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Abstract—Implanted sensors, as might be used with wireless
body sensor networks, must have minimal size and power con-
sumption. In this work we examine digital-based compressed
sensing encoders for WBSN-enable ECG and EEG monitoring,
an domain that has received much recent attention. We have
two major contributions. The first is using a random Binary
Toeplitz matrix rather than Bernoulli. The second is reducing
the number of accumulators thereby trading off space for op-
erating frequency. Compared with previous implementations,
our new design consumes 1-to-2 orders of magnitude less area
and power while still meeting timing constraints and achieving
comparable recovery quality.
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I. INTRODUCTION

Wireless body sensor networks (WBSN) has been a hot
topic for a number of years. In WBSN-enabled Electrocar-
diography (ECG) and Electroencephalography (EEG) moni-
toring systems, the wearable and, especially, the implantable
part requires ultra-low-power. Compressed sensing (CS) has
been proposed as an effective method that can help meet this
constraint [1], [2]. CS is a signal sampling paradigm that
enables compression of an input signal with a sampling rate
much lower than the Nyquist rate [3]–[5]. It is attractive for
WBSN-enabled monitoring systems because the sensor can
sample the signal with a reduced number of measurements
without losing essential information. Moreover, only this
reduced number of measurements needs to be transmitted to
the remote telecardiology center where the original signal
is reconstructed [2]. A CS encoder is an essential computa-
tional part of the sensor embedded in the human body.

We have examined the state-of-the-art digital-based CS
encoder designs for WBSN [6]–[8] and found that there
is still substantial room for improvement in both power
and area reduction. Previous work uses a random Bernoulli
matrix as the sensing matrix, but we find that the random
binary Toeplitz matrix is often a better candidate. In addition,
the ALU part of the previous CS encoders can be optimized
further. In particular we find the surprising result that, in this
design space, running at a higher frequency has substantial
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benefit when that is used to reduce chip area and thus
leakage current.

In this paper we propose a novel hardware-efficient com-
pressed sensing (CS) encoder architecture that optimizes the
power consumption in both aspects, algorithmic and design.
The main contributions are as follows:

1) We adopt the random Binary Toeplitz matrix as our
sensing matrix, which saves a great amount of cost on
both sensing and recovery sides. This will be explained
further in next section.

2) We drastically reduce the area of the ALU in the
CS encoder by reducing the number of accumulators.
To process an ECG signal, the clock frequency of
the CS encoder can be quite low. At this point,
leakage power dominates. We find that in this space
power consumption benefits substantially from area
reduction.

3) We further explore and characterize the impact of
ALU size on power and correlate design scenario with
optimal size.

4) ECG and EEG signals have different characteristics
and are often captured for different reasons. For EEG
signals often only a small fraction of points matter. In
our design, we apply a thresholding filter to the input
signal to ignore the data points with small amplitude.
In this way we further reduce the power consump-
tion of the CS encoder and dramatically reduce the
transmission power as well. While thresholding is a
well-known method, combining this with the choice
of sensing matrix and compute design leads to many
trade-offs on both sensing and recovery sides.

To the best of our knowledge, there is no prior work
that implements Toeplitz-based CS encoder architecture in
hardware. Previous implementations are all Bernoulli-based
[6]–[8]. When combined with the other optimizations, our
encoder architecture yields 1-to-2 orders of magnitude ad-
vantage in both power and area consumption.

The rest of the paper is organized as follows: In the
next Section, we review compressed sensing and analyze
properties of the binary Toeplitz matrix. In Section III,
we describe state-of-the-art Bernoulli-based CS encoder
architecture. In Section IV, we present the Toeplitz-based
CS encoder architecture. After that come the results where
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Figure 1. Flow chart of a generic compressed sensing scheme

we first compare the power and area and then verify that
the signal from our sensing architecture can be properly
recovered. We then describe several sets of experiments and
discuss the impact of compression ratio, sparsity, and data
set on the quality of the recovered signal.

II. BACKGROUND

A. Compressed Sensing Basics

Traditional sensing and processing rely on the Nyquist-
Shannon theorem; this sampling rate, however, can be chal-
lenged. In many cases, the signal frequency spectrum is
so wide that the sampling rate determined is too large to
be satisfied. Even for narrow signal-band application, like
WBSN-based ECG and EEG, the Nyquist-rate sampling
bring much redundant information since the ECG itself is
a sparse signal [2]. Nyquist-rate sampling is expensive for
ECG and EEG sensor nodes and impairs the battery lifetime
severely. Compressed Sensing has been proposed to address
this issue.

The signal flow of compressed sensing is illustrated in
Figure 1. After N elements of the analog signal have been
sampled, they are sent to the ADC and converted to N
digital samples, which can be represented as X ∈ RN .
X is forwarded to the compressed sensing encoder and
compressed into M samples. This process can be formulated
in Equation 1:

Y = ΦX (1)

where X ∈ RN is the input signal with N samples, Φ ∈
RM×N is the sensing matrix with M rows and N columns,
and Y ∈ RM is the compressed signal that has M samples.
M is smaller than N .

Compressed sensing theory relies on the prerequisite that
the input signal X can be represented by a sparse signal
under some basis, which can be formulated in Equation 2.

X = Ψα (2)

where X ∈ RN is the input signal, Ψ ∈ RN×N is the
sparsifying basis and α ∈ Rn is the sparse representation for
X . For example, if X is already sparse in the time domain,
then Ψ will be just an identity matrix. Or if X is sparse in
the frequency domain, then Ψ will be a Fourier transform
matrix. Combining Equations 1 and 2, Y can be expressed
by Equation 3

Y = ΦΨα (3)

Besides sparseness, compressed sensing also requires in-
coherence between the sensing matrix Φ and the sparse
representation matrix Ψ in order to minimize the number of
measurements (M ) needed for the recovery. The coherence
of the Φ and Ψ can be evaluated in the following expression
[9], [10]:

µ(Φ,Ψ) =
√
N max

1≤k,j≤N
| < φk, ψj > | (4)

The lower bound on the number of the measurements M
can be derived from the value of coherence by the following
formula [11]:

M ≥ C · µ2(ΦΨ) · S · logN (5)

where C is known to be a small constant around 2 to
2.5 (determined empirically [12]) and N is the number of
dimensions of the input signal. S is the sparsity level of the
sparse representation, α, which means that the number of
non-zero elements of the input signal in the basis Ψ is S.
Another constraint that Φ and Ψ must satisfy is the restricted
isometry property (RIP) to ensure stable recovery of the S-
sparse signal α [13]:

(1− δS)‖α‖2 ≤ ‖ΦΨα‖2 ≤ (1 + δS)‖α‖2 (6)

According to [3]–[5], [14], random sensing matrices are
very likely to obey the RIP property. Therefore, the sensing
matrix can be populated by random variables in various
random distributions. Finally Y (with M samples) is trans-
mitted. The recovery algorithm should solve a problem
defined in the equation

min
α∈RN

‖α‖l1subject to Y = ΦΨα (7)

Since M is smaller than the N , the above is an under-
determined problem with many possible solutions. It has
been proven that, if an l1-minimization of α is found, it
is very likely to be the closest solution to the original α.
After α is recovered, the reconstructed X̂ can be acquired
by computing X̂ = Ψα.

B. Random Binary Toeplitz Matrix

A random sensing matrix is able to meet the RIP require-
ment so that the signal compressed by it is guaranteed to be
properly recovered. Recently, a type of random matrix, the
random Toeplitz matrix, has been of interest [1], [15]. An
M ×N random Toeplitz is shown here

xM xM+1 · · · xM+N−2 xM+N−1
xM−1 xM · · · xM+N−3 xM+N−2

...
. . .

...
x1 x2 · · · xN−1 xN

 (8)



with entries {xi}M+N−1
i=1 independent and identically dis-

tributed (i.i.d.) random variables that obey a certain distri-
bution.

The Toeplitz matrix has the same value on each diagonal
which gives the great advantage that only M+N−1 values
need to be stored, rather than M × N . If each entry is
random Bernoulli i.i.d., the memory cost to store the whole
matrix is reduced still further.1 In [15], the authors prove
that a Toeplitz matrix with i.i.d. entries ±1/

√
k each with

probability 1/2 satisfies RIP with high probability.

C. Related Work

Several digital CS encoder hardware designs have been
described (see, e.g., [6]–[8], [16], [17]). [16], [17] are both
analog-based designs, which are beyond the scope of this
paper. Chen, et al. [6] and Suo, et al. [7], [8] both use the
random Bernoulli matrix as the sensing matrix. The structure
of these two designs is shown in Figure 2.
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Figure 2. A compressed sensing encoder design based on the random
Bernoulli matrix [6]–[8]

We see that this design has two major components. On the
left side are two Pseudo-random Binary Sequence (PRBS)
generators that generate the random Bernoulli sensing ma-
trix. On the right side is an accumulator array that takes
the output of the PRBS generator and multiplies it with the
input signal. The accumulator array is basically a matrix-
vector multiplication unit that computes the results row by
row. Each accumulator unit contains a multiplier and an
integrator. The multiplier is simply an XOR gate since each
entry of the random Bernoulli matrix is a single bit.

III. IMPLEMENTATION

Our design can be decomposed into two parts, a thresh-
olding filter, which removes the insignificant parts from the
original signal and the CS encoder. These are described in
the next two Subsections.

1A second advantage, not used here, is that, while the normal matrix-
vector multiplication requires O(kn), the row shifting property of the
Toeplitz matrix enables the multiplication between matrix and vector to
be done in O(nlog(n)) operations by using the FFT. This is because the
multiplication between the Toeplitz matrix and a vector is the same as a
convolution operation.

A. Thresholding Filter
Full precision EEG data is too detailed for applications

like neuron spike sorting. In order to make a correct
diagnosis only the information around the neuron spikes
needs to be retained. We can therefore apply a thresholding
filter to the original signal before it is compressed by the
CS encoder. This increases the level of sparsity of the
signal improving the compression ratio and energy efficiency
(see Equation 5). Thresholding itself is already an effective
compression method as it can reduce the original full EEG
signal by 5× to 10×.

If we define the length of the signal as N and the number
of the non-zero elements in the signal as K, then we can
evaluate the sparsity level in the equation

Sparsity = (1−K/N)× (100%) (9)

The thresholding filter sets all the elements smaller than
the thresholding value to zero and keeps the other elements
unchanged. We can control the sparsity level by adjusting
the thresholding value; the higher the thresholding value, the
higher sparsity level.

B. Our Compressed Sensing Encoder
Our CS encoder (based on random binary Toeplitz matrix)

is illustrated in Figure 3. For an M ×N matrix, the random
binary Toeplitz matrix only needs M + N − 1 bits. We
therefore remove the PRBS generators in the Bernoulli-
based implementation and store the sequence with M+N−1
bits instead. When multiplying the Toeplitz matrix and input
data vector, our design also takes a different approach. In
the Bernoulli-based design, during one clock cycle, all M
elements in one column of the sensing matrix are generated
simultaneously and then multiplied by one datum from the
N -element input vector. In our design only one element
per clock cycle is picked out from one row of the sensing
matrix to be multiplied by the corresponding element in the
input data vector. The temporary product is stored in the
accumulator. The accumulator does not output the data until
a whole row is computed. Compared with M accumulators
in the Bernoulli-based design, our design just needs to
instantiate one accumulator. In addition, the multiplier in
the accumulator can be implemented with just one XOR
gate because the elements in the Toeplitz matrix are also
binary values. One drawback in our design is that, dealing
with N input data, it takes M×N clock cycles to finish the
computation, while the Bernoulli-based design takes only
N cycles. The operating frequency must be adjusted to
compensate. We have also parametrized this design to test
intermediate points trading off computation for operating
frequency.

IV. EVALUATION

In this Section, we evaluate our design in two aspects.
In the first Subsection, we compare the power and area
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Figure 3. Our hardware-efficient compressed sensing encoder design based
on random binary Toeplitz matrix

consumption on two axes: Toeplitz-based versus Bernoulli-
based and ALU size versus operating frequency. In the
second Subsection we evaluate the recovered signal qualities
of the designs. We also extend these results to an initial
analysis of an extension from 1D ECG and EEG signals to
2D images.

A. Area and Power

In this Subsection, we present details of our implemen-
tations of a Toeplitz-based design and also a reconstruction
of the Bernoulli-based designs in [6]. We also examine the
use of various numbers of accumulators. Figure 4 shows a
comparison of the best new design (Toeplitz and 1 ALU)
with the best previous design (Bernoulli and M ALUs).
We also explore the design choices that lie in the between:
Table I and Table II show area and power consumption of the
Toeplitz- and Bernoulli-based design whose ACC numbers
range from one to M . Following previous studies, we fix the
word width of the input data at 8 bits and the accumulator
at 16. We synthesize and place&route both designs using
the Cadence Encounter RTL Compiler [18] using a 45nm
technology.

Besides the designs in Table I, we also implemented a
Bernoulli-based design that has same size settings as the
design in [6] where the length of the signal is 1024 and the
compression ratio is 0.05. In [6], the authors use a 90 nm
technology, therefore the area of the our Bernoulli-based
design is expected to be 1/4 of the area in [6]. In fact,
the area of Bernoulli-based design is 12926 um2, which is
smaller than expected (see [6]). While this is not validation
that we have reproduced their design exactly, it does appear
that our reconstruction is at least comparable.

From the Figure 4 we note that the Toeplitz-Single-ALU
design consumes at least one order of magnitude less area
and power than the Bernoulli-M -ALU design. Moreover,
when the matrix size increases, the area and power of

Toeplitz-based remains constant, while that of the Bernoulli-
based increases linearly with the matrix size. There are two
advantages in our design. The first is that the PRBS gen-
erator used to generate the random Bernoulli matrix is not
needed; rather the random binary Toeplitz matrix is stored,
which costs negligible chip space. The second is that we
dilate the number of cycles of the CS encoder. In our design,
it takes M ×N cycles to compress a vector with length N
into a vector with length M , while in the Bernoulli-based
design only N cycles are needed. Therefore, our design
only instantiates one accumulator while the Bernoulli-based
design instantiates M accumulators to reduce a great amount
of area. Of course this also changes the operating frequency
necessary to meet the processing deadline. In Figure 4,
the Toeplitz-based design runs with 1MHz clock while the
Bernoulli-based design runs at 20KHz clock, the same as
the frequency in [6]. This only marginally diminishes the
advantage of the small number of accumulators.

In Table I shows the area consumption of Toeplitz- and
Bernoulli-based designs with various numbers of ACCs.
Both of them scale linearly with the number of ACCs.
But the Toeplitz-based design is always smaller than the
Bernoulli-based design when the number of ACCs and
CR are the same. In ECG recovery (see next Section),
the Toeplitz-based design requires a higher CR than the
Bernoulli-based design to achieve the same recovery quality.

In Table II, each row shows the power consumption of
Toeplitz- and Bernoulli-based designs with a different num-
ber of ACCs and operating frequency adjusted accordingly.
In the Table II, the input data rate is fixed to a typical ECG
data rate, 1 KHz [1], [19], [20]. Under this condition, we
can find that in both designs the leakage power dominates
the total power consumption (> 90%). Since the leakage
power is mostly related to chip area, area reduction is the
most effective approach to reduce the power consumption,
which is the exactly our main idea in the Toeplitz-based
optimization.

In the Table II, the optimal number of ACCs is 1. However
this is not always true as when the input data rate increases.
In Figure 5, the lines of different colors denote the power
consumption of two designs under different input data rates.
We find that the optimal number of ACCs shifts from 1
to M as the input data rate increases. This is because the
dominating power component transit from leakage power
to switching power, which increases linearly with the clock
frequency.

B. Reconstruction Quality

In this Subsection, we validate that ECG, EEG, and image
signals compressed by a random binary Toeplitz sensing
matrix can be reconstructed with the CS recovery algorithm
with quality similar to that of the random Bernoulli method.
We use Signal-to-Noise-and-Distortion Ratio (SNDR) to



Table I
AREA CONSUMPTION OF TOEPLITZ- AND BERNOULLI-BASED DESIGNS AS A FUNCTION OF NUMBER OF ACCUMULATORS. SIGNAL LENGTH = 1024.
COMPRESSION RATIO=0.2 OR 0.4. THE NUMBER LABELED WITH * IS THE TOEPLITZ-BASED DESIGN WITH JUST ONE ACC. THE NUMBER LABELED

WITH ** IS THE BERNOULLI-BASED DESIGN WITH M ACCS.

ACC
Matrix
Length
(N)

Area
Gates Cells Area (µm2)

Toeplitz Bernoulli Toeplitz Bernoulli Toeplitz Bernoulli
CR=0.4 CR=0.2 CR=0.4 CR=0.4 CR=0.2 CR=0.4 CR=0.4 CR=0.2 CR=0.4

1 1024 4006* 9715 16658 1665* 3996 7162 3347* 7982 13293
51 1024 23641 28535 35431 10285 12159 21716 18923 22626 28275

102 1024 41513 46437 53054 17719 20080 35824 32935 37107 42338
154 1024 53792 59447 66144 23434 25722 44842 43129 47144 52782
205 1024 72249 76499** 83959 31537 33306** 59018 57510 60935** 67000
256 1024 82390 NA 94200 35489 NA 65484 65969 NA 75172
307 1024 89197 NA 107431 38887 NA 74067 71299 NA 85730
358 1024 108610 NA 120966 46918 NA 83314 86824 NA 96531
410 1024 125405 NA 137731** 54001 NA 92160** 100192 NA 109910**

Table II
POWER CONSUMPTION OF TOEPLITZ- AND BERNOULLI-BASED DESIGNS AS A FUNCTION OF NUMBER OF ACCS. SIGNAL LENGTH = 1024. THE
NUMBER LABELED WITH * IS THE TOEPLITZ-BASED DESIGN WITH JUST ONE ACC. THE NUMBER LABELED WITH ** IS THE BERNOULLI-BASED

DESIGN WITH M ACCS.

ACC

Power(µW)
Internal Switching Leakage Total

Toeplitz Bernoulli Toeplitz Bernoulli Toeplitz Bernoulli Toeplitz Bernoulli
CR=0.4 CR=0.2 CR=0.4 CR=0.4 CR=0.2 CR=0.4 CR=0.4 CR=0.2 CR=0.4 CR=0.4 CR=0.2 CR=0.4

1 2.66* 13.1 30.3 1.62* 4.28 10.8 31.1* 108 138 35.4* 126 179
102 0.491 0.277 0.609 0.928 0.192 0.447 336 341 400 338 348 401
205 0.446 0.200** 0.463 0.824 0.0154** 0.412 549 528** 617 550 528** 618
307 0.382 NA 0.448 0.596 NA 0.399 659 NA 787 660 NA 787
409 0.4834 NA 0.434** 0.975 NA 0.476** 987 NA 1054** 989 NA 1055**
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Figure 4. Comparison of power and area for Bernoulli- and Toeplitz-based
designs, (The Toeplitz-based design in this figure has just one ACC while
the Bernoulli-based design has M ACCs.)

quantify the recovered signal quality:

SNDR = 20 log
‖x‖2
‖x− x̂‖ 2

(10)

where x is the original signal and x̂ is the recovered signal.
1) Reconstruction of EEG signals: The EEG signals

used in this paper are all from the PhysioBank [19]. The
reconstruction algorithm is Orthogonal Matching Pursuit
(OMP) [12]. The results in Figure 6 show the relationship
between SNDR and sparsity (thesholding level) for various
compression ratios. Reconstruction of both Toeplitz- and
Bernoulli-based compression is demonstrated. Each curve
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Figure 5. The power consumption for different numbers of ACCs when
using different data input rate

corresponds to a different compression ratio. We find that
for each compression ratio there is always a sparsity level
for which the reconstruction quality is excellent. The higher
compression ratio, the lower sparsity is required; this means
that improving the sparsity level of the signal can reduce
the compression ratio required. The compression ratio does
not affect the cost of our Toeplitz-based CS encoder, but
a low compression ratio reduces the cost of transmission
and recovery side processing. For the same compression
ratio, the recovery quality of the random Toeplitz matrix



is almost the same as that of the random Bernoulli matrix.
In some cases, the Toeplitz is even better than the Bernoulli.
Several recovery examples for different compression ratios
are shown in the Figure 7. As expected, the higher the
sparsity, the better the compression ratio that can be safely
used. With CR higher than 0.4, the Toeplitz matrix can
compress an elaborate EEG waveform; we therefore have
chosen this CR in Tables I and II.
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Figure 7. Toeplitz-based EEG recovery examples with different CRs and
different sparsity levels (different thresholding level). (1) Original EEG
signal (2) CR=0.1, Sparsity=98% (3) CR=0.2 Sparsity=94% (4) CR=0.3
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2) Reconstruction of ECG signals: The ECG signals
used in this paper are also from the PhysioBank [19].
The reconstruction algorithm is again Orthogonal Matching
Pursuit (OMP) [12]. When sparsifying of the ECG signal,
it is likely that thresholding-based sparsifying gets rid of
too much information. Rather, we use a sparsify dictionary
method called K-SVD [21].

The results in the Figure 8 show the relationship between
reconstruction SNDR and compression ratio for Bernoulli-

and Toeplitz-based compression. Each point in this figure is
a representation of 25 runs; the variation for each point is
displayed by an error bar. The best and worst cases of the 25
runs are also displayed. The results show that under the same
compression ratio, the Toeplitz-based compression is not as
good as the Bernoulli-based compression when using dictio-
nary learning to do the sparsification. To achieve the same
recovery quality, the Toeplitz-based compression needs to
maintain almost twice CR as Bernoulli-based compression.
However, from the table I and II, we can see that even the CR
is doubled, our Toeplitz-based design with one accumulator
still has great advantage over previous multi-ACC Bernoulli-
based design. One reconstruction example of Toeplitz-based
compression is shown in Figure 9
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Figure 9. Toeplitz-based EEG recovery example with CR=0.4,
SNR=8.77dB

3) Reconstruction of Images: When using images, thresh-
olding is again not an appropriate method to sparsify the
input data. Instead, we adopt the 2D wavelet transform as
the sparse representation matrix. For image input, we use the
Treemp2D algorithm [22]. Figure 10 compares the recovery
quality of the Toeplitz- and Bernoulli-based compression.
The image here is 128 × 128. We find that when CR is
0.5, the Toeplitz-based compressed image can be properly
reconstructed. When the CR goes to 0.3, the recovered
image is blurred. The random Bernoulli matrix performs
somewhat better. Tables I and II demonstrate that the power
and area of the Bernoulli-based CS encoder scales linearly
with the matrix size, while the Toeplitz-based design remains
constant. When using the image as input signal, the signal
length (N ) is much larger than the ECG data, and the sensing
matrix size is quadratically related with N . The physical



advantage of the Toeplitz-based design is therefore greater
for image inputs. This is likely to allow use of a higher
CR to achieve better reconstruction while still using only a
fraction of the resources.

(b)

(a)

(b)

(a)

(d)

(c)

(e)

Figure 10. Comparison between Toeplitz- and Bernoulli-based recovered
images (a) original image 128×128 (b) Toeplitz-based recovery CR = 0.5
SNDR = 17.11dB (c) Bernoulli-based recovery CR = 0.5 SNDR = 21.04dB
(d) Toeplitz-based recovery CR = 0.3 SNDR = 11.50dB (e) Bernoulli-based
recovery CR = 0.3 SNDR = 15.18dB

V. CONCLUSION

In this paper, we propose a novel hardware-efficient
compressed sensing encoder design based on the random
binary Toeplitz matrix and use of smaller, higher frequency
compute units. We estimate the power and area consumption
of our design using the Cadence Encounter RTL Compiler.
The power and area consumption of our design shows great
advantages over previous CS encoder designs based on the
random Bernoulli matrix. We verify that the EEG, ECG
and image signals compressed by random binary Toeplitz
matrix are both recoverable. For any CR the recovery quality
is not as good as Bernoulli-based recovery. But the gap is
small—and in the case of EEG negligible—with respect to
the benefit to power and area.
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