GPU-Accelerated Charge Mapping

Ahmed Sanaullah Saiful A. Mojumder

Kathleen M. Lewis Martin C. Herbordt

Department of Electrical and Computer Engineering
Boston University, Boston, MA

Abstract—Charge Mapping is critical to electrostatics compu-
tations such as performed in Molecular Dynamics simulations.
It reduces the complexity of evaluating long-range Coulombic
forces by diffusing discrete particle charges onto a regular grid.
Acceleration of this stage using GPUs is non-trivial, with the
compute and memory intensive nature of the algorithm limiting
performance benefits in naive implementations. In this paper,
we explore methods for performing efficient charge mapping on
GPUs. By utilizing available resources effectively and reducing
compute and memory transactions, high throughput can be
achieved. Our best case implementation shows > 14x speed-up
over existing GPU codes and > 25x speed-up over production
CPU codes such as NAMD.

I. INTRODUCTION

Molecular Dynamics Simulations account for a large frac-
tion of all High Performance Compute cycles. Their efficient
computation has therefore received much attention with vari-
ous types of computer systems being applied [1]-[5]. Reducing
the complexity of the brute-force (all-to-all pairwise) method
from O(N?) to at most O(N log(N)) requires several steps.
First the Coulombic forces are partitioned into range-limited
and long-range components. For the former, bounding the
range through use of structures such as cell and neighbor lists
[6], reduces the pairwise complexity from O(N?) to O(N).
For the latter, transform-based methods such as Particle Mesh
Ewald (PME) [7] reduce the complexity to O(N log(N)).

Figure 1 illustrates the steps involved in computing long-
range electrostatics. First, particles are diffused to a discrete
grid using a charge mapping function. Next, the Poisson equa-
tion is solved using 3D FFTs or Multigrid to obtain a potential
grid. These potential values are then back-interpolated to
obtain the forces. The two major computations are the 3D FFT
and Charge/Force Mapping. The FFT is well understood across
multiple plaforms, with libraries/implementations available for
doing transforms on CPUs (e.g., FFTW [8]), GPUs (e.g.,
cuFFT [9]) and FPGAs [10]-[13].

However, the grid-particle and particle-grid mappings are
also crucial as they are often substantially more compute-
intensive than the FFTs. Each is typically done using tricubic
interpolation and requires on the order of 500 floating point
operations (500N per particle; for reference, the FFT requires
around 100N for most MD simulations. Moreover, an N
particle system with cubic interpolation can generate 65N
memory transactions to read charge data and store computed
grid values.

This work was supported in part by the National Science Foundation
through Awards #CNS-1405695 and #CCF-1618303/7960; and by a grant
from Microsoft. Email: (sanaulah|herbordt[kmlewis)@bu.edu

short range force
% wi/ cell lists \
g

ﬁApply grid to particles

Apply particles to gridﬁ

e vith FETs

Transform

Charge Grid Potential Grid

Fig. 1. Overview of the long-range electrostatics computation (from [19]).

Several methods of charge mapping have been proposed in
the literature, with implementations taking advantage of the
underlying compute platform hardware. CPU based designs
such as NAMD [1] and Protomol [14] have access to fast
memory hierarchies to address memory bottlenecks, but are
unable to exploit all of the opportunities given by the large
degree of data parallelism.

Harvey et al. [15] and Ganesan et al. [16] present imple-
mentations of charge mapping on GPUs. The former assigns
particles to grid locations, with at most one charge per grid
point, and maps them without the use of atomic operations.
However, the remaining charges are unsorted and require
atomic integer compare-and-set loop constructs to be mapped,
which is slower. For a grid size of m per dimension, only m3
particles can be mapped efficiently in the best case. In a 90K
particle system mapped to a 323 grid, this is less than 50% of
the total particles. On the other hand, Ganesan et al. maintain
neighbor lists for each grid point to track all particles that will
affect it. Spline values are computed using texture memory
lookups. Apart from the overhead of creating and updating
neighbor lists, the memory intensive nature of this design will
likely limit potential performance improvements.

FPGA implementations, such as that by Gu et al. [17],
take advantage of memory interleaving [18] using the fast on-
chip block RAMs. They are able to couple flexible memory
organizations with deep specialized pipelines to obtain large
degrees of data and task parallelism.

In the present work, we design optimized charge mapping
algorithms for GPUs. The contributions are as follows.

e We identify and address computational bottlenecks in
CPU implementations. This enables GPU kernels to per-
form serial calculations in an efficient manner.

o We show that efficient memory structure is critical to
charge mapping performance on GPUs. Our memory-
aware implementations perform 14X better than existing
GPU codes and 25x better than common CPU codes such
as NAMD.

o We implement two different GPU algorithms: Particle
Centric and Grid Centric. We start with naive baseline
implementations and discuss the optimizations required
to improve performance. Particle Centric methods have
significantly fewer calculations and memory operations
and benefit from low resource contention in atomic
operations to give better performance than Grid Centric
methods.

e We compare our GPU algorithms on different GPU ar-
chitectures and use various benchmarks to determine the
scalability of Particle Centric and Grid Centric methods.

II. INTERPOLATION

Particle-grid interactions for charge mapping are typically
computed using spline interpolation polynomials. Particles
spread their charge to neighboring grid points based on their
separation using a basis function (¢) as shown in Eq 1. Indices
p and g denote particle and gridpoint respectively while p, is
the discretized charge distribution resulting from the mapping
operation.

pe =D Quod(lzg — zp))0(|yy — vp)d(l2g — 2) (D)
P

Selection of a basis function is important since its order
governs the accuracy of results, the number of FLOPs per
polynomial evaluated, and the number of interactions com-
puted per particle. Moreover, the basis function is constrained
to be C! continuous since its gradient is required for force
computation at a later stage in electrostatic computations.
Skeel et al. [20] proposed one such third order basis function
shown in Eq. 2. Here £ is the distance between the particle
and any grid point.

(L— NP +1¢ -3¢ |¢1<1
-1l -DE2-1Eh* 1<<2 Q@
0 2 < ¢

¢(§) =

Taking advantage of unit spacing between grid points, Gu
et al. [17] modify the above basis function by first expressing
all distances from grid points with non-zero contributions as
a function of the distance of a particle from its nearest grid
point (oz). An example of this is illustrated in Figure 2. By
substituting ¢ in Eq. 2 with ot + 1, oi, 1 — 07 and 2 — oz, four
spline polynomials are obtained. All polynomials take o: as an
input and the polynomial selected depends on the particle-grid
point distance.

Ji1 i Oi+1 Gis2
| | e | |
D, >, o, ?,

o —v—

1-oi
Fig. 2. Extract grid index and offset.

o(01) = —10i + 0i% — Loi

po(0i) 3 2

¢1(0i) = 30i® — 20i% +1 3)
2(0i) = —30i% + 20i® 4 Loi

¢ () 2 2

¢s3(0t) = %(02'3 — 0i?)

III. SERIAL CHARGE MAPPING

A. Computation

Designing an efficient GPU implementation requires opti-
mizing the serial code that is executed by each thread. Con-
sequently, we begin by identifying the potential performance
bottlenecks in naive CPU implementations and how these can
be addressed. Algorithm 1 shows the baseline CPU code.
An outer loop iterates through all particles in the data-set.
For each particle, a set of nested loops iterates over all 64
grid points for which interactions must be computed. Due
to periodic boundaries, a wrapping function is required to
determine valid grid coordinates for particles at system edges.
The innermost loop evaluates the basis function for each
dimension, multiplies with particle charge, and accumulates
the result at the appropriate grid point. Here, PX and nGP
refer to the particle coordinate and nearest grid point vectors
respectively.

Algorithm 1 Baseline CPU Algorithm
1: for Particles =1: N do
2: nearestGridPoint = floor(ParticleCoordinates)

3: for z= nGPz—1 to nGPz+ 2 do
4: for y= nGPy—1 to nGPy + 2 do

5: for x = nGPx— 1 to nGPx+ 2 do

6: wrap(z)

7: wrap(y)

8: wrap(x)

9: Basis Function(z,PX.z - nGP.z)
10: Basis Function(y,PX.y - nGPy)
11: Basis Function(x,PX.x - nGPx)
12: Multiply and Accumulate
13: end
14: end
15: end
16: end

Despite its low complexity, there are several drawbacks
in this implementation. Addressing the wrap-around and ba-
sis functions is critical to compute performance since each
function is called 192 times per particle. These functions
perform multiple cases of fixed function form evaluation. For
example, basis function calls compute one of four possible
polynomials depending on the distance of a grid point from
the particle. The large number of conditional branches results
in performance degradation due to branch miss-prediction
penalties. By introducing conditional assignments for wrap-
arounds and by precomputing all dimension-independent basis
function values and affected grid-coordinates, the conditional

branches can be remove completely. This reduces the overall
number of function calls by 93.75%.

Algorithm 2 shows the improved serial charge mapping
code. Here, the arrays gz, gy and gz contain all possible
dimensional coordinates of the nearest 64 points while the
arrays phix, phiy and phiz contain all possible basis function
polynomials.

Algorithm 2 Optimized CPU Algorithm
1: for Particles =1: N do

2: Compute nearest four grid points in each dimension
3: gz[4] = boundary ? wrap around : gz[4]
4 gy[4] = boundary ? wrap around : gy[4]
5: gx[4] = boundary ? wrap around : gx[4]
6: phiz[4] = Basis Function(PX.z - gz[2])

7: phiy[4] = Basis Function(PX.y - gy[2])

8: phix[4] = Basis Function(PX.x - gx[2])

9: for z=1to 4 do

10: for y=1 to 4 do

11: for x=1 to 4 do

12: ChargeGrid(gz[z],gy[y].gx[x]) =
13: phiz{z]*phiy[y]*phix[x]*Q

14: end

15: end

16: end

17: end

Apart from optimizing function evaluation, parallelism in
the outermost loop can also be exploited through vectorization.
Since the same functions are evaluated for every particle,
multiple particles can be processed simultaneously which can
improve performance despite persisting memory bottlenecks.

B. Binning

To improve memory performance, data-sets can be pre-
sorted into bins. All particles within a bin have a common
nearest grid point and contribute charges to the same set of
grid points. Particles in consecutive bins overlap for 75% of
the grid locations accessed. Consequently, in-order traversal
of such bins results in better locality and high cache hit rates.

There are two primary constraints on functions that perform
binning. First, they should bin particles in a single pass with
O(N) time, which is bound by the charge mapping com-
plexity. Second, dynamic arrays cannot be used due to their
negative impact on performance. The latter is of importance
since the number of particles per bin is not fixed and can
vary up to a maximum bounded by the typical system density
constraint of 0.1 particle per A3. Performing two passes of
the data set, one to determine bin sizes and allocate memory
and second to fill bins, is inefficient as it increases timeframes
significantly despite still being O(N). As a result, we declare
static bins of fixed sizes in memory to address the worst
case. Empty bin spaces are filled with “ghost” particles which
have no charge and hence do no contribute to grid-charges.
A counter variable in each bin structure is used to track the
number of filled bin slots.

IV. GPU ACCELERATED CHARGE MAPPING

Developing an efficient GPU algorithm for charge mapping
requires identifying opportunities for parallelism that exist
despite data-dependence between particles. In our design, we
consider two methods, Particle Centric (PC) and Grid Centric
(GC) (illustrated in Figure 3). PC methods assign workloads
from the particle perspective. Each thread represents one or
more particles and computes the 64 particle-grid interactions
for each. The dominant memory transaction is in the form of
write-backs; each thread reads from one particle/bin but writes
to multiple locations on the charge grid. On the other hand,
GC methods assign workloads from the grid perspective. Each
thread calculates and accumulates all possible contributions
to a unique grid point. This is a read intensive operation,
with multiple particles/bins read in order to generate a single
grid-charge value. Harvey et al. and Ganesan et al. both use
GC methods. In this section, we will develop algorithms for
both methods starting with naive implementations, identifying
bottlenecks, and discussing optimizations performed.

A. Particle Centric

1) Baseline: Algorithm 3 shows a baseline implementation
for PC mapping. Each thread represents a unique particle,
indexed from an unsorted data set in the global memory
by using the thread ID. This particle is processed by first
computing grid coordinates of interest in each dimension
along with all possible basis function values. These values are
used to evaluate particle-grid interactions in nested loops and
subsequently accumulated in memory using atomic operations.
Since floating point atomic operations are available in CUDA
libraries, the native atomicAdd’ function is used. Despite the
large degree of parallelism (N threads for a N particle system),
irregular memory access patterns on both intra-block and inter-
block levels lead to sub-optimal performance. Particles close
to each other in real space are potentially not processed by
threads within the same block due to the unsorted database.
In the worst case, there is no locality exploited for writes
within a block resulting in a large number of compulsory and
capacity cache misses.

2) Optimizations: Algorithm 4 shows the first level of
optimization, where we sort particles into bins and assign
each bin to a unique thread. This increases the number of
read operations required, both on a per-thread and a global
level. The former is due to more particles being processed
per thread while the latter occurs because fetching an entire
bin results in counters and “ghost” particles being read from
global memory. Binning also increases the register usage
per thread, reduces the overall number of threads scheduled
(number of threads is now equal to the number of grid points),
and increases code serialization since a thread loops over all
particles in the bin. Despite these drawbacks, however, the
overall system performance improves since major limitations
outlined previously are addressed. Particles now have similar
physical and logical layouts resulting fewer cache misses and
greater locality. Another benefit is reduced resource contention
for atomic operations since particles writing to the same 64

Particle Centric
Block M

Thread 0 Thread T
Particle Particle

Block 0

Thread 0 Thread T
Particle Particle

Grid Centric
Block M

Thread 0 Thread T
Grid P. Grid P.

Block 0

Thread 0 Thread T
Grid P. Grid P.

Fig. 3. Particle and Grid Centric methods for implementing charge mapping on GPUS. The width of arrows represents the amount of data transferred in the

indicated direction.

Algorithm 3 Baseline Particle Centric Algorithm

Algorithm 4 Optimized Particle Centric Algorithm

1: ID < getThreadlD()

2: Particle = Mem[ID]

3: Compute nearest four grid points in each dimension
4: gz[4] = boundary ? wrap around : gz[4]

5: gy[4] = boundary ? wrap around : gy[4]

6: gx[4] = boundary ? wrap around : gx[4]

7: phiz[4] = Basis Function(PX.z - gz[2])

8: phiy[4] = Basis Function(PX.y - gy[2])

9: phix[{4] = Basis Function(PX.x - gx[2])

10: for z=1 to 4 do

11: for y=1 to 4 do

12: for x=1to 4 do

13: AtomicAdd (ChargeGrid(gz[z],gy[y] gx[x]) ,
14: phiz[z]*phiy[y]*phix[x]*Q)

15: end

16: end

17: end

grid locations are processed sequentially. Moreover, thread
divergence does not impact performance. Despite each thread
processing bins of different sizes, threads in a warp either

perform the same computation or remain idle.
Bin M Bin 0 Bin M
Slot 0 Slot 1 Slot S-1

(a)

Bin 2
Slot 0

Bin 0
Slot 1

Bin 0

Bin 1

Slot 0 Slot 0

(b)

Bin 0-M Bin 0-M Bin 0-M Bin 0-M Bin 0-M Bin 0-M Bin 0-M Bin 0-M
Slot 0 Slot 0 Slot 0 Slot 0 Slot 1 Slot 1 Slot 1 Slot -1
X Y Z Q X Y z Q

Fig. 4. Modified bin data-structures used for a) reducing invalid reads and
b) coalescing. Each of M possible bins has a maximum of S slots.

For the next level of optimization, we reduce the number
of reads from global memory. This is important since a thread
cannot be scheduled unless the entire bin, including ghost
particles, has been read. To achieve this, the bin data structure
described previously is replaced by a single array containing
particle data and a corresponding counter array (as shown in
Figure 4a). A complex addressing scheme is used which maps
each bin slot to a different location (equidistant) in the array.
Data is organized such that similar slots of all bins are placed

. ID < getThreadlD()
: Bin = Mem/[ID]
: Compute nearest four grid points in each dimension
: gz[4] = boundary ? wrap around : gz[4]
gyl[4] = boundary ? wrap around : gy[4]
gx[4] = boundary ? wrap around : gx[4]
for itr =1 to Bin.counter do
Particle = Bin[itr]
phiz[4] = Basis Function(PX.z - gz[2])
phiy[4] = Basis Function(PX.y - gy[2])
phix[4] = Basis Function(PX.x - gx[2])
12: for z=1to 4 do

- =
AN I U

13: for y=1 to 4 do

14: for x =1 to 4 do

15: AtomicAdd (ChargeGrid(gz[z],gy[y] gx[x]) ,
16: phiz[z]*phiy[y]*phix[x]*Q)

17: end

18: end

19: end

20: end

in consecutive memory locations. This allows threads to read
individual particles in a bin instead of the entire data structure.
Based on the value stored in the counter array, threads only
traverse data up until the last valid particle. Thus the overhead
of reading ghost particles from memory is removed.

Finally, to further improve read memory operations through
coalescing, we reorder particle data such that the coordinate
and charge values from similar bin slots are placed in consec-
utive memory locations. This is illustrated in Figure 4b. It is
achieved by changing the memory indexing function only; no
further changes are required to the data structure.

B. Grid Centric

1) Baseline: Algorithm 5 shows a simple GPU imple-
mentation for GC mapping. In contrast to PC mapping, GC
methods are aimed at reducing the number of memory write
operations and removing data dependencies that necessitate
atomic functions. Each thread indexes a grid point based on
its thread ID. Using this local grid ID, we can determine
the bins which contain particles that will interact with the
grid point. These bins are read into memory using nested

loops. For each inner loop iteration, a new remote bin is
traversed. By comparing local grid and remote bin IDs, the
basis function polynomial for particles in the remote bin is
determined and evaluated. Local variables can be used for
charge accumulation.

Threads now process a larger number of particles but
compute the same number of interactions on average. Con-
sequently, threads have true data parallelism, and overhad of
coherency misses and atomic additions is completely removed.
There are several potential areas of optimization in this im-
plementation which we identify.

Algorithm 5 Baseline Grid Centric Algorithm
1. Grid Point < getThreadlD()

2: Compute nearest four grid points in each dimension

3: gz[4] = boundary ? wrap around : gz[4]

4: gy[4] = boundary ? wrap around : gy[4]

5. gx[4] = boundary ? wrap around : gx[4]

6: for z=1to 4 do

7: for y=1 to 4 do

8: for x=1to 4 do

9: RemoteBinID = f(gz[z],gy[y] gx[x])

10: Bin = Mem/RemoteBinID]

11: for itr = 1 to Bin.counter do

12: Particle = Bin[itr]

13: phiz = Basis Function(z,PX.z - floor(PX.z))
14: phiy = Basis Function(y,PX.y - floor(PX.y))
15: phix = Basis Function(x,PX.x - floor(PX.x))
16: Local Variable += phiz*phiy*phix*Q

17: end

18: end

19: end

20: end

21: ChargeGrid(getThreadID) = Local Variable

2) Optimizations: The first optimization is removing con-
ditional branches in the kernel code. In previous cases, all
spline values of a particle were needed and hence they were
precomputed and reused. For GC mapping, a read particle
only computes one spline value per dimension. Using branches
allows this required polynomial to be evaluated without the
overhead of unnecessary calculations. However, there are a
large number of nested conditional branches corresponding to
possible relative orientations of the local grid point and remote
bin. The performance benefits of avoiding extra floating point
operations may potentially be outweighed by branch miss
penalties. Therefore, conditional assignments are used which
evaluate all four polynomial before selecting the appropriate
one.

A second optimization is performed by using shared mem-
ory. Shared memory is a low latency unit accessible by all
threads in a block. By cooperatively populating the shared
memory, threads can reduce the number of global memory
accesses through storage of common variables locally. This is
potentially useful for GC methods since threads in a block
have significant overlap in remote bins they access due to

locality. Moreover, data read into shared memory remains valid
since particle values are not modified during mapping.

Finally, we use the reduced-read data structure developed
for PC mapping to read only valid particles. Since GC map-
pings read 64x more bins, we expect that the performance
improvement obtained will also be substantially greater. This
is illustrated in Algorithm 6.

Algorithm 6 Optimized Grid Centric Algorithm
1: Grid Point < getThreadlD()

2: Compute nearest four grid points in each dimension

3: gz[4] = boundary ? wrap around : gz[4]

4: gy[4] = boundary ? wrap around : gy[4]

5. gx[4] = boundary ? wrap around : gx[4]

6: for z=1to 4 do

7: for y=1 to 4 do

8: for x =1 to 4 do

9: RemoteBinID = f(gz[z],gy[y] gx[x])

10: for itr = 1 to counter/RemoteBinID] do

11: BinSlot = h(itr,RemoteBinlD)

12: Particle = Mem/BinSlot]

13: phiz[4]=BasisFunction(PX.z - floor(PX.z))
14: phiy[4]=BasisFunction(PX.y - floor(PX.y))
15: phix[4]=BasisFunction(PX.x - floor(PX.x))
16: LocalVariable+=phiz[z]*phiy[y]*phix[x]*Q
17: end

18: end

19: end

20: end

21: ChargeGrid(getThreadlD) = Local Variable

V. RESULTS
A. System Specifications

We have tested our algorithms using the ApoAl (92K parti-
cles) and DMPC (68K particles) benchmarks. CPU codes are
compiled and run on a single core of an Intel Xeon i5 3.3GHz
processor using g++ v5.3.0. GPU codes are run on a TESLA
M2070 (Fermi, 440 cores) and a TESLA k40m (Kepler, 2880
cores) GPU using the CUDA NVCC 7.5 compiler. In order
to get a complete performance comparison across common
technologies, we also compare our results with an FPGA
implementation using an Altera Stratix V board.

B. Performance

1) Algorithm: Table 1 and 2 show the performance results
for both PC and GC implementations with GPU baseline
codes. Results are expressed in the number of particles pro-
cessed per microsecond (PPUS). PC implementations show
greater throughput than GC codes. In both cases, the best
performance is achieved by reducing the number of reads from
global memory through efficient binning.

Table 3 lists the results of profiling the best case PC and
GC implementations for the ApoAl benchmark.

The PC code performance is observed to be better due
to orders of magnitude fewer computations and memory

TABLE I
PARTICLE CENTRIC CHARGE MAPPING PERFORMANCE (PPUS)

Version A-M2070 | D-M2070 | A-K40m | D-K40m
Baseline 5.6 5.1 129.7 124.0
Binning 46.2 39.3 144.5 125.0
Reduced Reads 50.9 45.1 201.8 193.0
Coalescing 50.9 459 198.4 194.0
TABLE II
GRID CENTRIC CHARGE MAPPING PERFORMANCE (PPUS)
Version A-M2070 | D-M2070 | A-K40m | D-K40m
Baseline 2.4 2.0 3.5 33
Compute Efficient 2.2 1.8 3.7 3.7
Shared Memory 2.2 1.7 3.0 2.3
Reduced Reads 15.2 14.1 26.6 28.2

operations. The former is due to the difference in data reuse.
For each bin read, a thread computes 4 basis function values
in each dimension. PC kernels use all these values to compute
artial charge contributions for 64 grid points. GC kernels only
use one value per dimension to compute the contributions to
a single grid point. The latter is due to the large number
of bins read by each thread in the GC algorithm. Despite
having a higher cache hit rate, the aggregate time spent on
these operations is greater than for PC. Moreover, higher
multiprocessor and warp efficiency for PC kernels indicates
that, even though more than 50% of stalls were caused by
the approximately 400K atomic operations, waiting time for
contesting threads is low owing to the low probability of
a large number of threads attempting to write to the same
location simultaneously.

2) GPU Technologies: Using GPUs with different compute
capabilities allows us to determine how our proposed mapping
algorithms are likely to scale with available resources. First,
the higher memory bandwidth available on the Kepler GPU
makes the design more tolerant to irregular memory accesses
leading to a > 24X increase in throughput for the baseline
PC mapping. On the other hand, latencies of reads are largely
independent of the GPU technology. This is indicated by
the insignificant performance improvement in the first three
GC versions and the comparable performance of PC binning

TABLE III
PROFILE STATISTICS FOR OPTIMAL GPU IMPLEMENTATIONS
Metric Particle Centric | Grid Centric
Global Load 85,372 3,834,694
Global Store 0 1022
Local Load 578,396 1,650,781
Local Store 175,951 1,650,781
L2 Read 3,439,981 17,178,508
L1 Hit Rate (Local) 1.19% 17.01%
L1 Hit Rate (Global) 47.89% 57.19%
L2 Hit Rate 7.98% 93.66%
Single Precision FLOPs 17,333,048 56,983,823
Double Precision FLOPs 3,873,408 72,334,599
Instructions Executed 2,892,563 42,690,098
Multiprocessor Efficiency 98.43% 92.8%
Warp Execution Efficiency 57.06% 46.83%
Data Request Stalls 77.3% 24.56%

400 |

300

200 |

Throughput / PPUS

100+

[CPU]
NAMD

[GPU] [GPU]
FEN ZI GRID
CENTRIC

[GPU]
PARTICLE
CENTRIC

[FPGA]

Fig. 5. Throughput comparison with existing implementations.

(more reads due to ghost particles) to its baseline. Overall, PC
mapping shows better scalability since the best case version
shows an ~ 4x throughput increase as compared to an ~= 2x
increase for GC.

3) Benchmark: Performance results of the benchmarks
show that better throughput is achieved when larger number
of particles are processed. Since the difference is only a small
fraction, it is potentially due to overhead of kernel execution
being amortized over a greater data set.

C. Impact

To evaluate the impact of our work, we compare the best
case throughputs of Grid Centric and Particle Centric methods
with existing CPU (NAMD), GPU (Fen-ZI on TESLA K40m)
and FPGA implementations. From the results shown in Figure
5, we can see that our memory aware methods achieve > 25x
speedup over NAMD (single core) and > 14X speedup over
Fen-ZI. Moreover, our Grid Centric implementation achieves
> 2x speedup over Fen-ZI, which is also a grid centric
implementation. The throughput of the FPGA remains higher
than that of the GPUs on account of the fast on-chip mem-
ories and the ability to compute and store multiple iterations
simultaneously.

VI. CONCLUSION

In this paper, we present optimizations for charge map-
ping on GPUs which address both computation and memory
bottlenecks. Calculation timeframes were minimized primarily
through data reuse, reducing memory transactions, and forcing
regular data access patterns. Particle Centric implementations
show the highest performance across all devices and bench-
marks despite using atomic operations. Overall, both our Parti-
cle Centric and Grid Centric algorithms achieved significantly
better performance than previous CPU (NAMD) and GPU
(Fen-ZI) codes. Achieving performance on par with FPGAs,
however, potentially requires more aggressive optimizations
to both the algorithms and to the underlying GPU memory
architecture.

[1]

[2

—

[3]

[4

=

[5]

[6]

[7]

[8]
[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, “Scalable molecular
dynamics with NAMD,” Journal of computational chemistry, vol. 26,
no. 16, pp. 1781-1802, 2005.

J. Phillips, J. Stone, and K. Schulten, “Adapting a message-driven
parallel application to GPU-accelerated clusters,” in Proc. ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis — Supercomputing, 2008.

Shaw, D.E., et al., “Anton, A Special-Purpose Machine for Molecular
Dynamics Simulation,” in Proc. Int. Symp. on Computer Architecture,
2007, pp. 1-12.

M. Chiu and M. Herbordt, “Efficient filtering for molecular dynamics
simulations,” in Proc. IEEE Conf. on Field Programmable Logic and
Applications, 2009.

——, “Molecular dynamics simulations on high performance reconfig-
urable computing systems,” ACM Trans. Reconfigurable Tech. and Sys.,
vol. 3, no. 4, pp. 1-37, 2010.

M. Chiu, M. Khan, and M. Herbordt, “Efficient calculation of pairwise
nonbonded forces,” in Proc. IEEE Symp. on Field Programmable Custom
Computing Machines, 2011.

T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N log
(N) method for Ewald sums in large systems,” The Journal of chemical
physics, vol. 98, no. 12, pp. 10089-10092, 1993.

M. Frigo and S. Johnson, “FFTW, C subroutine library,” URL
http://www. fftw. org, 2005.

NVidia, “CUFFT : CUDA Toolkit Documentation,” URL
http://docs.nvidia.com/cuda/cufft/, accessed May 2016.

B. Humphries, H. Zhang, J. Sheng, R. Landaverde, and M. C. Her-
bordt, “3D FFTs on a Single FPGA,” in Field-Programmable Custom
Computing Machines (FCCM), 2014 IEEE 22nd Annual International
Symposium on. 1EEE, 2014, pp. 68-71.

A. Lawande, A. George, and H. Lam, “Simulative Analysis of a
Multidimensional Torus-based Reconfigurable Cluster for Molecular
Dynamics,” in Proc. Workshop on Heterogeneous and Unconventional
Cluster Architectures and Applications, 2014.

J. Sheng, B. Humphries, H. Zhang, and M. Herbordt, “Design of 3D
FFTs with FPGA Clusters,” in IEEE High Perf. Extreme Computing
Conf., 2014.

J. Sheng, C. Yang, and M. Herbordt, “Towards Low-Latency Commu-
nication on FPGA Clusters with 3D FFT Case Study,” in Proc. Highly
Efficient and Reconfigurable Technologies, 2015.

T. Matthey, T. Cickovski, S. Hampton, A. Ko, Q. Ma, M. Nyerges,
T. Raeder, T. Slabach, and J. A. Izaguirre, “ProtoMol, an object-oriented
framework for prototyping novel algorithms for molecular dynamics,”
ACM Transactions on Mathematical Software (TOMS), vol. 30, no. 3,
pp. 237-265, 2004.

M. Harvey and G. De Fabritiis, “An implementation of the smooth
particle mesh Ewald method on GPU hardware,” Journal of Chemical
Theory and Computation, vol. 5, no. 9, pp. 2371-2377, 2009.

N. Ganesan, M. Taufer, B. Bauer, and S. Patel, “FENZI: GPU-enabled
Molecular Dynamics Simulations of Large Membrane Regions based on
the CHARMM force field and PME,” in Parallel and Distributed Pro-
cessing Workshops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on. 1EEE, 2011, pp. 472-480.

Y. Gu and M. Herbordt, “FPGA-based multigrid computations for
molecular dynamics simulations,” in Proc. IEEE Symp. on Field Pro-
grammable Custom Computing Machines, 2007, pp. 117-126.

T. VanCourt and M. Herbordt, “Application-dependent memory inter-
leaving enables high performance in FPGA-based grid computations,”
in Proceedings of the IEEE Conference on Field Programmable Logic
and Applications, 2006, pp. 395-401.

A. Sanaullah, A. Khoshparvar, and M. Herbordt, “FPGA-Accelerated
Particle-Grid Mapping,” in Proc. IEEE Symp. on Field Programmable
Custom Computing Machines, 2016.

R. D. Skeel, I. Tezcan, and D. J. Hardy, “Multiple grid methods for
classical molecular dynamics,” Journal of Computational Chemistry,
vol. 23, no. 6, pp. 673-684, 2002.

