologies, the average path length may not be the most critical

aspect of changing topology for small networks. Rather, it is the effect on capacity.

There are three related reasons why topology affects capacity: i) differences in total internode

bandwidth , ii) the shorter path length gets packets out more quickly and so they interfere less

with each other, and iii) the intrinsic variation in quality among the buffer load balancing

opportunities. These latency/bandwidth effects can be seen in Figure 13 as follows. The level of

the `flat parts' of each bundle are due to differences in average path length while the locations of

the knees are given by differences in the capacity-related properties.

WH virtual channel selection

This and the next several sets of observations are based on Tables 4 through 9.

For bidirectional torus WH networks, T3D virtual channel selection was found to extremely

effective with increases in capacity of up to 30% over the standard method. The advantage is

diminished with the number of channels, however. This is because lanes within virtual channels

are selected dynamically. Therefore, in a configuration with, say, four total lanes per direction,

the two pairs of lanes are selected statically while the lanes within the virtual channels are

selected dynamically. As the number of lanes increases, the quality of the initial selection

becomes less important.

The impact of optimized channel selection is much less pronounced for the unidirectional torus.

This is somewhat surprising because of the dramatic reduction in channel imbalance due to T3D-

style optimization.

The impact of optimized virtual channel selection method is also less for non-random

communication patterns. This may be because both unidirectional and bidirectional selection

tables were optimized for a random load. Performance versus the near-random load can

 65

certainly be improved by recomputing the lane selections, but the hot-spot load, which is

inherently unpredictable, is more problematic.

VCT buffer control

Relaxing the VCT buffer control policy increases the usable buffer space for packets entering X

from the input and Y from X. As expected, the improvement is most pronounced the smaller

buffer sizes and is particularly important when routing the 24 flit packets with 48 flit buffers.

Size of buffers

Increasing the buffer size has the predictably positive effect on capacity. The improvement starts

to tail off only for the designs with the largest total buffer capacity. For packets larger than 24

flits, larger buffers may be called for.

Number of buffers

Dally, in his study of virtual channel flow control, keeps the total buffer size constant while dividing

that space among from 1 to 16 lanes [8]. Although not tabulated separately, we have done this

for a buffer size of 48 per direction. In most cases, the improvement in network capacity when

the number of lanes per (virtual) channel is increased from 1 to 2 was significant while the

improvement from 2 to 4 was slight, and, in some cases, negative. For the bidirectional WH torus

networks, the improvement was much greater with standard virtual channel selection than with

the optimized version. Clearly this is another manifestation of the diminishing return of increasing

the number of lanes.

When area and cycle time are accounted for, the 4 lane per (virtual) channel designs are clearly

poor. For VCT designs, 2 lanes per channel is often cost-effective. For WH designs, 2 lanes per

virtual channel (4 lanes per direction per dimension) is almost never cost-effective.

 66

Effect of Topology

The unidirectional networks were found to be cost-effective only for the very simplest designs

which have no bidirectional equivalent, VCT with one lane per channel which equates to one lane

per dimension. In the case of two lanes per dimension, mesh WH with one lane per direction per

dimension was found to be better than either unidirectional VCT or WH with two lanes per

direction per dimension. In general, however, mesh networks were also found to be cost-

effective only were there was no bidirectional equivalent, that is, in the case with one lane per

direction per dimension with small buffer size.

Wormhole versus virtual cut-through switching

One difference is that VCT networks can be created with a single buffer per node per ring. Such

a WH network can only be constructed by either removing the wrap-around connections or

adding buffers. Therefore cost-effective VCT networks exist in niches where WH networks do

not.

For the two buffer per ring case, VCT retains a distinct advantage in capacity, up to 10% greater

for random loads, 8-14% for hot-spot loads, and up to 8% for near-random loads. As discussed

earlier, this disparity in differences is due to the different ways buffers are selected, static for WH

and dynamic for VCT. For reasons stated above, the near-random comparison is probably not

valid and the performances are probably closer than shown. However, the hot-spot load, which is

much more likely to occur in practice than a purely random load, accentuates the VCT advantage.

As the number of buffers increases and the initial static selection becomes less important, WH

and VCT performance converges.

Certain mesh and bidirectional torus WH configurations also have niches where they are the most

cost-effective. These are the lowest cost mesh WH networks and the bidirectional torus WH

networks with buffer sizes smaller than twice the packet size.

 67

Accounting for area and operating frequency

Figures 16 to 18 contain the plots of network capacity in flits per node per nanosecond versus

switch area in cells. The cost-effective designs are those toward the left and top of each graph.

The four or five best designs for each combination of communication pattern and packet size are

identified.

Figures 16 to 18 combine three sets of results: i) the operating frequencies, ii) that the cell area,

and iii) the capacity measures. Putting these together it is clear that an architect working on an

application where area is important will be tempted to only select candidate switches from the left

edges of the graphs. Specifically:

• If increasing the number of lanes per direction to four or beyond was questionable from the

cycle-based capacity results alone, accounting for the slower clock shows that it is clearly not

cost-effective.

• The decision on larger buffers is less clear-cut, but the capacity/area graphs are again

illuminating. The designs with larger buffers cannot be eliminated out-right for the reason that

another design has both lower cost and better performance. Yet, a doubling of area appears

to yield only a few percent increase in capacity.

Buffer Sharing

Figure 20 shows the cost/benefit of buffer sharing for bidirectional WH networks. Table 17

identifies the cost-effective alternatives. Sharing has virtually no benefit for random loads but

some benefit for hot spot loads. This observation is similar to that of [3] although our sharing

schemes retain the deterministic routing algorithm. The sharing designs that prove cost-effective

under hot spot loads are those with a single lane per virtual channel and sharing between the pair

of lanes in a virtual channel pair. These have relatively low area overhead and no added latency.

 68

In the hot-spot graph, one of the central queue designs appears cost-effective, in reality it is not.

In Figure 20 we do not penalize the central queue designs for output contention overhead which

would certainly eliminate the 8% advantage which had been achieved at a cost of a factor of 2.5

increase in area.

 69

6 Conclusions

In this work we have endeavored to exhaustively explore the design space of low-cost

multicomputer networks including issues in switching, lane selection, buffer size, topology, routing

algorithm, and packet size.

Virtual Cut-Through is examined and found to be both more and less like Wormhole switching

than previously described. More in that virtually all of the critical hardware including multi-lane

channels can be identical to that of WH switches. Less in that VCT has its own deadlock issues

and is open to a different lane selection paradigm. It has been stated elsewhere that VCT versus

WH routing is a tradeoff between buffering and congestion. We suggest that for small packets

and equal buffering, it is really mostly the difference between static and dynamic lane selection.

Each design was characterized in two ways: with and RTL simulator that measured its capacity

with respect to several workloads, and by synthesizing it to obtain its cell area and operating

frequency. These results are analyzed with respect to the various parameters. Finally, the most

promising designs are determined.

 70

References

[1] Aoyama, K., and Chien, A. A. The Cost of adaptivity and virtual lanes in a wormhole router.

Journal of VLSI Design (1994).

[2] Bolding, K. Non-uniformities introduced by virtual channel deadlock prevention. Tech. Rep.

UW-CSE-92-07-07, Dept. of Comp. Sci. and Eng., U. of Washington, Seattle, WA 98195,

1992.

[3] Bolding, K., Fulgham, M., and Snyder, L. The case for adaptive routing. IEEE Trans. on

Computers C-46, 12 (1997), 1281-1292.

[4] Bolotski, M, et.al. Abacus: A 1024 Processor 8ns SIMD Array. ???.

[5] Carbonaro, J., and Verhoorn, F. Cacallino: The teraflops router and NIC. In Proc. of Hot

interconnects Symposium IV (1996).

[6] Chien, A. A. A cost and speed model for k-ary n-cube wormhole routers. In Proc. of Hot

Interconnects ’93 (1993).

[7] Dally, W. J. Performance analysis of k-ary n-cube interconnection networks. IEEE Trans. on

Computers C-39, 6 (1990), 775-785.

[8] Dally, W. J. Virtual channel flow control. IEEE Trans. on parallel and Distributed Systems 3,

2 (1992), 194-205.

[9] Dally, W. J., and et al. The message processor: A multicomputer processing node with

efficient mechanisms. IEEE Micro 12, 2 (1994), 194-205

[10] Dally, W. J., and Seitz, C. L. The torus routing chip. Distributed Computing 1 (1986), 187-

196.

[11] Dally, W. J., and Seitz, C. L. Deadlock free routing in multiprocessor interconnection

networks. IEEE Trans. on Computers C-36, 5 (1987).

[12] Duato, J., Yalamanchili, S., and Ni, L. Interconnection Networks: An Engineering Approach.

IEEE Comuter Socieity Press, Los Alamitos, CA, 1997.

[13] Frazier, G. L. Buffering and Flow Control in Communication Switches. PhD thesis, Los

Angeles, CA, 1995.

 71

[14] Galles, M. Scalable pipelined interconnect for distributed endpoint routing: The SPIDER

chip. In Proc. of Hot Interconnects Symposium IV (1996).

[15] Herbordt, M. C., and Weems, C. C. An emperical study of datapath, memory hierarchy, and

network in massively parallel array architectures. In Proc of the 1995 Int. Conf. on

Computer Design (1995), 546-551.

[16] Kermani, P., and Kleinrock, L. Virtual cut-through: A new computer communication

switching technique. Computer Networks 3 (1979), 267-286.

[17] Leighton, F. T. Average case analysis of greedy routing algorithms on arrays. In Proc. 2nd

Symposium on Parallel algorithms and Architectures (1990), pp. 2-11.

[18] LSI Logic Corp. G10-p cell Based ASIC Products. Milpitas, CA, 1997.

[19] Rexford, J. Tailoring Router Architectures to Performance Requirements in Cut-Through

Networks. PhD thesis, Dept. of Computer Science and Engineering, U of Michigan, 1996.

[20] Scott, S., and Thorson, G. Optimized routing in the Cray T3D. In Proc. of the Workshop on

Parallel Computer Routing and Communication (1994), pp. 281-294.

[21] Stunkel, C. B., and et al. The SP2 high-performance switch. IBM Systems Journal 34, 2

(1995), 185-204.

