
Fast and Accurate NCBI BLASTP: Acceleration with
Multiphase FPGA-Based Prefiltering ∗

Atabak Mahram Martin C. Herbordt

Computer Architecture and Automated Design Laboratory
Department of Electrical and Computer Engineering; Boston University

Boston, MA 02215; USA; {herbordt|mahram}@bu.edu

ABSTRACT
NCBI BLAST has become the de facto standard in bioin-
formatic approximate string matching and so its accelera-
tion is of fundamental importance. The problem is that it
uses complex heuristics which make it difficult to simulta-
neously achieve both substantial speed-up and exact agree-
ment with the original output. We have previously described
how a novel FPGA-based prefilter that performs exhaus-
tive ungapped alignment (EUA) could be used to reduce
the computation by over 99.9% without loss of sensitivity.
The primary contribution here is to show how the EUA fil-
ter can be combined with another filter, this one based on
standard 2-hit seeding. The result is a doubling of perfor-
mance over the previous best implementation, which itself
is an order of magnitude faster than the unaccelerated origi-
nal. Other contributions include new algorithms for both the
original EUA and the 2-hit filters and experimental results
demonstrating their utility. This new multiphase FPGA-
accelerated NCBI BLASTP scales easily and is appropriate
for use in large FPGA-based servers such as the Novo-G.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles—
Styles—Heterogeneous (hybrid) systems; Pipeline processors;
J.3 [Life and Medical Sciences]: Biology and Genetics

General Terms
Algorithms, Design, Performance

Keywords
FPGA-Based Coprocessors, High Performance Reconfigurable
Computing, Bioinformatics, Biological Sequence Alignment

1. INTRODUCTION
A fundamental insight of bioinformatics is that biologi-

cally significant polymers such as proteins and DNA can
be abstracted into character strings (sequences). This al-
lows biologists to use approximate string matching (AM) to

∗This work was supported in part by the NIH through award
#R01-RR023168-01A1. Web: www.bu.edu/caadlab.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’10, June 2–4, 2010, Tsukuba, Ibaraki, Japan.
Copyright 2010 ACM 978-1-4503-0018-6/10/06 ...$10.00.

determine, for example, how a newly identified protein is re-
lated to those previously analyzed, and how it has diverged
through mutation. Fast methods for AM, such as BLAST
[2], are based on heuristics, and can match a typical se-
quence (a query) against a set of known sequences (e.g., the
millions in the NR database) in just a few minutes. More-
over, these heuristics only rarely cause significant matches
to be missed (< .1% in one study [15]). These remarkable
results have only increased the importance of BLAST: it is
now often used as the “inner loop” in more complex bioin-
formatics applications such as multiple alignment, genomics,
and phylogenetics.

Acceleration of BLAST is therefore of fundamental impor-
tance. For example, massively parallel servers for BLAST
have been constructed using the Blue Gene/L [22]. Also,
NCBI maintains a large server that processes hundreds of
thousands of searches per day [5, 17]. And for generic clus-
ters, mpiBLAST is one of the most popular of several par-
allel BLAST algorithms [6]. For acceleration, FPGAs have
probably been the most popular, with commercial products
from TimeLogic [24] and Mitrionics [18] and several aca-
demic efforts [10, 12, 16, 19, 20, 23].

Of the many versions of BLAST, NCBI BLAST [11] has
become a de facto standard. Public access is possible ei-
ther through download of code or directly through the large
web-accessible server at NCBI. This standardization moti-
vates the design criteria for accelerated BLAST codes: users
expect not only that performance be significantly upgraded,
but also that outputs match exactly those given by the orig-
inal system.

BLAST implementations run through several phases, de-
tails of which are given below, and return some number
of matches with respect to a statistical measure of likely
significance. Besides the variations in the heuristics used,
BLAST implementations also vary by target: within the
NCBI family, we are primarily concerned with BLASTN
(for nucleotide-nucleotide comparisons) and BLASTP (for
protein-protein comparisons). Although their logic is simi-
lar, we focus here on BLASTP. The changes in logic neces-
sary to support BLASTN are described elsewhere [21].

NCBI BLAST itself is a complex highly-optimized system,
consisting of tens of thousands of lines of code and a large
number of heuristics beyond those of the original algorithm.
There are also multiple interleaved execution paths. Cre-
ating an accelerated version that both matches the NCBI
BLAST output and delivers significant acceleration is there-
fore challenging. One approach is to profile the code and
accelerate the most heavily used modules. This can give

agreement of outputs, but may not achieve cost-effective
performance: there are many paths that add up to much
execution time. Accelerating enough of them may not be vi-
able, especially on an FPGA where code size translates into
chip area. A second approach is to restructure the code,
modifying or bypassing some heuristics. This can lead to
excellent performance, but is unlikely to yield agreement.
Academic FPGA-accelerated BLASTs [10, 12, 16, 19, 23,
26] have mostly followed one approach or the other. The
methods used by the commercial versions mostly are either
not publicly available or follow an academic version [18, 24].

In this work we use a third approach – prefiltering (also
suggested previously by Herbordt, et al. [9] and by Afratis,
et al. [1]). The idea is to quickly reduce the size of the
database to a small fraction, and then use the original NCBI
BLAST code to process the query. Agreement is achieved
as follows. The prefiltering is constructed to guarantee that
its output is strictly more sensitive than the original code:
that is, no matches are missed, but extra matches may be
found. The latter can then be (optionally) removed by run-
ning NCBI BLAST on the reduced database.

The primary result is a transparent FPGA-accelerated
NCBI BLASTP that achieves both output identical to the
original and a factor of 25x improvement in performance.
The mechanism is the primary intellectual contribution of
this work: a pair of highly efficient filters. The first im-
plements two-hit seeding, the second performs exhaustive
ungapped alignment. The overall significance of this work
is as follows:

• We believe CAAD BLASTP (after the name of our lab)
to be at least twice as fast as any previous accelerated
BLASTP that achieves agreement with NCBI BLAST.

• Since CAAD BLASTP is transparent NCBI BLASTP,
and requires only off-the-shelf components, it is likely
to be cost-effective and could achieve widespread use.

• CAAD BLASTP decomposes directly and is easy to
parallelize.

• Since FPGAs draw only a small fraction of the power of
high-end microprocessors, often less than 10W, FPGA-
based BLAST servers are likely to be cost-effective.

• Since CAAD BLASTP is based on prefiltering, inte-
gration into other versions of BLAST (e.g., parallel) is
straightforward.

The rest of this manuscript is organized as follows. We
begin with a review of BLAST, followed by an overview of
NCBI BLAST, especially in how it differs from the origi-
nal algorithm. Then comes the overall design, including the
mechanisms we use to guarantee agreement. After that is a
description of the filters themselves, followed by some prac-
tical concerns and results. We conclude with a discussion
and future work.

2. BACKGROUND

2.1 Basics of AM for Biological Sequences
We briefly describe biological sequence matching and the

classic BLAST algorithm. For details, please see one of the
surveys (e.g., [13]). An alignment of two sequences is a
one-to-one correspondence between their characters, with-
out reordering, but with the possibility of some number
of insertions or deletions (i.e., gaps or indels). In biolog-
ical AM, an alignment score between two (sub)sequences

is computed by combining the independently scored char-
acter matches, which themselves are determined a priori
by biological significance. The highest scoring alignment
between a query sequence of length m and a database of
length n can be found in time O(mn) using dynamic pro-
gramming (DP) techniques (e.g., Needelman-Wunsch and
Smith-Waterman).

database

y

database

ry

qu
er

y

…

qu
er …

a) b)a) b)

Figure 1: Conceptual alignment tableaux showing
distinction between DP and BLAST AM algorithms
(after Figure 5.5 in [13]).

Execution of Smith-Waterman is shown graphically in Fig-
ure 1a. Depicted therein is a tableau with the query on the
vertical and database on the horizontal axes, respectively.
Contents are the mn character-character match scores. DP-
based methods use a recurrence that is solved along the anti-
diagonal which progresses along the database as the compu-
tation progresses. The O(mn) complexity results from each
match score being involved in a small constant number of
operations.

For large databases, however, DP methods are impracti-
cal, motivating heuristic methods such as BLAST. BLAST
is based on an observation about the typical distribution of
high-scoring character matches in the DP alignment tableau:
there are relatively few overall, and only a small fraction are
promising. This promising fraction is often recognizable as
proximate line segments along the main diagonal.

The original BLAST algorithm has three phases: identi-
fying short sequences (words) with high match scores, ex-
tending those matches, and merging proximate extensions.
Figure 1b shows conceptually how BLAST reverses the di-
rection of the AM computation: unlike in DP, extensions
and mergers progress along the main diagonal. In the first
phase (seeding), the word size W is typically 3 for BLASTP
and significance is determined using a scoring matrix and
threshold score T (default 11). Nowadays, the preferred
method of seeding depends on their being two hits on a di-
agonal (ungapped alignment) within a certain distance A
(default 40).

In the second phase (extension), seeds are extended in
both directions to form high-scoring segment pairs (HSPs).
Extension stops when it ceases to be promising, i.e., when
the drop off from the last maximum score exceeds a thresh-
old X. An Evalue (expected value) is computed from the
raw alignment score and other parameters. Database se-
quences with a sufficiently good Evalue, as selected by de-
fault or by user, are reported. The third phase is nowadays
often replaced by Smith-Waterman – the O(nm) is not oner-
ous when n is a small fraction of the original.

2.2 NCBI BLAST Overview
NCBI BLAST adds a number of phases and options, which

we sketch here. There are two options, ungapped and gapped
(see Figure 2). Ungapped alignment proceeds initially as

just presented. In gapped alignment, extension and evalu-
ation are triggered only when ungapped alignment satisfies
the ungapped threshold. In gapped extension, the exten-
sion drop-off threshold X also depends on gap-opening and
gap-extension costs. NCBI BLAST uses Smith-Waterman
to complete gapped extension.

gapped option

word matching (seeding)

ungapped extension

gapped extension

evaluation

ungapped option

sequences (query, database)

similarity report

Figure 2: Overview of NCBI BLAST phases.

NCBI BLAST begins the evaluation phase by using an
empirically determined cutoff score (cutoff) to keep only
statistically significant HSPs. To improve sensitivity, a lower
score is tolerated if there are multiple HSPs in a particular
database sequence; the more HSPs, the lower the thresh-
old. These multiple HSP scores are combined using Poisson
and sum-of-scores methods for ungapped and gapped align-
ments, respectively. Finally, HSPs are organized into consis-
tent groups and evaluated with the final threshold Evalue.

The execution flow of the NCBI BLASTP core is shown
below with some details added. Note that there is no clear
boundary between ungapped and gapped operation. This
makes it difficult to substitute directly the modules for un-
gapped and gapped extension with corresponding FPGA
versions (as implied by Figure 2).

Seeding;

FOR each database sequence

Do ungapped extension;

Calculate cut-off score for HSP \

linked-list;

Build HSP list;

IF gapped alignment

DO gapped extension for each HSP \

in list;

Compute Evalue and reap HSP list \

(either ungapped or gapped);

END FOR

IF needed

Compute traceback;

IF gapped alignment,

Recompute alignments using S-W and reap;

Execution flow of NCBI BLASTP core

2.3 Target Systems
We briefly state our assumptions about the target systems

with FPGA-based accelerators. They are typical for current
products; details of appropriate FPGA-based systems can
be found, e.g., in [8].

• The overall system consists of some number of stan-
dard nodes. Typical node configurations have 1-4 ac-
celerator boards plugged into a high-speed connection
(e.g., the Front Side Bus or PCI Express). The host
node runs the main application program. Nodes com-
municate with the accelerators through function calls.

• Each accelerator board consist of 1-4 FPGAs, memory,
and a bus interface. On-board memory is tightly cou-
pled to each FPGA either through several interfaces
(e.g., 6 x 32-bit) or a wide bus (128-bit). 4GB-8GB of
memory per FPGA is currently standard.

• Besides configurable logic, the FPGA has dedicated
components such as independently accessible multi-
port memories (e.g., 1000 x 1KB) called Block RAMs
(or BRAMs) and a similar number of multipliers. FP-
GAs used in High Performance Reconfigurable Com-
puting typically run at 200 MHz, although with op-
timization substantially higher operating frequencies
can be achieved.

We have been developing CAAD BLAST using a partic-
ular reference system consisting of a standard high-end PC
with a Gidel PROCe III accelerator board. The FPGA is
an Altera Stratix III 260E, a 2007-era 65nm device. Its key
characteristic for this application is its BRAM count: there
are 864 1KB BRAMs and 48 18KB BRAMs.

All algorithms and implementations map immediately onto
similar systems (i.e., from other vendors for both boards and
FPGAs). CAAD BLAST also maps to multi-FPGA accel-
erators such as the Gidel PROCStar III, which has four FP-
GAs, and to large FPGA-based systems. For the latter we
are targeting the Novo-G, which has 192 FPGAs [4].

3. CAAD BLAST DESIGN

3.1 Filter Basics
CAAD BLAST uses three FPGA-based filters:

• The Two-Hit Filter is based on the two-hit seeding al-
gorithm. All alignments (all diagonals in Figure 1b)
are evaluated as to whether or not they contain a two-
hit seed. The output is a bit vector containing a 1/0
for each diagonal depending on whether or not the di-
agonal contains a seed. We base our Two-Hit Filter on
the two-hit seeding algorithm used by Mercury BLAST
and described in [12].

• The Exhaustive Ungapped Alignment (EUA) Filter
scores every possible alignment between the query and
the database. For each sequence in the database it
returns the scores of the highest scoring alignments.
We base our EUA Filter on the TreeBLAST algorithm
described in [10].

• The Exhaustive Gapped Alignment (S-W) Filter is
based on the Smith-Waterman algorithm and returns
the highest scoring gapped local alignments for each
sequence in the database. We base our SW filter on
the version of Smith-Waterman described in [3].

All three filters work on the same principal. Each occu-
pies some amount of chip area (in the FPGA) and holds a
copy of the query. It then executes as the database streams
through it from off-chip memory. The filter size (in chip
area) is related to the query size. Generally the filter uses

only a fraction of the chip area and so can be replicated
some number of times. If the query is very large, then the
filters still operate correctly, but have reduced performance
with a slowdown generally proportional to the query size.

Each filter thus runs in O(N), assuming that the query
sequence is a small multiple of what can fit on a current
FPGA, a characteristic of almost all proteins. Large protein
databases such as NR currently have nearly 4GB of data:
off-the-shelf FPGA plug-in boards (e.g., the XD1000 from
XtremeData [27] and the PROCe III from Gidel [7]) can hold
this in local memory and stream it through the FPGA in
about a second. This assumes the specifications of 333MHz
and 16 bytes per cycle with one character per byte.

Why multiple passes? Because for each phase the number
of filters per chip and, thus the performance, varies. For
example, for typical queries on our reference system: the
Two-Hit filter can process the entire memory bandwidth,
the EUA filter about a fifth that much, and the SW filter
about a quarter of that. Each filter reduces the amount of
work that needs to be processed by the next filter. The
following scenario is for gapped NCBI BLAST.

• The Two-Hit pass provides “hints” to the EUA filter
as to which diagonals can be skipped. As described
below, actually skipping diagonals is not cost-effective,
but making the EUA filters drastically more compact
is. After compaction, the EUA pass is almost as fast
as the two-hit pass.

• The EUA filter prunes at least 95% of the database so
that it need not be processed by the SW filter. Again,
the time is reduced to that of the Two-Hit pass.

• The S-W filter prunes the database to 0.1% of the orig-
inal. The reduced database is then processed by NCBI
BLASTP.

Inputs: query, database

NCBI BLAST starts

filters
Precompute filtering criteria

Ungapped filter: EUA filter (FPGA)

Gapped filter: Smith-Waterman (FPGA)
database’

database’’

database, bit vector

Ungapped filter: Two-Hit filter (FPGA)

Format filtered database
database

Formatted database’
or database’’

Original search
space info

NCBI BLAST modules

NCBI BLAST report

Figure 3: High-level Design of CAAD BLAST.

3.2 CAAD BLAST System Design
As just described, the basic design of CAAD BLAST is to

successively reduce the database (say, DB) without removing
any potential matches. First, DB is filtered by running the
Two-Hit filter and a set of hints generated. These, together
with DB are sent to the EUA filter and a reduced database

DB’ is generated. Then, for the gapped option, S-W is run to
generate a further reduced database DB”. Finally, DB” (DB’
for the ungapped option) is formatted and sent to NCBI
BLAST, together with the original parameters and query.

To accomplish this, two problems need to be solved. The
first is to get the numbers right. There are two parts: de-
termining the internal thresholds that NCBI BLAST would
use, especially cutoff, and correctly computing the Evalues
in the final report. The second and more serious problem
is that we need to ensure that DB” both (i) contains all
the sequences that NCBI BLAST would return, and (ii) is
sufficiently reduced so that the overhead of formatting DB”
does not overwhelm any potential performance gain. The
methods we use follow those described in [20].

Figure 3 shows the global structure of CAAD BLAST. In
the precompute module, the host uses logic from the NCBI
code to compute the various parameters needed to determine
cutoffs and Evalues for both ungapped and gapped options.
The EUA filter begins with the FPGA using these param-
eters, together with the query and database, to compute
the ungapped alignment scores. For the most promising se-
quences, scores are returned to the host, which uses them to
compute the Evalues and specify DB’. For the gapped op-
tion, a new threshold is computed and passed to the FPGA
where the contents of DB” are determined. Finally, the re-
duced database (either DB’ or DB”) is formatted to be pro-
cessed by NCBI BLASTP. To ensure that the Evalues match
those that would be computed by the original code, we also
pass the original search space information.

4. TWO-HIT FILTER

s

database position dx

a a aa

ry
 p

os
iti

on
s ax-k ax-j ax-i

qi
qj

i j
k

hits from
previous db
positions

ax-m+2

qu
e

Counter Frame

qk

…
…Bit Vector

Counters

two-hit
window
size = A

Figure 4: The Two-Hit filter is processing the xth
3-mer in the database sequence. There are three
hits. The hit on alignment ax−j is within A of a
previous hit, and so is part of a two-hit event. This
is determined by comparison with the corresponding
Counter value; its bit in the Bit Vector will be set.

The design of the Two-Hit filter is generally similar to that
used by Mercury BLAST in the seeding pass [12, 14]. There
are several algorithmic and implementation differences, how-
ever, which have two significant consequences:

• The Two-Hit filter does not use heuristics and so has
exact agreement with the two-hit seeding algorithm
used in NCBI BLAST.

• The Two-Hit filter is compact. For our reference de-
sign, 38 streams can be processed in parallel for small

proteins (size 100), 28 for average-sized proteins (size
500), and 14 for large proteins (size 2200).

In the rest of this section we present the algorithm, some
implementation details, and experimental results.

4.1 Algorithm Overview
We describe a single filter; the extension to multiple filters

operating in parallel follows immediately. We begin with
some notation, an overview of the algorithm, and a critical
observation.

Figure 4 shows the database on the horizontal axis and
the query on the vertical axis. Positions of each 3-mer are
referred to as dx for the database and qy for the query. Each
of the N −M −2 possible ungapped alignments between the
database and the query is represented by a diagonal; we refer
to each diagonal (alignment) as ai. The output of the Two-
Hit filter is a bit vector where each bit bi corresponds to an
alignment ai and tells whether or not ai has passed the filter.
That is, an alignment ai passes the filter if anywhere on the
diagonal there are two hits within the distance threshold A
(typically 40). If yes, then bi is set, otherwise it remains
cleared. For each alignment, the corresponding counter in
the Counter Frame holds the position of its most recent hit,
if any.

Secondary

wmer index from
database stream

Position list
primary table

Secondary
table bit

0
1
2

15623
15622DB FIFO

15624

The entry in primary table can be
interpreted in two ways based on
the secondary table bitthe secondary table bit

Secondary table

Position 3 STbPosition 1 Position 2

STbaddresscount

Figure 5: Shown is the Query 3-mer Position Table.

The primary data structure is the Query 3-mer Position
Table shown in Figure 5. The Position Table stores, for
each possible 3-mer, say WWW, the positions of all of the 3-
mers in the query that exceed the match threshold (typically
11) for that 3-mer. The Position Table has two parts, the
primary and the secondary tables. The primary table has
an entry for each of the 15625 (25x25x25) possible 3-mers
for a typical 25 character alphabet. For any 3-mer, if there
are 3 or fewer occurrences in the query, then its primary
table entry holds all of those positions. If there are more
than 3 occurrences, then the primary table entry contains
the number of occurrences and the address in the secondary
table where entries for those positions begin. A status bit
indicates the record type.

We now give an overview of the operation of the Two-Hit
filter. On iteration x, database 3-mer dx indexes the Position
Table. The query positions where matches occur, if any, are
retrieved. Figure 4 shows three hits, at query positions qi,
qj , and qk. These correspond, respectively to the ith position
on alignment ax−i, the jth position on alignment ax−j, and
the kth position on alignment ax−k.

This hit information is then used to determine whether
another hit has occurred on any of these diagonals within
the previous A positions (as shown in Figure 4 for alignment
ax−j). The method is to use a circular list (or frame) of M−2
counters, one for each alignment where there could be match
on the current iteration. For example, for a hit in alignment
ax−j , the counter (M − 3 − j) for that alignment is read,
compared with j, and updated. If the difference between j
and the previous value of the counter is less than A, then
this indicates a two-hit hit event for alignment ax−j and bit
bx−j in the bit vector is set. The counters for ax−k and ax−i

are also updated.
Critical for keeping the filter logic compact is for the logic

required to track each diagonal to be small. In particular,
for the Two-Hit filter only a single counter plus comparison
and update logic is required. That is, only the position of
the last hit needs to be saved. This may be non-obvious
since on any iteration, any of the last M − 2 alignments can
be affected. For each alignment, however, advancement is
monotonic: a hit on a later iteration will never be further
back on the diagonal than the previous one.

4.2 Implementation Details

Bit vectorith update unit
h dl %3

Update unit
Seed Position
Look-Up Unit

Bit vector
Counters

Bit vectorc Bit

buffer

hit positions
in query

w-mer

handles y%3
= i alignments

buffer

Update unit

Hit
generator

DB
Buffer

Bit vector
Counters

Bit vector

R
ou

tin
g

lo
gi

c Bit
vector

buffer

buffer buffer

w mer

merge
bit vectors

Update unit

Bit vector
Counters

buffer

hit packets:
alignment #

and position

Figure 6: Block diagram of the Two-Hit Filter.

Overall
The overall structure of the Two-Hit filter is given in Fig-
ure 6. The goal is to process the database at streaming rate.
To support this, the Two-Hit filter processes three hits at a
time. Both primary and secondary tables are structured to
enable the fetch of three query positions per cycle. If the
secondary table must be accessed, then streaming rate can-
not be maintained and the database stream may need to be
is throttled. Much of this is prevented, however, by using a
judiciously selected FIFO size for the input stream and ad-
justing the stream rate accordingly. Most performance loss
occurs when there are a large number of occurrences O of
a 3-mer in the query. The number of cycles per database
position, given that there are O occurrences of the 3-mer at
that position, is roughly equal to max(1,�O/3�).
Query 3-mer Position Table
The primary table has 15625 entries. Each entry has 3 query
positions plus 1 status bit. For queries of size less than 1024,

this information fits in a single 32-bit word. The secondary
table is negligible for small queries, but grows to have size
similar to the primary table as query size approaches 2K.
The secondary table is again organized to have 3 positions
per entry. The FPGA in the reference design has 864 M9K
(256x36b) BRAMs and 48 M144K (4Kx32b) BRAMs each of
which is dual ported. These support 30-40 Position Tables
for small queries and 16 for queries of size 2K.

Query Position Look-Up Unit
Input: 3-mer from the current head of the database stream.
Outputs: Positions qm of that 3-mer in the query (three at
a time).
Operation: Translates the 3-mer into the entry position.
Fetches corresponding positions, if any. If secondary table
look-up is required, fetches 3-mers from there until done.

Hit-Generator
Inputs: The current position di of the database stream and
the query positions qm for up to three hits at a time from
the Query Position Fetch Unit.
Outputs: For each hit, a “hit packet” containing the align-
ment ai and the position pi on that alignment.
Operation: The Hit Generator performs the necessary trans-
lation.

Update Units
Inputs: Hit information (ai,pi) for up to three hits at a
time.
Outputs: Update of the frame counters corresponding to
the ai with the positions of the new hits pi. Update the bit
vector.
Operation: Determine for each ai whether two hits within A
positions have occurred. This requires reading, comparing,
and updating the frame counters.

Routing Logic
To support three parallel updates, the bit vector is inter-
leaved (mod 3). Since multiple hits can be routed to any hit
generator on any cycle, hit packets may need to be buffered.

Note that while we have used fixed numbers in the pre-
sentation, e.g., 3-mer rather than w-mer and an alphabet of
25 characters, the design supports all standard parameter
choices.

Table 1: Number of Two-Hit filters that fit on the
reference design for selected sequences from the NR
database.

Query # of Two- # of Hits # of excess cycles
Size Hit Filters per DB char. per DB char.

81 38 0.064 0.0002
217 35 0.206 0.0100
490 28 0.567 0.0524
838 25 0.891 0.2203

1204 21 1.244 0.3062
2205 14 2.570 0.8790

4.3 Design Decisions and Experimental Results
For the two-hit filter, performance depends on the number

of filters which, in turn, depends on the FPGA resources
needed for each filter instance. The logic required is trivial,
consisting of less than 1% of that available on the reference
FPGA. The on-chip memory required, on the other hand,

is the critical resource. Table 1 shows the number of two
hit filters that can be instantiated, using the design just
described, for a selection of sequences from the NR database.

The primary design decision therefore has to do with the
structure of the Position Table, in particular the number of
positions per entry in the primary table. For most query
sizes (less that 1K) this number (3) falls out immediately
from the convenience of packing that number of 10-bit ad-
dresses into a single 32-bit word. Also for small queries,
having, say, 100 filters does little good: that is far more
than the number of streams that can be supported by the
memory interface in the reference design.

For larger queries, there is the possibility of optimization
by trading off table size for number of filters. That is, by
having more entries in the primary table, some accesses to
the secondary table can be avoided. But the larger table
size allows fewer filters to be fit on the FPGA and so fewer
database streams to be processed in parallel.

The right two columns in Table 1 give an indication of this
trade off. The number of hits per database character (3-mer)
is independent of the structure of the Position Table. For
queries of size 1K, the expected number of hits per position
is only slightly more than 1; having three position per entry
allows the primary table to account for most 3-mers. For
the query of size 2205, however, the secondary table must be
accessed frequently. The rightmost column illustrates this:
it shows the number of excess cycles per database character;
i.e., the number of extra cycles needed due to accessing the
secondary table. For small queries, there are virtually no
excess cycles, but for the 2205 query, nearly half the cycles
are due to secondary table accesses.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 500 1000 1500 2000 2500

cy
cl

es
 p

er
 c

ha
r

query size

Two-Hit Filter Performance versus Query Size

Figure 7: Graph shows performance as a function of
query size for the Two-Hit filter in the reference de-
sign. Both the number of filters and the throughput
per filter vary with query size.

The performance of the Two-Hit filter phase depends sub-
stantially on the query size. There are two effects: the num-
ber of filters per chip and the amount of throttling that needs
to be done because of references to the secondary table. Ex-
perimental results are shown in Figure 7 in terms of cycles
per character as a function of query size. For typical pro-
tein sequences, size 100 to 500, the throughput is from 25-30
characters per cycle. For large proteins, size 2000 to 2500,
the throughput is 6-7 characters per cycle. This enables

processing of the NR database, which has 3.53G residues, in
less than 1s for most queries and about 5s for large queries.

5. EXHAUSTIVE UNGAPPED ALIGNMENT
FILTER

C G W W W M Y FC
streaming
database

For this alignment, generate
character-character match scores

8-2-3 -3 -3 -1 8-2

M C L K K W Y F query string

score sequence
of this alignment

Leaf Leaf Leaf Leaf

Intern. Intern.

Intern.
Output the max local

leaf nodes

non-leaf nodes

Score “covered”
subsequences

p
alignment score
for this alignment

Figure 8: TreeBLAST structure for m = 8.

The Exhaustive Ungapped Alignment filter (EUA) is based
on the TreeBLAST scheme described in [10]. The Tree-
BLAST filter has two essential properties. First, it exhaus-
tively evaluates every possible ungapped alignment between
query and database. And second, it is fully pipelined: it
evaluates the database at streaming rate. The exhaustive
nature of TreeBLAST is its strength, but also its weakness:
it examines each alignment without regard to any possible
information about the likelihood that alignment being sig-
nificant. In this section we describe the EUA filter: how
the TreeBLAST structure can be modified to take advan-
tage of just such likelihood information as is generated from
the Two-Hit filter.

5.1 Original TreeBLAST
The key idea behind TreeBLAST is that ungapped align-

ment can be performed with iterative merging using a tree
structure (see Figure 8) that forms a two dimensional sys-
tolic array. The database sequence is streamed across the
leaves of the tree (top) and one complete score sequence (the
set character-character match scores for that alignment) is
generated every cycle. The score sequences are processed by
the tree, which is also pipelined. For each alignment, the
score of the best local alignment emerges after a few cycle
delay. The nodes of the tree consist of a some basic compar-
ison logic; the tree size is generally limited by the number
of BRAMs on the FPGA. In our reference design, the max-
imum tree size (unfolded) is about 1800. The structure can
be modified in several ways to run more efficiently and to
handle various cases.

Folding. To handle queries larger than can fit on chip, the
tree is “folded” (see Figure 9). Rather than generating a
scoring sequence every cycle, 2i cycles are required, where
i is the number of folds. On each cycle, 1/2i of the score
sequence is generated. That is, the tree is used on multiple
iterations to handle the sequence. In the left side of Figure 9,
the tree in Figure 8 is folded once. During cycle 1 the first

L L L L L L

NL NL

NL

NL

NL

NL

NL

control
control

control

1 fold 2 folds

Figure 9: An 8 leaf tree folded once and twice. L =
leaf node, NL = non-leaf node.

half of the sequence is scored; during cycle 2, the second
half. The alignment score for the first half reaches the root
during cycle 4 and is combined with the alignment score of
the second half during cycle 5. The right side of Figure 8
shows two folds; processing is analogous.

db1

db2

tree1

tree2

tree1

tree1

(a) different queries (b) identical queries

db

Figure 10: Replicated trees in two configurations:
double throughput for one query, or process two
queries.

Replication. When queries are small enough to fit multi-
ple trees on the chip, they are replicated to take advantage
of available resources. Alternatively, if the query consists of
a number of sequences, several can be evaluated simultane-
ously (Figure 10). Which is used depends on whether the
bottleneck lies in the memory interface or on the chip.

5.2 Use of Prior Knowledge
The idea is to couple the database stream with a bit vector

indicating which alignments can safely be ignored (as gen-
erated by the Two-Hit filter). For example, a one in the bit
vector corresponds to a position where the alignment must
be processed, a 0 where it can be skipped.

We now look at the skipping mechanism. This necessarily
involves a tradeoff between the amount of processing that
can be avoided and the hardware support required. As al-
ways, the more additional hardware that is required, the
greater the reduction in parallelism and thus performance.

General Skipping.
The idea behind general skipping is, on every cycle, to look
ahead in the bit vector to find the next “one” (correspond-
ing to the next alignment to be examined) and then slide
the database the correct number of positions. Ideally, gen-
eral skipping takes only the number of cycles equal to the
number of ones in the bit vector. The additional hardware
required, however, is complex. For the bit vector, the “look-
ahead” logic is similar to a leading one detector used, e.g.,
in a floating point adder. For both the bit vector and the
database stream, they must be able, on each cycle, to slide
any number of positions up to the maximum number sup-
ported. This, in turn, requires that each register in the

stream buffer have a multiplexor (MUX) that is large enough
for every possible number of positions that could be skipped.
It also requires complex routing logic. As a result, support
for even a small range of choices makes the logic for general
skipping more expensive than the original tree.

Constant Skipping.
The idea behind constant skipping is to limit the number
of positions that can be skipped to a single number S that
is determined experimentally. That is, the database stream
skips either S positions or none. If there is a sequence of
S or more 0s, then S skipping is used, otherwise it is not.
This scheme greatly simplifies the MUX logic, but has two
drawbacks.

1) Only sequences of 0s of length S or greater can be taken
advantage of. All shorter sequences of 0s are useless. This
indicates a small S so that most sequences of 0s can be used.

2) The maximum skip is also limited. No matter how
long the 0 sequence, only S will be skipped. This indicates
a large S.

The optimal S is query dependent but generally follows
the query length. A larger S works best with smaller queries:
Their alignments are more much likely to have been filtered.

Folded Skipping.
Recall that trees can be folded with the addition of a trivial
amount of logic. Also that a tree that is folded to 1/F its
original size requires only 1/F the logic of the original, but
requires F cycles per alignment rather than 1.

The idea behind folded skipping is to process unfiltered
alignments in F cycles (as before), but to process the others
in only 1 cycle. The control for this scheme is thus extremely
simple: there is no need for complex look-ahead or routing
logic. Rather, if the bit-vector value of an alignment is a 0,
simply shift the database stream; if the value is a 1, then
continue processing the alignment for a delay of another F −
1 cycles. The hardware cost is a slight increase in control
complexity; no other additional logic is needed.

The performance benefit of folded skipping can be demon-
strated as follows. Assume that the bit vector for a size N
database has O ones. Without skipping, an F -folded tree re-
quires roughly F × N cycles to process the database. With
skipping, the number of cycles is N +O× (F −1). If F is 16
and N/O is 20, then the speed-up is greater than 9×. This
speed-up is independent of the distribution of 1s in the bit
vector.

The question is why bother folding at all. The answer is
that folding gives a way to make the EUA structures (trees)
substantially more compact than previously and thus allows
them to be replicated. For example, given a database of size
N and a query of size M that is handled by a single tree
(with a single database stream). This takes N cycles. Now
replace the tree with F trees folded to 1/F their original size.
These now collectively support F database streams, each of
which has a throughput that is a substantial fraction of the
original.

5.3 Implementation and Performance
The limit on the number of trees is generally given by the

query size M , the number of folds F , and the number and
size of the BRAMs. For the reference design, the number of
columns of the scoring matrix that can fit in an M9K BRAM
is 32. Since BRAMs are dual ported, it is most efficient to
use them to look up two characters at a time. This places

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 500 1000 1500 2000 2500

cycle/char

cycle/char I/O limited

Cy
cl
es

pe
r
Ch

ar
ac
te
r

Query Size

Cy
cl
es

pe
r
Ch

ar
ac
te
r

EUA FIlter Performance versus Query Size

Figure 11: Graph shows performance as a function
of query size for the implementation of the EUA
filter in the reference design. Both the number of
filters and the throughput per filter vary with query
size.

a practical limit of 16 on F . Given the 912 BRAMs in
the reference design FPGA, the maximum number of EUA
filters is 1824 × F/M , or 96 for M = 300.

It is possible, however, that the memory bandwidth will
be limited, perhaps to 32 characters per cycle, rather than
96. The graph in Figure 11 shows performance in cycles per
character as a function of query size. The upper graph as-
sumes that the computation is memory bandwidth limited,
the lower does not. For the “limited” graph, the range is
from 3 to 30 characters per cycle. This enables processing
of the NR database in less than 2s for most queries and
about 10s for large queries.

6. IMPLEMENTATION AND RESULTS

6.1 System Configuration and Operation
CAAD BLAST operation proceeds as follows. As is usual,

we assume that the database is preloaded into staging mem-
ory. Unlike NCBI BLAST the database is unformatted. The
user specifies the query and parameters using the NCBI
BLAST interface. For each filter, the FPGA is configured,
the sequence is loaded and the filter executed. The Two-Hit
filter generates a bit vector which is stored in on-board mem-
ory. The EUA filter returns high scores to the host (or to
the corresponding node processor). The host uses the scores
to determine the sequences in DB’. If gapped alignment, the
processing continues similarly with the Smith-Waterman fil-
ter to generate DB”. We use our own implementation of
Smith-Waterman that closely follows the version by Woz-
niak [25]. Folding enables processing of large queries. In the
final step, DB” (or DB’ for ungapped alignment) is format-
ted and executed with the original NCBI BLAST.

CAAD BLAST runs on standard off-the-shelf FPGA ac-
celerated systems as described in Section 2.3. While we cur-
rently assume a high-end FPGA, CAAD BLAST is easily
decomposable and also runs well on low-end devices. As-
suming sufficient memory bandwidth, the performance is
roughly proportional to the number of BRAMs. The size of
on-board memory should be sufficient to store the database.

Table 2: Various results for CAAD BLAST. Av-
erages from running sequences of NR versus NR.
Original NR database has about 10.3M sequences
and 3.53G residues.

NCBI BLASTP Ungapped Gapped
exec. time on lab PC 170s 178s
exec. time on NCBI web server —– 12-20s
CAAD BLASTP
NR’ (Sch 2) reduction from NR
% of sequences remaining 0.116% —–
% of residues remaining 0.338% —–

NR’ (Sch 1) reduction from NR
% of sequences remaining —– 3.24%
% of residues remaining —– 6.04%

NR” (S-W) reduction from NR
% of sequences remaining —– 0.054%
% of residues remaining —– 0.088%

Format overhead NR’|NR” 1.50s 0.53s
NCBI exec. overhead NR’|NR” 1.49s 2.62s

For NR, which is a large protein database, this is less than
4GB when packed. Database sizes are still increasing faster
than memory density, but for the next few years we should
be able to count on holding databases in the local memories
of individual nodes. For multi-FPGA systems the database
is distributed across multiple nodes, so memory should not
be an issue for the forseeable future.

6.2 Validation and Performance
Agreement of results from NCBI BLAST and CAAD BLAST

has been validated in two ways: through code analysis and
from execution. For runs of sequences of NR versus the en-
tire database, all queries have returned identical high scoring
sequences and scores for those sequences.

Table 2 contains various results from the filter and refer-
ence runs. Our primary reference system is a 2008 64-bit
3GHz Xeon quad processor (Harpertown X5412) with 8GB
of memory. We are currently running NCBI BLAST 2.2.20
for reference and for the base code of CAAD BLAST. We
compiled each with standard optimization settings and run
with default settings. For additional reference we use the
web server at NCBI.

We now discuss some of these results. We note that they
are averages; there is variation as expected from sequences
of widely varying sizes. Scheme1 and scheme2 refer to differ-
ent methods of using the EUA output to filter the original
database (NR) to create a reduced database (NR’). They are
appropriate for the ungapped and gapped options of NCBI
BLAST, respectively, and are described in detail in [20].

• For gapped BLAST (Scheme 1) a database sequence
is retained if it contains at least one HSP that scores
above cutoff. This is a very low bar and is guaranteed
to retain all sequences that NCBI BLAST would hold
after extension. NR is reduced by a factor of 17.

• Scheme 2 refers to a more complex method of thresh-
olding, although it still has only a fraction of the com-
plexity of the NCBI algorithm. Up to five HSPs per
sequence are processed. While the bar is much higher
than in Scheme 1, agreement with NCBI BLAST is
still guaranteed. Here NR is reduced by a factor of
296.

• For gapped processing with Smith-Waterman, NR is
reduced by a factor of 1136 and generally only a few
thousand sequences remain.

• The formatting overhead includes host processing for
the filters.

We have implemented all three filters on the reference sys-
tem which contains a Gidel PROCe III FPGA board. The
FPGA is an Altera Stratix-III 260E. This is a high-end de-
vice using the 65nm process, but now nearly two genera-
tions old. For memory there is 4.5GB of DRAM partitioned
into three banks of 2GB, 2GB, and 512MB, respectively.
Each bank has a 64-bit interface and can be accessed inde-
pendently. One of the 2GB and the 512MB banks run at
333MHz; the other 2GB bank runs at 166MHz.

Table 3 contains performance results of the reference de-
sign with respect to the NR protein database. Also shown
are results for the unaccelerated host PC and the NCBI
Server. For CAAD BLAST the S-W time is less than the
time for the other filters. Most of the time is in executing
the final run of NCBI BLASTP. By percentile we indicate
the rough proportion of queries that are smaller than the
size shown [5]. Speed-ups over the unaccelerated PC range
from 25× to 30×. The NCBI Server is a large cluster that
processes queries in parallel according to load.

7. DISCUSSION AND FUTURE WORK
We have described the design and implementation of a

high performance BLAST application accelerated with mul-
tiphase FPGA-based prefiltering. We are able to achieve
both exact match with NCBI BLAST output and substan-
tial performance improvement. Running with little opti-
mization on three year old hardware it achieves a factor
of 25x speed-up. On a new system and with some care
we anticipate substantially higher performance, especially
for larger queries. New FPGAs have substantially more re-
sources, higher clock frequencies, and higher memory (I/O)
bandwidth. The designs described here scale immediately
with change of parameters and recompilation (synthesis and
place-and-route).

But even on the current device there remains substantial
“slack.”This lies especially in two places. The first is the ex-
tremely conservative heuristics used in creating the reduced
databases db’ and db” for gapped alignment. The second is
in the overhead involved in the final run. These are coupled.
Note that while db” is typically much less than 0.1% of the
original database, processing it with NCBI BLAST takes
more than ten times longer than expected. This is because
the remaining sequences all have alignments of interest and
must undergo substantial processing. If most of this last pass
can be eliminated, performance should improve by at least
50%. Since CAAD BLAST already runs Smith-Waterman
on these sequences, this seems reasonable.

The filters are usable with any back end. Also, the two-
hit filter should be usable by any FPGA-accelerated BLAST,
whether it involves prefiltering or not. We have several goals
for the next few months. One is to finish porting CAAD
BLAST to a 4-FPGA board, the Gidel PROCStar III. An-
other is to map CAAD BLAST onto the 192-FPGA Novo-G.

Table 3: Performance of the reference design with respect to the 3.53G residue NR database. The gapped
option of NCBI BLASTP is used.

query size 2-hit chars/cycle EUA chars/cycle S-W and Total time Total time Total time
percentile time time Overhead Accelerated CPU Only NCBI Server
up to 500 25/cycle 20/cycle

78th 1.3s 1.3s 3.8s 6.4s 187s 14s
up to 1000 18/cycle 11/cycle

97th 1.9s 2.4s 5.3s 9.4s 292s 20s
up to 2000 7/cycle 4/cycle

99.5th 4.8s 6.6s 7.8s 19.2s 485s 40s

8. REFERENCES
[1] Afratis, P., Sotiriades, E., Chrysos, G., Fytraki, S.,

and Pnevmatikatos, D. A rate-based prefiltering
approach to BLAST acceleration. In Proc. IEEE
Conference on Field Programmable Logic and
Applications (2008).

[2] Altschul, S., Gish, W., Miller, W., Myers, E., and
Lipman, D. Basic local alignment search tool. Journal
of Molecular Biology 215 (1990), 403–410.

[3] Chow, E., Hunkapiller, T., and Peterson, J. Biological
information signal processor. In Proc. International
Conference on Application Specific Systems,
Architectures, and Processors (1991), pp. 144–160.

[4] CHREC: NSF Center for High-Performance
Reconfigurable Computing. Facilities.
www.chrec.org/facilities.html, Web page accessed
1/2010.

[5] Coulouris, G. BLAST benchmarks. NCBI/NLM/NIH
Presentation, June 2005.

[6] Gardner, N., Feng, W., Archuleta, J., Lin, H., and
Ma, X. Parallel genomic sequence-searching on an ad
hoc grid: Experience, lessons learned, and
implications. In Supercomputing (2006).

[7] GiDEL, Inc. PROC Boards. www.gidel.com, Accessed
1/2010.

[8] Hauck, S., and DeHon, A. Reconfigurable Computing:
The Theory and Practice of FPGA-Based Computing.
Morgan Kaufmann, 2008.

[9] Herbordt, M., Model, J., Sukhwani, B., Gu, Y., and
VanCourt, T. Single pass, BLAST-like, approximate
string matching on FPGAs. In Proc. FCCM (2006).

[10] Herbordt, M., Model, J., Sukhwani, B., Gu, Y., and
VanCourt, T. Single pass streaming BLAST on
FPGAs. Parallel Computing 33, 10-11 (2007), 741–756.

[11] http://blast.ncbi.nlm.nih.gov/Blast.cgi, Accessed
1/2009.

[12] Jacob, A., Lancaster, J., Buhler, J., Harris, B., and
Chamberlain, R. Mercury BLASTP: Accelerating
protein sequence alignment. ACM Transactions on
Reconfigurable Technology and Systems 1, 2 (2008).

[13] Korf, I., Yandell, M., and Bedell, J. BLAST: An
Essential Guide to the Basic Local Alignment Search
Tool. O’Reilly and Associates, 2003.

[14] Krishnamurthy, P., Buhler, J., Chamberlain, R.,
Franklin, M., Gyang, K., and Lancaster, J.
Biosequence similarity search on the Mercury system.
In Proc. International Conference on Application
Specific Systems, Architectures, and Processors (2004),
pp. 365–375.

[15] Lam, T., Sung, W., Tam, S., Wong, C., and Yiu, S.

Compressed indexing and local alignment of dna.
Bioinformatics 44, 6 (2008), 791–797.

[16] Lavenier, D., Xinchun, L., and Georges, G. Seed-based
genomic sequence comparison using a FGPA/FLASH
accelerator. In Proc. IEEE Conference on Field
Programmable Technology (2006), pp. 41–48.

[17] McGinnis, S., and Madder, T. BLAST: at the core of
a powerful and diverse set of sequence analysis tools.
Nucleic Acids Research 32 (2004), Web Server Issue.

[18] Mitrionics. Mitrion-Accelerated NCBI BLAST for SGI
BLAST. Available at www.mitrionics.se/press,
Accessed 1/2010.

[19] Muriki, K., Underwood, K., and Sass, R. RC-BLAST:
Towards an open source hardware implementation. In
Proc. International Work. High Performance
Computational Biology (2005).

[20] Park, J., Qiu, Y., and Herbordt, M. CAAD BLASTP:
NCBI BLASTP accelerated with FPGA-based
pre-filtering. In Proc. FCCM (2009), pp. 81–87.

[21] Park, J., Qiu, Y., and Herbordt, M. CAAD BLASTn:
Accelerated NCBI BLASTn with FPGA prefiltering.
In Proceedings of the IEEE International Symposium
on Circuits and Systems (2010), p. TBD.

[22] Rangwala, H., Lantz, E., Musselman, R., Pinnow, K.,
Smith, B., and Wallenfelt, B. Massively parallel
BLAST for the Blue Gene/L. In Proc. High
Availability and Performance Computing Workshop
(2005).

[23] Sotiriades, E., and Dollas, A. A general reconfigurable
architecture for the BLAST algorithm. Journal of
VLSI Signal Processing 48 (2007), 189–208.

[24] Time Logic Corp. Web Site. www.timelogic.com,
Accessed 1/2010.

[25] Wozniak, A. Using video-oriented instructions to
speed up sequence comparison. Bioinformatics 13, 2
(1997), 145–150.

[26] Xia, F., Dou, Y., and Xu, J. Families of FPGA-based
accelerators for BLAST algorithm with multi-seeds
detection and parallel extension. In 2nd Int. Conf.
Bioinformatics Research and Development (2008),
pp. 43–57.

[27] XtremeData, Inc. XD1000 Development System.
www.xtremedata.com, Accessed 2/2010.

