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Abstract—FPGAs have been demonstrated to be capable
of very high performance, especially power-performance, but
generally at the cost of hand-tuned HDL code by FPGA
experts. OpenCL is the leading industry effort in improving
performance-programmability. But while it is recognized that
optimizing OpenCL code using published best practices is critical
to achieving good performance, even optimized code has so
far rarely matched that of HDL code, or that available with
competing technologies such as GPUs. In this paper we propose
a series of systematic and empirically guided code optimizations
that augment current best practices and substantially improve
achieved performance. Our work characterizes and measures the
impact of all of these optimizations. This enables programmers
to not only follow a script when optimizing their own kernels,
but also opens the way for the development of autotuners to
perform optimizations automatically. We also demonstrate that,
by applying these proposed code design practices to a number
of parallel computing dwarfs, our optimized kernels outperform
CPU and previous FPGA OpenCL implementations by 1.2× and
5× respectively. Moreover, our optimizations enable OpenCL
FPGA codes to consistently achieve performance within striking
distance of (≈ 2×) best current equivalent code for GPUs and
HDL. To the best of our knowledge, this is at least 2× better
than previous characterizations of OpenCL FPGA optimizations.

I. INTRODUCTION

Programmability has been an ever-present challenge for
FPGAs that has hindered adoption in production HPC. High
Level Synthesis (HLS) tools provide an alternative to HDL
programming by enabling designs to be expressed with higher
levels of abstraction. Intel FPGA OpenCL [1] has received
much attention and is our focus here. The methods used,
however, are general and can easily be applied to other tools.
Despite the advantages of OpenCL, it has still not managed
to effectively bridge the performance-programmability gap
for FPGAs. OpenCL kernels often end up having orders of
magnitude worse performance than functionally equivalent
HDL designs. Significant expertise in how the C-to-Hardware
translation works is typically required for good performance.

Automatic compilation to a complex architecture is well-
known to be an extremely difficult problem; even after decades
of research it has been only partially solved. In HPC, program-
mers achieve high performance by augmenting the coding pro-
cess, first, by integrating optimized libraries, and then, when
these are not sufficient, by optimizing the code themselves
[2]. Since this process is challenging even for experienced
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programmers, a vast area of research has grown up around
automating it through autotuning [3].

We propose that an analogous approach be applied to coding
OpenCL for FPGAs. We broadly categorize types of code
optimizations in this domain into three sets: (i) Intel Best
Practices (IBPs), (ii) Universal Code Optimizations (UCOs),
and (iii) FPGA-Specific Optimizations (FSOs). IBPs refer to
design strategies given in the Intel Best Practices guide [4].
These provide insight into how to effectively express hardware
using OpenCL semantics. We separate these from UCOs and
FSOs because IBPs are well-known to the FPGA OpenCL
community and there have been several studies characteriz-
ing their behavior. UCOs consist of general approaches to
optimizing programs that, to a large degree, are independent
of the compute platform. Examples of UCOs include use of
1D arrays, records of arrays, predication, loop merging, scalar
replacement, and precomputing constants. While described,
e.g., in [2], they are largely missing from IBP documentation.
FSOs consist of a number of FPGA-specific optimizations
that typically augment IBPs. They are based on (a) obtaining
a particular FPGA-specific mapping not found as an IBP,
(b) facts stated in IBPs, but which must be leveraged and
converted into optimizations, and (c) anti-IBPs, i.e., practices
that are part of IBPs, but which (we have found) should
actually be avoided.

In this paper we propose a systematic and empirically
guided series of code optimizations for creating High Perfor-
mance FPGA OpenCL kernels, using a combination of IBPs,
UCOs, and FSOs. These are aimed at giving the OpenCL
compiler sufficient freedom to infer and exploit all possible
forms and degrees of parallelism, along with more aggressive
steps such as restructuring pipeline stages to minimize latency
and resource overhead. It is important to note here that, while
some FSOs may be commonly known, since they can be based
on UCOs and IBPs, our work is novel in their application to
FPGAs. We also characterize and measure the impact of all
optimizations. These results not only enable programmers to
follow a script when optimizing their own kernels, but also
open the way for the development of autotuners to perform
optimizations automatically. We also demonstrate that, by
applying these proposed code modifications to a number of
parallel computing dwarfs, OpenCL FPGA code can consis-
tently achieve performance within striking distance of (≈2x)
best current equivalent code for GPUs and HDL. To the best
of our knowledge, this is at least 2x better (for GPUs) than
previous optimization studies of OpenCL for FPGAs.



The contributions in this paper are as follows:
• We propose systematic code optimizations for In-

tel FPGA OpenCL that can bridge the Performance-
Programmability gap for FPGAs. Programmers can easily
apply these optimizations to their kernels by following a
script. Autotuners can also be developed to automate the
process of high-performance hardware generation.

• To the best of our knowledge, our work is the first
effort towards (a) characterizing optimizations beyond
IBPs (UCOs and FSOs), (b) finding Anti-IBPs, and (c)
the application of UCOs and FSOs to FPGAs.

• We show the incremental impact of each optimization
using benchmarks for seven distinct parallel computing
dwarfs: MMM, SpMV, FFT, CRC, Needleman-Wunsch
(NW), Range-Limited MD, and Particle Mesh Ewald.

• We show that these optimized kernels outperform existing
CPU and FPGA OpenCL codes by approximately 1.2×
and 5× on average respectively. For certain benchmarks,
we also outperform the GPU and Verilog codes; these
include SpMV (2.6×) and PME (2.8×) for GPU, and
SpMV (2.1×) and Range Limited (25×) for Verilog.

II. PREVIOUS WORK

Most previous work related to FPGA OpenCL focuses on
performing optimizations to achieve speedups for a number
of applications. These speedups, however, are mostly with
respect to either a CPU baseline code, or an OpenCL baseline
code with no optimizations (e.g., [5]–[7]); this significantly
reduces the utility of reported results. The space covered in
previous studies characterizing FPGA OpenCL optimizations
[6], [8]–[10] has mostly been limited. Often only a common
set of simple optimizations is applied, with the initial code
being written for a GPU with Multiple Work Item Kernels.
Characterizations may be limited to varying the number of
SIMD lanes or compute units.

One of the most important studies in this area, by Zohouri,
et al. [11], implements both GPU based and FPGA-specific
codes. The latter, referred to as loop-pipelined kernels, employ
Single Work Item kernels and IBPs such as sliding windows
and shift registers. Our work advances that of [11] in a number
of ways. We have implemented many more optimizations;
authors in [11] only use IBPs, while we characterize UCOs
and FSOs as well. Performance values for best case imple-
mentations in [11] show an average of 35× improvement
over un-optimized baselines while our work shows an average
speedup of 288× for the final optimized version (with respect
to the baseline). Moreover, the average speedup reported by
Zohouri, et al. over GPUs is approximately 0.25×, while
we achieve approximately 0.5×. Finally, unlike our reference
GPU implementations, the GPU used in [11] does not have
High Bandwidth Memory.

III. OPTIMIZATIONS

In this section, we present our design pattern agnostic
OpenCL code optimizations that help the compiler infer and
generate optimal architectures. There are seven code versions,

TABLE I
SUMMARY OF CODE VERSIONS AND OPTIMIZATIONS APPLIED THEREIN

Ver. Optimizations Type
0 (GPU code for porting to FPGA OpenCL) —
1 Single thread code with cache optimization IBP,FSO
2 Implement task parallel computations in sep-

arate kernels and connect them using channels
IBP

Fully unroll all loops w/ #pragma unroll IBP,UCO
Minimize variable declaration outside com-
pute loops – use temps where possible

IBP,UCO

Use constants for problem sizes and data values
– instead of relying on off-chip memory access

IBP,FSO,UCO

Coalesce memory operations IBP,UCO
3 Implement the entire computation within a sin-

gle kernel and avoid using channels
FSO

4 Reduce array sizes to infer pipeline registers as
registers, instead of BRAMs

FSO

5 Perform computations in detail, using tempo-
rary variables to store intermediate results

FSO,UCO

6 Use predication instead of conditional branch
statements when defining forks in the data path

FSO,UCO

which are incrementally developed. Each version contains one
or more applied optimizations. Version 1 is a cache optimized
CPU code for the application of interest. Version 2 is obtained
by applying the IBPs to the baseline code. Versions 3-6 involve
applying a number of additional optimizations that, not only
maximize opportunities for parallelism, but also reduce the
complexity (and hence resource usage and latency) of the
generated control and data planes. Table I summarizes the
optimizations and their type (IBP, FSO, and/or UCO). We
illustrate each set of optimizations through a running example,
the Needleman-Wunsch (NW) benchmark.
Algorithm 1 Needleman Wunsch-V0

1: int tx = get local id(0)
2: local int* temp
3: local int* ref
4: Initialize temp from global memory
5: barrier(CLK LOCAL MEM FENCE);
6: Initialize ref from global memory
7: barrier(CLK LOCAL MEM FENCE);
8: for i = 1 : SIZE do
9: if tx≤i then

10: compute t idx x and t idx y based on tx and i
11: temp[t idx y][t idx x] =
12: max( temp[t idx y-1][t idx x-1] +
13: ref[t idx y-1][t idx x-1],
14: temp[t idx y][t idx x-1] - penalty,
15: temp[t idx y-1][t idx x] - penalty);
16: barrier(CLK LOCAL MEM FENCE);
17: barrier(CLK LOCAL MEM FENCE);
18: for i = SIZE − 2 : 0 do
19: Perform computations similar to above
20: barrier(CLK LOCAL MEM FENCE);
21: Store temp to global memory

A. Version 0: Sub-Optimal Baseline Code
A popular starting point (e.g., in [9]) is kernels based on

Multiple Work Items (MWI) such as is appropriate for GPUs.
Advantages of starting here include ease of exploiting data
parallelism through SIMD, and Compute Unit Replication
(CUR), which is exclusive to MWI structures.

Algorithm 1 shows a V0-type kernel (based on [12]). The
core operation is to populate a matrix using known values



of the first row and the first column. Each unknown entry
is computed based on the values of its left, up, and up-left
locations. This is achieved using loops which iterate in-order
over all matrix entries. The max function is implemented
using ’if-else’ statements. In Algorithm 1, SIZE represents the
dimension of blocks of matrix entries being processed.

B. Version 1: Preferred Baseline Code (used for reference)

Algorithm 2 Needleman Wunsch-V1
1: for i = 1 : V ector B Size do
2: for j = 1 : V ector A Size do
3: Out[i,j] = max( Out[i-1,j] - penalty,
4: Out[i-1,j-1] + ref[i,j] , Out[i,j-1] - penalty)

A less intuitive, but preferred, alternative is to use (as a base-
line) single threaded CPU code. In particular, initial designs
should be implemented as Single Work Item (SWI) kernels.
While use of MWI kernels best matches the original purpose
of OpenCL, enabling various expressions of parallelism, there
are number of disadvantages for FPGAs.
Scheduling work-groups/items: Similar to GPUs, a scheduler
is required to balance workloads and ensure all pipelines
are kept filled. Using CUR increases scheduling effort since
work-groups must be scheduled across the different compute
units. Use of a simple scheduler can result in under-utilized
pipelines. But more complex schedulers can require more
resources and increase latency.
Under-utilization: CUR helps fill the chip in order to maximize
use of available resource. However, because entire workgroups
are assigned to each compute unit, the latter must divide the
former perfectly; often, areas of the chip are mostly idle.
Static SIMD size: MWI kernels require a global SIMD size
to be defined. This is sub-optimal for asymmetric pipelines
where opportunities for data parallelism can vary frequently.
Global synchronization overhead: Compute units cannot com-
municate with each other directly. As with GPUs, data
transfers between workgroups across compute units must go
through off-chip memory. In addition to large synchronization
overhead, the advantage of connectivity within FPGAs is lost.
Wrapper Overhead: Extra OpenCL wrapper logic is required
to individually interface compute units with the host and
external memory. Arbitration is often required, which incurs
overheads similar to that of the scheduler.
Symmetry constraints: All work-items and work-groups are
assigned equal amounts of private and local memory, respec-
tively. This symmetry is not favorable when the workload
varies as a factor of the work-item/work-group number.

In contrast, SWI kernels do not require a scheduler;
pipelines are customized for a given application; parallelism is
inferred and exploited in SWI kernels by analyzing the com-
putational flow and dependencies; the compiler can employ
an arbitrary number of registers and dimensions of BRAMs;
communication is global because any set of pipeline registers
can transfer data to each other; and wrapper overhead is
substantially reduced.

The CPU-like baseline code should also be optimized for
cache performance; this helps the compiler infer connectivity

between parallel pipelines (i.e., whether data can potentially be
directly transferred between pipelines instead of being stored
in memory), improves bandwidth for on-chip data access, and
efficiently uses the internal cache of Load Store Units which
are responsible for off-chip memory transactions.

Algorithm 2 shows the preferred baseline kernel. The first
row and column of the matrix are Vector A and Vector B
respectively.

C. Version 2: IBPs

Algorithm 3 Needleman Wunsch-V2
1: N ← Size of systolic array
2: PEk → Kernel Begin
3: int up, left, up left, cached up, cached up left
4: for i = k : N : V ector A Size do
5: Initialize cached up & cached up left
6: for j = 1 : 1 : V ector B Size do
7: left ← read channel (PEk−1)
8: up = cached up
9: up left = cached up left

10: cached up = max(up - penalty,
11: left - penalty , up left + ref [j,i])
12: cached up left = left
13: Out[j,i] = cached up
14: write channel (PEk−1)← cached up

Given the preferred baseline code, we then apply the fol-
lowing commonly used IBPs.

1) Multiple Task Parallel Kernels: Task parallelism is con-
ventionally leveraged by implementing independent tasks as
individual kernels. FPGA OpenCL implements direct connec-
tivity between these kernels using channels (FIFOs) of variable
data widths and depths, with support for both blocking and
non-blocking operations. Channels are critical to performance
in this approach, since all kernels operate concurrently and
potentially large amounts of data are transferred between them.
Availability of data transfers directly between pipelines located
in separate kernels avoids off-chip memory accesses.

2) Fully unroll all loops: All loops must be fully unrolled
whenever possible. Partial unrolls should be avoided if re-
sources are limited since that can add significant complexity
and overhead to pipelines. Rather, the problem can be folded
by increasing the outer loop limit and doing less work per
iteration. This allows the compiler to exploit all forms and
degrees of parallelism at very fine granularity.

3) Minimizing State Register Usage: State registers are a
special type of pipeline register whose value persists across
algorithm iterations. State registers are inferred using variables
declared outside the loops where they are used. The compiler
generates feedback hardware for them to explicitly pass values
to and from compute pipelines every iteration. Moreover, the
state register hardware can also interface off-chip memory for
loading initialization values. The initialization loop should be
unrolled so that the state registers can be loaded in parallel.

We observe that the compiler is bound to ensure state regis-
ter availability across subsequent iterations. For computations
involving complex updates to the variable (as opposed to
simple operations like increment/decrement), the compiler can



generate enough pipeline stages to prevent data from being
forwarded stall-free to the next iteration. As a result, the
pipeline is either stalled, or the operating frequency is lowered
to accommodate a larger combinational path. There is also a
resource overhead of implementing the feedback logic.

As a result, we attempt to minimize stage register use by
moving variable declarations to within the outer loop whenever
possible. Since the compiler is then no longer bound to ensure
availability of these variables across iterations, it can perform
more aggressive optimizations such as pipeline re-ordering.

4) Constant Arrays: Determining whether variables of
known values should be initialized as constant arrays is a
simple, yet important design decision since it impacts the
implementation beyond reducing memory accesses. The com-
piler analyzes how the values are used in the context of
corresponding computations and generates hardware accord-
ingly. If the constant array has static accesses, i.e. persistently
accessing the same value at a particular pipeline stage, the
compiler can attempt to minimize the resources needed for
that computation by pre-computing results if possible. For
example, if a number is persistently multiplied with 1, the
compiler will replace the DSP block with a delay module that
simply passes the input to the output whilst ensuring data-
paths continue to be synchronized. On the other hand, random
accesses of the constant array by multiple pipelines can result
in memory replication with a unique copy of the constant array
generated for each pipeline. If the array was large enough,
this could saturate board resources and the design will not
compile. Therefore, while constant arrays should be used
whenever possible to improve performance, their size should
be minimized to ensure the design can successfully compile.

5) Coalescing: As with GPUs, coalescing is critical to
effectively utilizing memory bandwidth. The impact is more
so for FPGAs since the available DDR3 bandwidth is already
small. Even a single un-coalesced read per iteration can result
in stalls which leads to poor performance. It is preferable to
fetch larger blocks of data in one access and initialize state
registers, which in turn supply data to the pipelines.

Algorithm 3 shows the Needleman Wunsch kernel structure
after we apply IBPs. Parallelism is exploited using a systolic
array, with each Processing Element (PE) implemented in
a separate kernel. Channels are used to connect PEs in a
specified sequence. For each inner loop iteration, PEs compute
consecutive columns within the same row. This ensures spatial
locality for memory transactions. The drawback is data de-
pendencies between kernels, which cannot be reliably broken
down by the compiler since it optimizes each kernel as an
individual entity. Thus, the overhead of synchronizing data
paths can result in performance degradation.

D. Version 3: Single Kernel Design
In Version 3 we merge the IBP optimized task parallel

kernels and declare all compute loops within the same kernel.
This is because the compiler is still able to automatically able
to infer task parallel pipelines, and having single kernel carries
a number of advantages over multi kernel approaches.

Algorithm 4 Needleman Wunsch-V3
1: N ← Size of systolic array
2: int value[N+1], left[Vector B Size]
3: left ← Vector B
4: for i = 1 : 1 : V ector A Size/N do
5: base = f(i)
6: value ← Vector A[base:base+N+1]
7: for j = 1 : 1 : V ector B Size do
8: int up left[N+1]
9: for k = 2 : 1 : N + 1 do

10: up left[k] = value[k-1]
11: value[1] = left[j]
12: #pragma unroll
13: for k = 2 : 1 : N + 1 do
14: value[k] = max(value[k-1] - penalty,
15: up left[k] + ref[j, base+k] , value[k] - penalty)
16: left[j] = value[N+1]
17: Out ← value[2:N+1]

There is inherent global synchronization since all compu-
tations are tied to the same outer loop variable. Moreover,
there is direct connectivity between pipelines which lowers
communication overhead and enables pipelines stages, pre-
viously isolated due to channels, to be merged. Within a
kernel, these loops should be placed in the same outer loop,
which represents the algorithmic flow. Each loop iteration can
correspond to a complete application stage, or have multiple
variables derived from the loop iterator to emulate nested
loops. Outer loops are used by the compiler to determine data-
path latencies and synchronize them. Delay modules using
FIFOs are added in case of a latency mismatch. Since the
compiler only needs the correct variable values at the end of
an iteration, it is not bound to follow explicit C code steps.
Rather, pipelines can be reordered which can result in merged
computation with reduced resource usage, as well as overlap of
delay modules across pipelines to reduce/eliminate them. This
approach also reduces the control logic for tracking application
progress, which could be as simple as a counter-comparator
circuit. Nested loops are typically avoided since there are a
small number of stall cycles after each outer loop iteration.

Algorithm 4 shows the kernel structure for implementing
the systolic array as a single kernel. The compiler can now
optimize the entire computation, as opposed to individual PEs.
Synchronization overhead is also reduced since almost all
computation is tied to a single loop variable (j). Nested loops
are used since, in this particular case, the cost of initiation
intervals is outweighed by the reduction in resource usage.
This is because the compiler was unable to infer data access
patterns when loops were coalesced.

E. Version 4: Reduced Array Sizes

OpenCL limits the size of a register array in SWI kernels.
If this limit is exceeded, the arrays are converted to BRAM
based storage. While this is acceptable for data memory/cache,
inferring pipeline registers as BRAMs can have significant
drawbacks on the design. Since BRAMs cannot source and
sink data with the same throughput as registers, barrel shifters



and memory replication is required which drastically increases
resource usage. Moreover, the compiler is also unable to
launch stall-free iterations of compute loops due to memory
dependencies. Our solution is to break large arrays correspond-
ing to intermediate variables into smaller ones. Ideally, arrays
should be avoided altogether where ever possible. Instead,
scripts can be used to create and reference individual variables.

Algorithm 5 Needleman Wunsch-V4
1: N ← Size of systolic array
2: int value 1, value 2 ... value N plus 1
3: int left [Vector B Size]
4: left ← Vector B
5: for i = 1 : 1 : V ector A Size/N do
6: base = f(i)
7: value 1 ← Vector A[base]
8: ↓
9: value N plus 1 ← Vector A[base+N+1]

10: for j = 1 : 1 : V ector B Size do
11: int up left 2 ... up left N plus 1
12: up left 2 = value 1
13: ↓
14: up left N plus 1 = value N
15: value 1 = left [j]
16: value 2 = max(value 1 - penalty,
17: up left 2 + ref[j,base+2], value 2 - penalty)
18: ↓
19: value N plus 1 = max(value N - penalty,
20: up left N plus 1 + ref[j,base+N+1],
21: value N plus 1 - penalty)
22: left[j] = value N plus 1
23: Out ← value 2 ... value N plus 1

Algorithm 5 shows the kernel structure for inferring pipeline
registers as registers. All arrays are expressed as individual
variables, with the exception of local storage of Vector B in
‘left,’ which has low throughput requirements.

F. Version 5: Detailed Computations
The OpenCL compiler does not reliably break down large

computations being assigned to a single variable into inter-
mediate stages. As a result, dependency across iterations can
be considered as the worst case, i.e., the overall result of the
computation is required for the next iteration’s first evaluation
in the computation chain. The compiler thus stalls the pipeline
for the required number of cycles to address this. Our solution
is to do computations in as much detail as possible by storing
results in intermediate variables. This helps the compiler infer
potential pipeline stages with forwarding hardware. Memory
dependencies are removed and the critical path is decreased.
If the pipeline is already optimal, these variables will be
synthesized away and resource is not wasted.

Algorithm 6 shows the kernel structure after performing
computations in detail with a number of intermediate variables
added. The ‘max’ function is also explicitly implemented.

G. Version 6: Predication
We optimize conditional operations by explicitly specifying

architecture states which ensure the validity of the computa-
tion. Since hardware is persistent and will always exist once

Algorithm 6 Needleman Wunsch-V5
1: N ← Size of systolic array
2: int value 1, value 2 ... value N plus 1
3: int left [Vector B Size]
4: left ← Vector B
5: for i = 1 : 1 : V ector A Size/N do
6: base = f(i)
7: value 1 ← Vector A[base]
8: ↓
9: value N plus 1 ← Vector A[base+N+1]

10: for j = 1 : 1 : V ector B Size do
11: int a 2 = value 1 + ref[j,base+2];
12: value 1 = left[j]
13:
14: int b 2 = value 1 - penalty
15: int a 3 = value 2 + ref[j,base+3];
16: int c 2 = value 2 - penalty
17:
18: if ((a 2 ≥ b 2) && (a 2 ≥ c 2))
19: value 2 = a 2
20: else if ((b 2 > a 2) && (b 2 ≥ c 2))
21: value 2 = b 2
22: else
23: value 2 = c 2
24:
25: int b 3 = value 2 - penalty
26: int a 4 = value 3 + ref[j,base+4];
27: int c 3 = value 3 - penalty

28:
...

29: left[j] = value N plus 1
30: Out ← value 2 ... value N plus 1

synthesized, we avoid using conditional branch statements. In-
stead, variable values are conditionally assigned such that the
output of invalid operations is not committed and hence does
not impact the overall result. Examples of this include zeroing
out variables and pointer arithmetic. Algorithm 7 shows the
‘if-else’ operations replaced with conditional assignments.

Algorithm 7 Needleman Wunsch-V6

1:
...

2: int a 2 = value 1 + ref[j,base+2];
3: value 1 = left[j]
4:
5: int b 2 = value 1 - penalty
6: int a 3 = value 2 + ref[j,base+3];
7: int c 2 = value 2 - penalty
8:
9: int d 2 = (a 2 > b 2) ? a 2 : b 2

10: value 2 = (c 2 > d 2) ? c 2 : d 2

11:
...

IV. RESULTS

In this section, we present the results of applying our
optimizations to the benchmarks listed in the previous section.
We not only evaluate the impact of individual optimizations
to each benchmarks, but also demonstrate the importance
of selecting the correct baseline code structures. We also
compare the performance of generated pipelines against other



TABLE II
BENCHMARK SUMMARY – NOT ALL OPTIMIZATIONS ARE APPLICABLE TO ALL CODES

Benchmarks Dwarf Problem Size V-1 V-2 V-3 V-4 V-5 V-6
NW Dynamic Programming 16K x16K Integer Table ! ! ! ! ! !

FFT Spectral Methods 64 point Radix-2 1D FFT, 8192 Vectors ! ! ! ! !

Range Limited N-Body 180 particles per cell, 15% pass rate ! ! ! ! ! !

PME Structured Grids 1,000,000 Particles, 323 grid, 3D Tri-Cubic Interpolation ! ! ! !

MMM Dense Linear Algebra 1K x 1K Matrix, Single Precision ! ! ! !

SpMV Sparse Linear Algebra 1K x 1K Matrix, Single Precision, 5%-Sparsity, NZ=51122 ! ! ! ! !

CRC Combinational Logic 100MB CRC32 ! ! ! ! !

Fig. 1. Impact of systematic application of proposed optimizations to a cache-optimized CPU baseline code. In almost all cases, every subsequent code
version shows increasing performance, with up to orders of magnitude better performance possible for full optimized kernels over ones with only IBPs (V-2).

platforms/approaches such as CPU, GPU, Verilog, and exiting
FPGA OpenCL implementations. To ensure fairness, values
used for comparisons are all either obtained from literature,
or from implementations of available source codes/libraries.

A. Benchmarks
We tested our approach using the Needleman Wunsch (NW)

[13], [14], Fast Fourier Transform (FFT) [15], [16], Range
Limited Molecular Dynamics (Range Limited) [17], [18], Par-
ticle Mesh Ewald (PME), Dense Matrix Matrix Multiplication
(MMM), Sparse Matrix Dense Vector Multiplication (SpMV),
and Cyclic Redundancy Check (CRC) benchmarks. Table II
provides a summary of these benchmarks, their associated
dwarfs, tested problem sizes, and applicable code versions.
Blank table entries indicate that the version was not created
since the corresponding optimizations were not possible in the
context of the application. For example, selective operations
does not apply to FFT since there is a single, fixed data path.

B. Hardware Specifications
We implement the designs using an Altera Arria

10AX115H3F34I2SG FPGA and Altera OpenCL SDK 16.0.
The FPGA has 427,200 ALMs, 1506K Logic Elements, 1518
DSP blocks, and 53Mb of on-chip storage. For GPU imple-
mentations, we use the Tesla P100 PCIe 12GB GPU with
CUDA 8.0. It has 3584 Cuda cores and peak bandwidth of
549 GB/s. CPU codes are implemented on a 14 core 2.4 GHz
Intel Xeon E5-2680v4 with Intel C++ Compiler v16.0.1.

C. Impact of Optimizations
Figure 1 shows the results of individual optimizations.

In almost all cases, the same trend can be observed where
IBPs (V-2) only result in a fraction of the speedup possible.
The shortcomings of IBPs are especially highlighted in CRC

Fig. 2. Performance for different code versions, obtained by averaging the
speedup of all applicable benchmarks.

and FFT. For the former, the V-2 code for CRC has the
same performance as the baseline. Results for the latter, FFT,
are worse still since implementing multi-kernel designs with
channels results in a lower performance than even the baseline.
On the other hand, by applying the additional optimizations
on top of V-2, the achieved performance is improved by orders
of magnitude. The average impact of individual optimizations
is shown in Figure 2. Generally, each successive set of
optimizations applied results in increasing performance. The
exception is V-5. This is due to higher execution times of V-5
for NW and SpMV. In both cases, performing computations
in as much detail as possible results in the use of conditional
statements that outweigh benefits of the optimization. Once
these statements are removed in V-6, the speedup increases.

D. Impact of Initial Code Structure
We highlight the importance of selecting the correct initial

code structure for kernel development by implementing MMM
kernels with three different approaches (Figure 3). MMM-JIK



is the naive approach: the outer loops, i and j, select the row
and column of two matrices A and B, respectively. The inner-
most loop, k, iterates over all elements in the selected row and
column. j is selected as the outermost loop so that the column
vector, which has a poor access pattern, is only read once from
global memory, stored in local variables and reused.

MMM-KIJ swaps the loops, moving the k loop to the
outermost location in the hierarchy. It is unable to outperform
MMM-JIK, despite a better access pattern, because of the
writes in the inner loop. Finally, MMM-Block is a blocked
version that targets high data reuse and minimal memory
access. It is thus able to achieve the lowest execution time.
In the case of MMM-Block, we also demonstrate that despite
having the worst performance in V-1, the final version V-6
has the lowest execution time since it benefits more from the
applied optimizations. On the other hand, while improvements
are seen for the other two versions as well, the benefits are
relatively small.

Fig. 3. Optimizations performed for MMM versions with different initial
code structures. The observed trend is that better memory access patterns of
a given baseline results in a larger impact of each optimizations and lower
overall execution time.

TABLE III
REFERENCES FOR EXISTING IMPLEMENTATIONS

Benchmarks CPU GPU Verilog OpenCL
NW Rodinia* Rodinia* Benkrid Zohouri

[12] [12] [14] [11]
FFT MKL* cuFFT* Sanaullah Altera*

[19] [20] [16] [15]
Range - - Yang Yang

Limited [18] [18]
PME Ferit Ferit Sanaullah -

[21] [21] [22]
MMM MKL* cuBLAS* Shen Spector*

[19] [23] [24] [25]
SpMV MKL* cuSparse* Zhou OpenDwarfs*

[19] [26] [27] [9]
CRC Brumme* - Anand OpenDwarfs*

[28] [29] [9]

E. Overall Performance

To demonstrate the overall effectiveness of the approach,
we compare the performance of the optimized kernels against
existing CPU, GPU, Verilog, and FPGA-OpenCL implemen-
tations. Table III lists the references for these designs; they
are either obtained from the literature or implemented using
available source code/libraries. The latter is illustrated using
an asterisk (*). Verilog FFT measurement from [16] has

been extended to include off-chip access overhead. Figure 4
shows the average speedup achieved over the CPU code
while Figure 5 shows the normalized execution times for all
implementations.

Fig. 4. Average speedup wrt CPU across all applicable benchmarks.

From the results, we observe that our work outperforms
multi-core CPU implementations by approximately 1.2× due
to the performance of codes written using Intel MKL. We have
also achieved an average of approximately 5× lower execution
time than existing FPGA OpenCL work. The exception is
FFT, where we have a 3.7× higher execution time than the
reference FPGA OpenCL implementation. Similar to MKL,
this reference design was developed by Intel engineers, who
are familiar with the low level details of the C-to-HDL
translation, and the optimizations performed cannot be applied
in a general way to all applications.

The GPU speedup of 2.4× relative to our work is due to
the use of a high-end GPU, Tesla P100, and a medium-end
FPGA, Arria-10. We therefore also provide an estimate of a
high end FPGA performance, Stratix-10, using a conservative
factor of 4× that accounts for an increase in resource only.
Results show that the optimized kernels on Stratix-10 are
expected to outperform GPU designs by 65%, on average.
Comparison with existing Verilog implementations show that
the kernels are, on average, within 12% of hand-tuned HDL.
This demonstrates that the optimizations are successfully able
to bridge the performance-programmability gap for FPGAs
and deliver HDL-like performance using OpenCL.

V. CONCLUSION

In this paper, it is shown that the Performance-
Programmability gap of FPGA OpenCL can be reduced and
that performance comparable to GPUs, and even Verilog-based
implementations, can be achieved. By using CPU code as a
starting point and performing a series of simple optimizations
that augment common best practices, highly efficient FPGA
hardware can be generated. The performance impact of all of
the optimizations is characterized using a number of parallel
computing dwarfs. The overall impact of this characterization
is that programmers can now follow a script for optimizing
their FPGA OpenCL kernels and achieve HPC performance.
Moreover, auto-tuners can be developed to automate the
generation of efficient hardware. The optimized kernels have



Fig. 5. Performance of Our Work as compared with existing CPU, GPU, Verilog and FPGA OpenCL implementations. Our work outperforms CPU and
OpenCL for most of the benchmarks. Moreover, we also achieve speedups over GPU (SpMV, PME) and Verilog (SpMV, Range Limited).

been shown to outperform CPU and previous FPGA OpenCL
designs. Using Stratix-10, they can also outperform a high-end
GPU. Most importantly, it is demonstrated that the optimiza-
tions can, on average, achieve performance values within 12%
of hand-tuned HDL code.

In related work [30], [31] we have described methods for
isolating and simulating HDL compute pipelines generated by
the OpenCL compiler, in order to rapidly optimize the kernel
code. Moreover, if required, this HDL can be re-interfaced
and integrated into existing HDL systems that serve as an
alternative to the standard OpenCL Board Support Package.
An in-depth case study is presented in [16].
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