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Abstract—Neural spike sorting is used to classify neural
spike signals based on neuron type and so is an essential step
in decoding brain signals. Because of its computational com-
plexity, spike sorting is generally carried out offline or, at least,
using a transmitted signal. In contrast, in-brain spike sorting
would reduce the data that needs to be transmitted by orders
of magnitude with a corresponding reduction in transmission
power. This would enable real-time wireless neural recordings.
In this paper, we design and characterize a hardware prototype
for in-brain spike sorting. Our design is able to reduce the
wireless transmission power by a factor of over 200 over direct
transmission. Also, compared with the current state-of-the-
art, our design increases the sorting accuracy from 75% to
93% while remaining within hard constraints for power, power
density, and real-time processing.

Keywords-Spike Sorting; Wireless body sensor networks;
ASIC;

I. INTRODUCTION

In the human brain billions of neurons communicate with
each other via electro-chemical signals. The electrical sig-
nals associated with this communication are called “spikes.”
To acquire such signals in fine detail and localization,
current technologies require the implanting of electrode
arrays. Every electrode detects signals from multiple neurons
surrounding it; these are called multi-unit activities. In many
applications, e.g., brain-machine interfaces (BMI), process-
ing signals from single neurons (single-unit activities) is es-
sential, but difficult to perform directly [1], [2]. By decoding
multi-unit activity signals into single-unit signals, scientists
are able to determine the meaning of instructions from brain
to body. One of the goals is actuation, i.e., the ability to
reverse the process and generate signals to control external
devices that can help disabled individuals. For example, BMI
has enabled control of a prosthetic arm [3] and a smart
wheelchair [4]. The critical step in this process is to classify
the multi-unit signals into single-unit signals according to
the neuron source types [5].

Figure 1 shows the four steps in spike sorting. The first is
to use an analog front-end (AFE) filtering module to amplify,
filter, and digitize the raw signal. After that, the processed
signal is sent to the detection-and-alignment module. There,
spikes are detected and aligned to a common feature, e.g.,
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Figure 1. Flow chart of a general spike sorting scheme

their peaks. The aligned spikes are then sent to the feature
extraction module, where the signals are converted to fewer
data points by reducing their dimensionality. In the final step,
the spike features are sent through a clustering algorithm
where the spikes are categorized into classes based on
source neuron type. Figure 2 shows intermediate results
corresponding to the four steps. Figure 2 (a) shows the
filtered signals and the detected spikes. Figure 2 (b) shows
the spikes after alignment. In this example, the spikes are
all aligned to the peak that has the highest absolute value.
Figures 2 (c) and (d) show the sorted results. Figures 2 (c)
shows the average waveform of each cluster. Each dot in
Figure 2 (d) represents an entire spike; this works because
by now each spike has been reduced to a 2D vector through
feature extraction.

Three possible neural recording systems are shown in
Figure 3. The first (a) transmits the raw neural signals
from the brain through physical wires. All the processing
is performed independently of the sensor. This setup does
not require real-time in-body processing. It does, however,
restrict freedom of movement of the subject and increase
of the chance of infection. Also, the wires can increase the
noise. In the second configuration (b), the raw signals from
the neurons are transmitted through a wireless transmitter.
While (b) obviates the need for wires, transmitting raw
signals implies a high transmission rate and therefore high
transmission power. High power is especially undesirable in
BMI because the heat generated is dangerous to brain tissue.
The first and second alternatives both require software to
do the spike sorting. An 8-hour experiment generates about
100GB of data, which requires about 30 hours to process
using a conventional spike sorting software package [5].

Our goal here is to facilitate a configuration as shown
in Figure 3(c): spike sorting is performed in the brain and
the data transmission reduced to only vectors in a feature
space and corresponding time-stamps. To do this in real-
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Figure 2. Examples of data generated during four steps of spike sorting: (a) filtered waveform and detected spikes, (b) aligned spikes, (c) and (d) clusters
in two representations, function average by type and distribution in feature space.

Spike sortingAFE

AFE

Sorted results

Sorted results

AFE Sorted results
Physical cable

(a)

(b)

(c)

Figure 3. Three possible neural recording systems

time, with low power, and with high accuracy requires a
dedicated ASIC. In this work, we propose a novel spike-
sorting hardware prototype that reduces transmission power
by a factor of 278 over the non-preprocessed solution.
Moreover, our design meets the two critical requirements:
first, it processes and transmits in real-time and, second, its
power output is within the budget to allow embedding in
brain. Perhaps the most significant contribution of this work
is that it meets those constraints while improving accuracy

from 75% to 93% over the current state-of-the-art.

Some prior implementations of spike-sorting DSP hard-
ware are as follows. The work by Olsson and Wise [6] is one
of the earliest implementations of wireless in-brain spike-
sorting, but its function is limited to spike detection. Karkare
et al. [7] and Chae et al. [8] add feature extraction but do
not implement clustering. A later study by Karkare et al. [9]
implements Osort for in-brain unsupervised clustering and
is the starting point for our work here; we refer to this as
the reference design. We add several features. Rather than
using simple value detection, we apply a sliding window
that can buffer the data in front of the threshold point and
so enable the capture of a more complete waveform. We
also add alignment and more complex detection.

The rest of the paper is organized as follows. In the next
section, we introduce the algorithms for the various spike
sorting steps and explain the rationale behind certain design
decisions. In the third section, we introduce the details of our
design including architecture and state machine. In the fourth
section, we evaluate the design and present our conclusions.



II. SPIKE SORTING ALGORITHMS

In this section we give an overview of the algorithms used
in our design.

A. Filtering

The first step is filtering. The raw data is bandpass-filtered
to remove the local field potential and high-frequency noise
[5]. This step is usually done in the analog front end, which
is beyond the scope of this work.

B. Detection and Alignment

The detection step separates spikes from background
noise. The two main steps are spike determination and
application of a threshold. In our design, the threshold is
determined by the standard deviation of the signals. The
application of the threshold works as follows. A comparator
continuously checks the voltage levels of incoming data
points. A circular buffer stores the 48 points preceding the
current data point and the 79 points after it. Whenever the
absolute value of current data point goes above the threshold,
another module determines the positive and negative peaks
among the middle 64 points (24 points preceding and 39
succeeding).

There are three possibilities. (i) If neither of the absolute
values of the two peaks is above twice the threshold, then
the 39 points succeeding points are abandoned. The next
point to be checked is then the 40th point after the current
point. (ii) If both peaks are above twice the threshold, then
the algorithm picks the first one as the base point. (iii) If
only one point is above twice the threshold, then that one
is selected to be the base point. Once the base point has
been determined, the 24 points preceding and the 39 points
succeeding (and the base point itself) are assumed to be a
complete spike. Alignment is now completed with all spikes
aligned to their peaks. The detected and aligned spikes then
are sent to the feature extraction and clustering stage.

C. Feature Extraction and Clustering

Spike Sorting is based on the assumption that each neuron
generates a different and distinct wave shape that remains
constant in the recording session [5]. We therefore need
a clustering algorithm that can distinguish neurons from
the mixture of their spikes. In our scenario, our candidate
clustering algorithm needs to have the following characteris-
tics: unsupervised, real-time, online, and easy to implement
in hardware. Unsupervised means that the algorithm can
figure out how many clusters are needed with no further
information. This is as opposed to supervised clustering
algorithms such as K-means, which need the number of
clusters a priori. Real-time means that the processing rate
is able to keep up with the input data rate.

The current consensus appears to be that the OSort
algorithm is one of the best candidates, not only because
it meets all of these requirements, but also because it does
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Figure 4. Flow chart of OSort algorithm

not need an explicit feature extraction step [9], [10]. OSort
performs real-time clustering using an iterative process by
comparing the Euclidean distances among spike waveforms
in the time domain. Its flow chart is shown in Figure 4.

In the first step, the first cluster is initialized with the
first spike. After that, whenever a new spike comes in,
the algorithm computes the Euclidean distances between it
and all of the existing clusters. If the minimum distance
is smaller than a predefined threshold, the new spike is
assigned to the corresponding cluster based on Equation 1.
The threshold is the crucial element of OSort. It is equal
to the squared average standard deviation of the signal,
calculated with a sliding window [10].

c′(n) =
(N − 1)c(n) + s(n)

N
(1)

In this equation, N is the number of spikes that have
been assigned to the current cluster, c(n) is the mean spike
waveform of the current cluster, and s(n) is the incoming
spike waveform. This equation shows that the new spike
s(n) becomes less important when N is large. In our
implementation, we stop updating the cluster when N is
over 50. It has been proven that the mean spike waveform
converges when N is larger than 50 and sorting accuracy is
not affected if we assume that the average spike waveform
is constant. If the minimum distance is larger than the
predefined threshold, then a new cluster is created based on
this new spike. At this point, we have either a new cluster
or a updated cluster. In either case, the algorithm checks
distances between this new (or modified) cluster and all the
other clusters. If there is a pair of clusters whose distance



Filtered 
data 

Spike 
Detection 
Module 

Spike 
Waveform 

RAM 

Time 
Stamp 
RAM 

Compare 
Min 

Cluster 
Distance 
Pipeline 

Cluster 
Map 

Cluster 
Merging 
Pipeline 

25 

25 

Mean Cluster 
Buffer Array 

Cluster SpikeID 
Buffer Array 

Figure 5. Top-level architecture

is smaller than a threshold, then they are merged into one
cluster. The mean waveform of the new cluster equals the
weighted mean of previous two clusters.

In our simulations we have observed that OSort generates
many more temporary clusters than converged. In particular,
we have found that capping the number of temporary clusters
at 25 results in no loss in spike sorting accuracy; i.e., the
clustering algorithm still converges to the number of types
of neurons (usually fewer than 6) around the electrode. If
the 25 temporary clusters are all occupied and a new cluster
needs to be created, all of the temporary clusters that have
only one spike are cleared. We refer to this step as pruning.
The entire flow repeats until all the spikes are processed.

After OSort processes all the spikes, we have two types
of results. The first is the mean waveform of each cluster.
The second is the cluster ID and the timestamp of each
spike. Usually we just need to transmit the second type via
the wireless transmitter. Compared with transmitting the raw
waveform, the data rate is reduced substantially.

III. IMPLEMENTATION

In this section we give the details of our design. The top-
level architecture is illustrated in Figure 5.

A. Spike Detection Module

After the raw spike data are filtered, they are sent to
the spike detection finite state machine (FSM); the state
transition diagram is shown in Figure 6. In the first state
(initial), a comparator monitors whether there is a data point
greater than the threshold. If one is found, then the state
machine transits into the FindPeak state. There the 128
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Figure 6. FSM of spike detection module
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Figure 7. FSM of OSort implementation

buffered data points are sent to a FindPeak module. This
module spends 128 cycles to determine the positive and
negative peaks. If either one of them is significant, which
means a spike has been detected, then the state machine goes
to the spike-waveform buffer-writing state. This requires
64 clock cycles. If neither peak is significant, then the
state machine goes back to the initial state. After the spike
waveform is written into the buffer, the FSM returns to the
initial state. Whenever a spike is detected, the spike ID and
its timestamp are sent to a timestamp RAM while the spike
waveform is sent to the spike waveform RAM.

B. OSort Module

As illustrated in Figure 4, there are several other important
components. The spike waveform RAM stores the detected
spike and triggers the OSort FSM to begin work. The min
cluster distance pipeline computes the Euclidean distance
between two spike waveforms. Two spike waveforms could
be the either the mean waveform of a cluster or the waveform
of a new spike. There are two buffer arrays to hold the
temporary clusters because each cluster has two kinds of
information to be stored: the mean waveform and the spike
IDs. As justified above, we allocate 25 slots to the two
buffer arrays. Whenever a cluster needs to be modified or
deleted, its corresponding slots in both buffer arrays are



simultaneously modified and invalidated.
The cluster map module tracks the mapping between

cluster IDs and buffer slot IDs. It plays an important role
in two scenarios. The first is when a new cluster needs to
be created. This is because the module provides the IDs of
buffer slots that are available to map to the new cluster. The
second is to tell the min distance pipeline which buffer slot
to work on (as it is traversing all of the clusters). Most of
time the occupied slots are scattered among 25 hard-wired
slots; i.e., they are rarely contiguous. The final component
is the cluster merging pipeline. It starts working when two
clusters are too close to each other and need to be merged.

Following the OSort algorithm, we have designed a corre-
sponding FSM (illustrated in Figure 7). Whenever the spike
waveform RAM gets a new complete spike, the FSM enters
the CALDIS SPIKE state. It pushes the spike waveform into
the min cluster distance pipeline, where the closest cluster
is determined. The state machine then enters the CREATE
or UPDATE state depending on whether or not the closest
distance is over a threshold. If it enters the CREATE state,
the cluster map module determines which cluster buffer is
available. If there none is available, the state machine goes
to the PRUNE state. There, all the temporary clusters having
only one cluster are invalidated. If the state machine enters
the UPDATE state, the mean waveform of the closest cluster
is updated (according to Equation 1).

After the UPDATE state, the state machine goes into
the CALDIS CLUSTER state. The pairs formed by the
modified cluster, and all the other clusters, are sent to
the min cluster distance pipeline to compute the distances
between clusters. If the minimum distance is smaller than a
predefined threshold, then the two corresponding clusters are
merged. Their IDs are sent to the cluster merging pipeline,
where one cluster is moved from its own buffer to the other
buffer, and its original buffer space becomes available again.
This new information changes the value of the cluster map so
that incoming spikes can be assigned to the newly available
buffer space.

IV. EVALUATION

In this section, we evaluate our design with respect to the
following three measures: (i) data processing rate, to make
sure it meets the real-time requirement; (ii) power and area
consumption, to make sure it is within the power budget; and
(iii) sorting accuracy, for comparison with the state-of-the-
art. We built an RTL model using Verilog and simulated
and validated our design using ModelSim. For synthesis
and place & route we used the Cadence Encounter RTL
Compiler [11] using a 45nm technology.

A. Timing evaluation of our spike sorting design

The timing results are shown in Table I. From our
simulation results, we observe that our design processes
0.444 samples every cycle on average. The typical input

Table I
TIMING EVALUATION

Input data rate processing rate lowest possible clock frequency
25kSa/s 0.444 Sa/cycle 56kHz

data rate of neural spikes is about 25K samples per second
[5], which means that our clock frequency could be as low
as 56kHz and still keep up with the input data stream.
Since this operating frequency is easy to achieve in likely
ASIC processes, our design therefore satisfies the real-time
requirement.

B. Power and Area consumption

Table II
AREA CONSUMPTION

Gates Cells Area state-of-the-art area [9]
97076 28772 Sa/cycle 0.077 mm2 0.07 mm2

The area consumption results are presented in Table II.
The area consumption of our design is 0.077 mm2. We
compare this to the area consumption of the state-of-the-art
reference design [9], which is 0.07 mm2. As they used a
65nm technology, our design likely consumes roughly twice
the area, after normalizing for process technology.

The reason for the difference is the relative complexity
of our spike detection module; in the reference study, spike
detection is just an absolute value comparator. Our spike
detection module is an improvement for two reasons. First,
we have an FSM that buffers the data points before the point
that exceeds the threshold so the waveform of the spike
captured is more complete. Second, our FSM ensures that
all the spikes are aligned to their peaks, while the reference
design does not do any alignment.

Table III
POWER CONSUMPTION

chip power transmission power total power power density
10.3 µW 4.32 µW 14.6 µW 189.6 µW/mm2

The power consumption is presented in Table III. A
typical sampling rate of raw spike signals is 25K samples
per second. We use 16 bits to represent a data, which means
that the input data rate is 400 Kbps. A typical spike firing
rate of a neuron is 40 spikes per second [5]. We use 32
bits to represent the timestamp of each spike and 4 bits to
represent the cluster ID. This means that, by applying spike
sorting, the data rate could be reduced to 1.44 Kbps, for
a 278 fold reduction compared with the original raw data.
The energy spent on wireless transmission is about 3 nJ per
bit [12]. The transmission power in our design is therefore
about 4.32 µW . The total chip power is 10.3 µW .



Since we now have values for both chip area and
power consumption, we compute the power density: 189.6
µW/mm2. According to Kim et al. [13], in order to make
sure that an embedded chip is safe to brain tissue, the power
density must be less than 277 µW/mm2. Our design clearly
meets this requirement.

C. Accuracy Evaluation
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Figure 8. Accuracy

In order to evaluate sorting accuracy, we compare with
the reference design [9] using the same data sets [10] and
a similar procedure. We selected three data sets obtained
from measurements in three different parts of the brain.
Each data set was sampled under three different noise levels
(in the archive). These are run separately for a total of
nine combinations. We run each combination 5 times; and
the average accuracy of each combination is displayed in
Figure 8. The accuracy degrades with SNR from 100% at
16.5dB to about 96% at 10.6dB to about 83% at 6.85dB. The
overall geometric mean is 92.9%. In contrast the accuracy of
the reference design over a similar noise range is 75%. This
is mainly because of the more sophisticated spike detection
algorithm (described above), which ensures that the detected
spikes are more complete and accurate.

V. CONCLUSION

In this work, we propose a novel spike sorting hardware
prototype designed to perform this operation in conjunction
with the sensor embedded in the brain. The projected benefit
is a massive reduction in transmission power at the cost of
increased in situ processing. We find that our design reduces
transmission power by a factor of 278 while simultaneously
meeting the real-time and power-budget constraints. A ma-
jor difference between our design and previous efforts is
implementation of a more complex spike sorting algorithm.
This has the effect of improving accuracy from 75% to
93%. This requires some increase in resources, but the
overall design remains well within the hard constraints. In
future work, we may be able to combine this work with
semantically independent methods of reducing transmission
as we explored previously [14].
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