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• FPGAs are far more different from uniprocessors
than MPPs are from uniprocessors, and 

• the process of parallelizing code for MPPs, while
challenging, is still better understood and supported
than porting codes to FPGAs.

Lawrence Snyder stated the three basic parameters for
the MPP portability problem.3 First, a parallel solution
using P processors can improve the best sequential solu-
tion by a factor of P, at most. Second, HPC problems
tend to have third- or fourth-order complexity, and so
parallel computation, while essential, offers only mod-
est benefits. Third, “the whole force of parallelism must
be transferred to the problem, not converted to ‘heat’ of
implementational overhead.” 

Researchers have addressed the portability problem
periodically over the past 30 years, with well-known
approaches involving language design, optimizing com-
pilers, emulation, software engineering tools and meth-
ods, and function and application libraries. It is generally
agreed that compromises are required: Either restrict the
variety of architectures or scope of application, or bound
expectations of performance or ease of implementation.
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A ccelerating high-performance computing
(HPC) applications with field-programmable
gate arrays (FPGAs) can potentially deliver
enormous performance. A thousand-fold par-
allelism is possible, especially for low-precision

computations. Moreover, since control is configured into
the logic itself, overhead instructions—such as array
indexing and loop computations—need not be emu-
lated, and every operation can deliver payload. 

At the same time, using FPGAs presents significant
challenges1 including low operating frequency—an
FPGA clocks at one-tenth that of a high-end micro-
processor. Another is simply Amdahl’s law: To achieve
the speedup factors required for user acceptance of a
new technology (preferably 50 times),2 at least 98 per-
cent of the target application must lend itself to sub-
stantial acceleration. As a result, HPC/FPGA application
performance is unusually sensitive to the implementa-
tion’s quality. 

The problem of achieving significant speedups on
a new architecture without expending exorbitant
development effort, and while retaining flexibility,
portability, and maintainability, is a classic one. In
this case, accelerating HPC applications with FPGAs
is similar to that of porting uniprocessor applica-
tions to massively parallel processors, with two key
distinctions: 

Achieving High Performance
with FPGA-Based Computing
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designed 12 methods to avoid generating implementa-
tional heat while using FPGAs to accelerate several bioin-
formatics and computational biology (BCB) applications.
Table 1 categorizes the methods according to the type of
support required, such as programming tools, libraries,
or programmer awareness of the target architecture.

We chose a standard PC with an FPGA coprocessor on
a high-speed bus; to motivate using a nonstandard archi-
tecture, we sought to achieve a 50 times speedup factor. 

We selected widely used applications with high poten-
tial parallelism, and preferably, low precision. In terms
of programming effort, we considered a few months to
a year or two (depending on potential impact) as being
realistic. Our methods followed standard FPGA design
procedures, and were implemented primarily using the
VHSIC Hardware Description Language (VHDL) sup-
ported by our LAMP tool suite.4

We selected these methods for their ease of visual-
ization; they are neither exhaustive nor disjoint. In
addition, we avoided low-level issues related to logic
design and synthesis in electronic design automation,
as well as high-level issues such as partitioning and
scheduling in parallel processing. Although we focused
on our own BCB work, the methods apply largely to
other domains in which FPGAs are popular, such as
signal and image processing. 

APPLICATION RESTRUCTURING
The first four methods address the restructuring HPC

applications generally require to enable substantial
FPGA acceleration.

Method 1: Use an algorithm optimal for FPGAs
Having multiple plausible algorithms is common for

a given task—application and target hardware determine
the final selection. Frequently, the optimal algorithm for
an FPGA differs from that for a serial computer or MPP
when creating HPC/FPGA applications.

Application example. Modeling molecular interac-
tions, or docking, is a key computational method used
for in silico drug screening. A common technique digi-
tizes each molecule onto a 3D voxel grid, then corre-
lates a candidate drug molecule’s physical shape and
chemical affinities to pockets within a protein or other
biomolecule of medical interest. Fast Fourier transforms
are used to compute the 3D correlations.5

Sample HPC/FPGA solution. The preferred FPGA
algorithm is based on direct summation, which, despite
having higher asymptotic complexity, offers several
advantages. First, small data type sizes, such as 1-bit val-
ues for representing interior versus exterior information,
offer little advantage on a microprocessor. On an FPGA,
however, smaller processing elements allow for more
PEs in a given amount of computing fabric, and imple-
menting products of 1-bit values is trivial. 

In addition, systolic arrays for correlation are efficient.
The form we chose requires one input value and gener-
ates one output value per cycle, while holding hundreds
of partial sums in on-chip registers. Hundreds of dual-
ported, on-chip block RAMs (BRAMs) hold intermedi-
ate results, eliminating a potential bottleneck. 

Finally, our implementation, after a brief setup phase,
delivers one multiply-accumulate operation per clock
cycle per PE, times hundreds to thousands of PEs in the
computing array. Indexing, loop control, load/store
operations, and memory stalls require no additional
memory cycles.

Method 2: Use a computing mode 
appropriate for FPGAs

While FPGA configurations resemble high-level lan-
guage programs, they specify hardware, not software.
Because good computing modes for software are not
necessarily good computing modes for hardware,
restructuring an application can often substantially
improve its performance. For example, while random-
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Table 1. HPC/FPGA application design techniques.

Type of support required Methods supported  

Electronic design automation: languages and synthesis  Use rate-matching to remove bottlenecks
Take advantage of FPGA-specific hardware
Use appropriate arithmetic precision
Create families of applications, not point solutions
Scale application for maximal use of FPGA hardware 

Function/arithmetic libraries  Use appropriate FPGA structures
Use appropriate arithmetic mode 

Programmer/designer FPGA awareness  Use an algorithm optimal for FPGAs
Use a computing mode appropriate for FPGAs
Hide latency of independent functions
Minimize use of high-cost arithmetic operations  

None  Living with Amdahl’s law 
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access and pointer-based data structures are staples of
serial computing, they may yield poor performance on
FPGAs. Streaming, systolic, and associative computing
structures, and arrays of fine-grained automata, are
preferable.6

Application example. Finding information about a
newly discovered gene or protein by searching biomed-
ical databases for similar sequences is a fundamental
bioinformatics task. The most commonly used applica-
tions are based on the basic local alignment search tool,
which operates in multiple phases. BLAST first deter-
mines seeds, or good matches of short subsequences,
then extends these seeds to find promising candidates,
and finally processes the candidates in detail, often using
dynamic programming (DP) methods. 

Sample HPC/FPGA solution. The preferred method
avoids random accesses into a large
database; rather, it streams the data-
base through a two-dimensional sys-
tolic array. The first dimension
generates, on every cycle, the char-
acter-character match scores for a
particular alignment of the sequence
of interest versus the database. The
second dimension processes the
score sequence to find the maximal
local alignment. The tree structure
keeps the hardware cost low; pipelining assures gener-
ation of maximal local alignments at the streaming rate.

Method 3: Use appropriate FPGA structures
Certain data structures such as stacks, trees, and pri-

ority queues are ubiquitous in application programs, as
are basic operations such as search, reduction, and par-
allel prefix, and using suffix trees. Equally ubiquitous in
digital logic, the analogous structures and operations
usually differ from what is obtained by directly trans-
lating software structures into hardware.

Application example. Another important bioinfor-
matics task is analyzing DNA or protein sequences for
patterns indicative of disease or other functions funda-
mental to cell processes. These patterns are often repet-
itive structures, such as tandem arrays and palindromes
under various mismatch models.7 The asymptotically
optimal algorithms are often based on suffix trees; prac-
tical algorithms often include heuristics. 

Sample HPC/FPGA solution. A straightforward sys-
tolic array, a palindrome finder’s hardware implemen-
tation can test many possible palindrome lengths in
one cycle. 

Method 4: Living with Amdahl’s law
Amdahl’s law states that speeding up an application sig-

nificantly through an enhancement requires most of the
application to be enhanced. This is sometimes difficult to
achieve with existing HPC code—for example, profiling

often points to kernels that comprise just 60 to 80 percent
of execution time. The problem is especially severe with
legacy codes and may require a substantial rewrite. 

Not all is lost, however. The nonkernel code may lend
itself to substantial improvement; as its relative execu-
tion time increases, expending effort on its optimization
may become worthwhile. Also, combining computa-
tions not equally amenable to FPGA acceleration may
have optimized the original code; separating them can
increase the acceleratable kernel. 

Application example. Central to computational bio-
chemistry, molecular dynamics applications predict mol-
ecular structure and interactions. The MD computation
itself is an iterative application of Newtonian mechanics
on particle ensembles and alternates between two phases:
force computation and motion update. The force com-

putation comprises several terms,
some of which involve bonds. The
motion update and bonded force
computations are O(N) in the num-
ber of particles being simulated,
while the nonbonded are O(N log N)
or (N2). The latter comprises the
acceleratable kernel.

Sample HPC/FPGA solution.

Because MD codes tend to be highly
complex, it is sometimes necessary to

start from scratch to achieve high performance. An exam-
ple of an MD system, NAMD was also successfully accel-
erated with FPGAs.8 Another example is the ProtoMol
framework, which was designed especially for computa-
tional experimentation and so has well-defined partitions
among computations.9 We have found that the accelerat-
able kernel not only comprises more than 90 percent of
execution time with ProtoMol, but the modularity enables
straightforward integration of an FPGA accelerator.10

DESIGN AND IMPLEMENTATION
Methods 5-7 address logic- or FPGA-specific design

issues. 

Method 5: Hide latency of 
independent functions

Latency hiding is a basic technique for achieving high
performance in parallel applications. Overlap between
computation and communication is especially desirable.
In FPGA implementations, further opportunities arise:
Rather than allocating tasks to processors that must com-
municate with one another, latency hiding simply lays
out functions on the same chip to operate in parallel.

Application example. Returning to the example of
modeling molecular interactions, the docking algorithm
must repeat the correlations at three-axis rotations—more
than 104 for typical 10-degree sampling intervals.
Implementations on sequential processors typically rotate
the molecule in a step separate from the correlation. 

Latency hiding

is a basic technique 

for achieving 

high performance 

in parallel applications.
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Sample HPC/FPGA solution.Rather than performing
an explicit rotation, an FPGA solution retrieves the pix-
els in “rotated order.” The (i,j,k) of each voxel in index
space can be expressed as a linear transformation of the
original (x,y,z) coordinates and the rotation. The pre-
ferred technique is based on runtime index calculation
and has two distinctive features. First, index computa-
tion can be pipelined to generate indices at operating
frequency due to the predictable order of access to vox-
els. Second, because of the highly regular order of access,
the indexing hardware can be optimized to take up just
a few percent of a contemporary high-end FPGA’s area.

Method 6: Use rate-matching to 
remove bottlenecks 

Computations often consist of independent function
sequences, such as a signal passing
through a series of filters and trans-
formations. Multiprocessor imple-
mentations offer some flexibility in
partitioning by function or data, but
on an FPGA, functions are neces-
sarily laid out on the chip and so
function-level parallelism is built in
(although functions can also be
replicated for data parallelism). This
implies pipelining not only within,
but also across, functions.

Application example. DNA microarrays simultane-
ously measure the expression of tens of thousands of
genes, and are used to investigate numerous questions in
biology. One approach is to analyze on the order of a hun-
dred samples, each with tens of thousands of gene expres-
sions, to find correlations between expression patterns
and disease phenomena. The kernel operation is a series
of dot-product and sum (DPS) calculations feeding covari-
ance, matrix inversion, and regression (CIR) logic.

Sample HPC/FPGA solution. The FPGA’s power
comes from the parallel hardware it uses to handle a
problem. Usually the solution involves a very deep
pipeline hundreds or even thousands of stages long.
Difficulty arises, however, when successive functions
have different rates of sourcing and sinking data. The
solution is to rate-match sequential functions by repli-
cating the slower functions and then using them in rota-
tion for the desired throughput. In the microarray
kernel, the DPS units take about 10 times as long to sum
over vectors as the CIR units take to consume DPS
results—so DPS calculations are replicated that many
times per CIR.

Method 7: Take advantage of 
FPGA-specific hardware

FPGAs are often viewed as homogeneous substrates
that can be configured into arbitrary logic. In the past
five years, however, an ever larger fraction of their chip

area has been devoted to hard-wired components, such
as integer multipliers and independently accessible
BRAMs. For example, the Xilinx VP100 has 400 inde-
pendently addressable, 32-bit, quad-ported BRAMs; it
achieves a sustained bandwidth of 20 terabytes per sec-
ond at capacity. Using this bandwidth greatly facilitates
high performance and is an outstanding asset of current-
generation FPGAs.

Application example.In molecular dynamics, efficient
algorithms for computing the electrostatic interaction
often involve mapping charges onto a 3D grid. The first
phase of each iteration computes the 3D charge distrib-
ution, while the second phase locates each atom in that
field and applies a force to it according to its charges and
that region of the force field. Because atoms almost never
align to the grid points on which the field is computed,

trilinear interpolation uses the eight
grid points nearest to the atom to
determine field strength. A variation
of this computation uses tricubic
interpolation, which requires a 4 � 4
� 4 grid neighborhood, and thus 64
memory reads.

Sample HPC/FPGA solution. The
FPGA solution’s goal is to create a
structure that computes forces at a
rate of one per cycle, accounting for

unpredictable sequences of atom positions. Key to such
a structure is simultaneous access to all grid points sur-
rounding the atom. This in turn requires appropriate par-
titioning of the 3D grid among the BRAMs to enable
collisionless access, and also efficient logic to convert atom
positions into BRAM addresses. We have prototyped a
memory-access configuration that supports tricubic inter-
polation by fetching 64 neighboring grid-point values per
cycle. We have also generalized this technique into a 
tool that creates custom interleaved memories for access
kernels of various sizes, shapes, and dimensionality.

ARITHMETIC OPERATIONS
The next three methods deal with arithmetic opera-

tions on FPGAs.

Method 8: Use appropriate 
arithmetic precision

With high-end microprocessors having 64-bit data
paths, often overlooked is that many BCB applications
require only a few bits of precision. In fact, even the
canonical floating point of MD is often implemented
with substantially reduced precision, although this
remains controversial. In contrast with microprocessors,
FPGAs enable configuration of data paths into arbitrary
sizes, allowing a tradeoff between precision and paral-
lelism. An additional benefit of minimizing precision
comes from shorter propagation delays through nar-
rower arithmetic units.
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The FPGA’s power 

comes from the 

parallel hardware 

it uses to 

handle a problem.
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Application example. All BCB applications described
here benefit substantially from the selection of nonstan-
dard data type sizes. For example, microarray values and
biological sequences require only two to five bits, and
shape characterization of a rigid molecule requires only
two to seven bits. While most MD applications require
more than the 24 bits provided by a single-precision float-
ing point, they might not need double precision (53 bits).10

Sample HPC/FPGA solution. We return to the mod-
eling molecular interactions case study to illustrate the
tradeoff between PE complexity and degree of paral-
lelism. That study examined six different models describ-
ing intermolecular forces. Molecule descriptions range
from two to seven bits per voxel, and scoring functions
varied with the application. The number of PEs that fit
the various maximum-sized cubical computing arrays
into a Xilinx XC2VP70 ranged from 512 (83) to 2,744
(143), according to the resources each PE needed. Since
clock speeds also differed for each application-specific
accelerator, they covered a 7:1 performance range. If we
had been restricted to, for example, 8-bit arithmetic, the
performance differential would have been even greater.

Method 9: Use appropriate arithmetic mode
Microprocessors provide support for integers and

floating point, and, depending on multimedia features,
8-bit saturated values. In digital signal processing sys-
tems, however, cost concerns often require DSPs to have
only integers. Software can emulate floating point when
required; also common is use of block floating point.
FPGA’s analogous situation is that, although plausible,
single-precision floating points remain costly and should
be avoided if possible, with well-tuned libraries avail-
able. Alternatives include the block floating point, log
representations, and the semi-floating point.

Application example. The MD computation’s inner
kernel operation requires computing r-14 and r-8 (the
radius r between atoms), over a wide range, usually 
with a table lookup. We would generally use double-
precision floating points for further computations.

Sample HPC/FPGA solution. Careful analysis shows
that the number of distinct alignments that must be com-
puted is quite small even though the range of exponents
is large. This enables the use of a stripped-down floating-
point mode, particularly one that does not require a vari-
able shift. The resulting force pipelines (with 35-bit
precision) are 25 percent smaller than ones built with a
commercial single-precision (24-bit) floating-point library.

Method 10: Minimize use of high-cost
arithmetic operations

The relative costs of arithmetic functions are differ-
ent on FPGAs than on microprocessors. For example,
FPGA integer multiplication is efficient compared to
addition, while division is orders-of-magnitude slower.
Even if the division logic is fully pipelined to hide its

latency, the cost remains high in chip area, especially if
the logic must be replicated. On an FPGA, implement-
ing unused functions isn’t necessary; recovered area can
be used to increase parallelism. Thus, restructuring
arithmetic with respect to an FPGA cost function can
substantially increase performance. 

Application example. The microarray data analysis
kernel as originally formulated requires division.

Sample HPC/FPGA solution. We represent numbers
as rationals, with a separate numerator and denomina-
tor, replacing division operations with multiplication.
This doubles the required number of bits, but rational
values are needed only at a short, late segment of the
data path. Consequently, the additional logic required
for the wider data path is far lower than the logic for
division would have been.

SYSTEM AND INTEGRATION ISSUES
The final two methods deal with two familiar HPC

issues: flexibility and scalability. These methods differ
from the others in that they require design tools not
widely in use, either because they are currently propri-
etary11 or exist only as prototypes.4

Method 11: Create families of applications,
not point solutions

HPC applications are often complex and highly para-
meterized, resulting in variations in applied algorithms
as well as data format. Contemporary object-oriented
technology can easily support these variations, includ-
ing function parameterization. This level of parameter-
ization is far more difficult to implement in current
hardware description languages, but it enables higher
reuse of the design, amortizes development cost over a
larger number of uses, and relies less on skilled hard-
ware developers for each application variation.

Application example. Other essential methods for
searching biological databases are based on dynamic
programming. Although generally referred to by the
name of one particular variation, Smith-Waterman, DP-
based approximate string matching actually consists of
a large number of related algorithms that vary signifi-
cantly in purpose and complexity.

Sample HPC/FPGA solution. Achieving high perfor-
mance in HPC/FPGA applications requires careful 
tuning to application specifics, which limits component
reusability. Generally, programmable PEs rarely
approach tuned applications’ speed or resource 
efficiency. Reusable HPC/FPGA applications must 
resolve the conflicting requirements of generality and 
customization. 

In traditional hardware design systems, components
comprise black boxes with limited internal parameter-
ization. Reuse largely entails creating communication
and synchronization structures and connecting these 
to the memory subsystems. Moreover, in HPC/FPGA 
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systems, the innermost com-
ponents—the leaf data 
types and arithmetic expres-
sions—change between ap-
plications. System perfor-
mance thus depends on
memory, synchronization,
and communication, which
are the aspects most unfa-
miliar to traditional pro-
grammers. As with the
standard C library’s qsort(),
control and communication
are the reusable parts; inner
function blocks and data
types are the customiza-
tions—the opposite of what
typical design tools would
support.

The term application fam-
ily describes a computation
that matches this description, and DP-based approximate
string matching offers an example. Figure 1 illustrates the
application family’s hierarchical structure. Each level of
design hierarchy has fixed interfaces to the components
above and below in that hierarchy. The fixed interface
includes data types defined and used in that level, but pos-
sibly also passed through communication channels at
other levels. Within a hierarchical level, each component
type has several possible implementations, including def-
initions of its data elements. The fixed interface, however,
hides that variability from other design layers. 

Our initial implementation allowed more than 200
combinations of the three component types, with many
more variations possible through parameter settings.
This structure was quite natural in the object-oriented
algorithms we used but required more configurability
than VHDL features provide.

Method 12: Scale application for maximal use
of FPGA hardware

As the degree of parallelism typically dominates per-
formance, part of accelerator design consists of instan-
tiating as many PEs as the FPGA’s computing fabric will
support. The number of PEs depends, often nonlinearly,
on the attributes of both the application and FPGA.
Given the frequency at which larger FPGAs become
available, automated sizing of complex arrays will
become increasingly important for porting applications
among FPGA platforms.

Application example. All the case studies can be
scaled to use additional hardware resources. 

Sample HPC/FPGA solution. The desired number of
PEs in an application is always “as many as possible.”
Three factors that define any FPGA platform and appli-
cation are the:

• FPGA, which is characterized by quantities of each
type of computing resource;

• application family, which defines the structure of the
computing array; and

• member of the application family, which specifies
the PEs’ sizes.12

FPGA capacity has terms for each of the available
hardware resources, including hard multipliers and
BRAMs as well as general-purpose logic elements.
Depending on the application, any of the resources can
become the limiting one. 

The application family defines the computation
array’s geometry. As shown in Figure 2a, arrays can be
simple linear structures. Figure 2b illustrates an array
with two different architectural parameters—N1 rep-
resents the rectangle’s height and N2 its width. In this
case, the array can grow only in increments of whole
rows or columns; architectural parameters are not lit-
eral numbers of PEs. Computing arrays like those in
Figure 2c have multiple subsystems of related sizes and
different algebraic growth laws. Figure 2d represents a
tree-structured array, showing how arrays can grow
according to exponential or other nonlinear laws. One
subsystem can consume multiple types of FPGA
resources, as shown in Figure 2e, so any of the resources
can limit the computing array’s growth. Of course, a
computing array can include multiple architectural
parameters, nonlinear growth patterns, coupled sub-
systems growing according to different algebraic laws,
and multiple resource types.

Although the application family defines the comput-
ing array’s form, sizes of PEs in the array depend on the
specific family member. In string matching, for exam-
ple, PE size depends on the number of bits in the string

March 2007 55

Figure 1. Logical structure of application family for DP-based approximate string matching.
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element—for example, 2 bits for DNA or 5 bits for pro-
teins—and on the type of comparison performed.

A computing array’s size is an outcome of other design
features rather than a design input. Array dimensions
naturally grow when larger FPGAs offer more resources,
and they decrease when complex applications consume
more resources per PE. Sizing the array means choosing
architectural parameters to maximize a configuration’s
desirability, which a function represents. The “best”
architectural parameter values define the most desirable
array, as long as the array’s structure is valid for that
application family and the FPGA’s resource budget.
Automated sizing is possible within the experimental
LAMP design system4 but cannot be expressed in main-
stream design tools or methodologies. 

H igh-performance computing programmers are a
highly sophisticated but scarce resource. Such pro-
grammers are expected to readily use new technol-

ogy but lack the time to learn a completely new skill such
as logic design. As a result, developers have expended
much effort to develop design tools that translate high-
level language programs to FPGA configurations, but
with modest expectations of results. 

A subset of the 12 design methods we have described
must generally be applied for an HPC/FPGA application
to obtain more than a fraction of its potential perfor-
mance. The critical question is whether the methods’ goals
are compatible. In other words, what support would
enable an HPC programmer to use these methods? We
are encouraged that all of the methods we have described
appear to be within reach of the HPC/FPGA community.

While there is potential for enormous speedup in
FPGA-based acceleration of HPC applications, achiev-

ing it demands both selecting appropriate appli-
cations and specific design methods that ensure
such applications are flexible, scalable, and at
least somewhat portable. Such methods are
firmly entrenched in HPC tools and practices. 

HPC/FPGA hardware is only now emerging
from the prototype and early commercial
stages, so tools and techniques have not yet
caught up. Manual techniques or prototype
tools are addressing problems caused by cur-
rent HPC/FPGA infrastructure. For applica-
tions similar to what we’ve described here, the
most important issues involve educating novice
HPC/FPGA developers in new programming
models and idioms, creating arithmetic and
function libraries, and moving critical design
capabilities from prototypes into mainstream
design tools. ■
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