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ABSTRACT 

Many compute-intensive applications generate single result 
values by accessing clusters of nearby points in grids of 
one, two, or more dimensions. Often, the performance of 
FGPA implementations of such algorithms would benefit 
from concurrent, non-interfering access to all points in each 
cluster. When clusters contain dozens of points and access 
patterns are irregular, multiported memories are infeasible 
and vector-oriented approaches are inapplicable. Instead, 
the grid points may be distributed across multiple 
interleaved memory banks so that, when accessing any 
cluster, each point comes from a different memory bank. 
We present a general technique based on the application’s 
multidimensional indexing rather than linearized memory 
addresses. This technique maps the cluster structure into a 
custom, interleaved memory using the FPGA’s multiple on-
chip RAMs and configurable data paths. Case studies 
demonstrate rectangular and non-rectangular grids of 
different dimensions, including performance vs. resource 
tradeoffs when cluster sizes are not powers of two.  

1. INTRODUCTION 

FGPA accelerators are entering the main stream of high 
performance computing. Researchers have demonstrated 
impressive performance gains using FPGA acceleration, 
100-1000× in some applications. These applications have 
generally been hand coded by skilled logic designers, 
however. They are generally built as point solutions to 
particular problems or families of problems. Few if any 
techniques are available for the general problem of applying 
FPGAs to arbitrary computing problems in ways that use 
the unique features of FPGAs to their full potential. In 
contrast, the last fifty years of software development, with 
millions of developers worldwide, has a large body of 
accepted techniques, applicable to computing problems of 
many kinds.  
 This paper presents a configurable family of memory 
structures useful for many applications in FPGA-based 
computing. It is applicable to problems in solid modeling 

and visualization, computational chemistry, cellular 
automata, discrete solutions to differential equations, and 
many other staples of high-performance computing. Such 
applications may have idiosyncratic computation pipelines, 
but share one common feature: each output value depends 
on input from a cluster of neighboring grid points, where 
dimensionality of the grid and the neighborhood of points 
in a cluster vary by application. In the applications of 
interest, computation throughput would be improved if all 
points in the cluster could be fetched in one memory cycle. 
The contributions of this work create a step by step process 
for mapping application-specific reference patterns to 
memory structures with application-specific interleaving. 
The resulting memory stores grid points non-redundantly in 
multiple RAMs, allowing single-cycle, parallel access to all 
points in any one cluster. This kind of interleaving takes 
advantage of the FPGA’s unique resources. It uses dozens 
or hundreds of the independently addressable RAMs in the 
FPGA, it can be configured according to the unique 
characteristics of each computation, and it relies on the 
FPGA’s native ability to create custom interconnection 
networks with data path widths into the thousands of bits. 
 This technique for application-aware memory 
interleaving is described as follows. First, we present a 
number of applications built around computations of the 
kind being addressed, followed by a brief survey of related 
work in traditional memory structures and in FPGA-based 
computing. Next, we present case studies of interleaved 
memories purpose-built for applications with different 
patterns of memory access. These examples lay the 
groundwork for a systematic design process that creates 
interleaved memories tailored to the specific needs of each 
different application. We conclude with discussion of 
FPGA-specific features that can improve performance or 
reduce resource utilization. 

2. MOTIVATING APPLICATIONS 

Many compute-intensive applications share a common 
characteristic: each step in the computation depends on an 
access cluster of points the grid, close to each other, in 
fixed positions relative to each other, and always used 
together in the computation. This broad description covers 
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many different kinds of problem in one, two, or more 
dimensions, including: 
⋅ Molecular dynamics. Particle-mesh models of molecule 

behavior appear in many applications.  They use grids to 
approximate the vector fields representing forces that act 
on the atoms. At every time step, interactions between 
each atom and the force grid define the behavior of the 
molecule as a whole. Atom positions generally do not 
align to the grid points at which force values are 
computed, so 3D interpolation is necessary. Tricubic 
interpolation using modified B-splines has been found 
effective [11], and requires 64 grid points in a 4×4×4 
neighborhood around each atom. 

⋅ Image processing. Morphological operators in two [6] 
and three [9] dimensions have long been staples in image 
processing, as have convolution kernels of various sizes 
[5]. In either case, the kernel defines an access cluster for 
fetching points from the pixel grid being processed. 
Sparse kernels, containing don’t-care patterns or zero 
coefficients, are common and of special interest. They 
ignore pixel values in parts of the image region they 
cover, creating application-specific opportunities for 
optimization. 

⋅ Volume rendering. Ray-casting algorithms [13] traverse a 
3D grid of values representing the optical characteristics 
at each point in a 3D field, such as opacity or color in a 
plume of smoke. Figure 1 shows how a ray samples the 
field, generally at off-grid points requiring 3D 
interpolation. Related algorithms have also been found 
useful in three-axis rotation of volumetric models for in 
silico drug screening [12].  

⋅ Cellular automata. One-, two-, or three- dimensional 
grids approximate many kinds of physical phenomena. 
At each time step, the new state of each grid cell depends 
on its previous value and on the values of some set of 
neighboring cells.  

⋅ Red-black relaxation. Gauss-Seidel relaxation alternates 
between even- and odd-numbered grid cells. This avoids 
the need for duplicate memory arrays and avoids 
numerical problems that arise from computing with 
incomplete updates to the grid.  

These few examples show just a few of the ways in which 
grid-based computations differ from each other. First, they 
differ in the number of dimensions of the grid. Second, they 
differ in the number and position of points in the cluster 
required at each step. Third, they do not always allow 
regular or predictable order of access to successive clusters 

of points. Ray-casting, for example, may traverse the grid 
along any diagonal. Molecular dynamics, except when 
dealing with crystals, uses atoms having irregular 
distributions of position. Some systems for FPGA 
computation have been able to avoid memory bandwidth 
problems by heavy reuse of data fetched in tightly 
controlled sequences [10]. Although effective in some 
cases, that approach fails for applications that access 
memory in unpredictable order.   
 When performing any of these computations, 
parallelization often requires that multiple points in one 
cluster be available together, possibly all of them. A von 
Neumann architecture inherently degrades performance in 
these cases, requiring that the points be accessed 
sequentially even when used concurrently. Concurrent 
access to all of the points, implemented with a structure like 
that in Figure 2, would give significant performance 
improvement.  
 Although different applications have access clusters of 
different size and organization, each application has a fixed, 
predictable access cluster. A good FPGA implementation 
would use the FPGA’s many on-chip RAMs for concurrent 
access to the different points in an access cluster. Ideally, 
the RAMs would have non-redundant content and high 
utilization of the bits in each of the RAMs used. Case 
studies in section 4 show memory structures that meet these 
goals for a few specific applications. Then, section 5 shows 
a general approach for designing a memory structure 
specific to the geometry of any application’s access cluster. 

3. RELATED WORK 

Processor designers have long faced problems caused by 
CPUs that are able to issue memory requests faster than 
they can be fulfilled by the memory. Memory interleaving, 
improves memory bandwidth by dividing memory into 
separate banks able to process different requests 
concurrently. As early as 1968, SIMD processors such as 
the ILLIAC IV [1] used interleaving to support reading of 
multiple memory words in one access cycle. Other 
implementations, such as those in the CDC 6400 [4], 
accessed only one word per cycle. Each memory bank 
required multiple cycles for reading one word, however, so 
this allowed concurrency by overlapping several multi-
cycle access latencies. Whether the implementation used 
broad parallelism as in the ILLIAC, pipelined parallelism 
as in the CDC 6400, or a combination, high performance 
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depended on concurrent activity in multiple memory banks. 
Pipelined parallelism has historically been more widespread 
than broad parallelism, because it is compatible with 
systems that have only one memory access bus. Broad 
parallelism demands multiple paths from memory to the 
processing elements, implying high hardware cost when 
implemented in traditional technologies. 
 Successful parallelism implied that no concurrent 
memory accesses would collide with each other by 
requiring service from the same bank of memory [3]. Many 
clever techniques have been proposed for reducing the 
probability of collisions between concurrent memory 
accesses, such as prime numbers of memory banks [10] or 
pseudorandom mapping of memory addresses to memory 
banks [14]. These approaches all implement a fixed 
structure, without respect to any particular application. 
They also have the intent of breaking up regularities in the 
application’s data access pattern, so as to reduce the 
probability of delay-causing collisions at any one bank of 
memory 
 Modern FPGAs support different premises for the 
design of high-performance memory systems: 
1. They impose essentially no cost for high-order memory 

interleaving, since FPGAs already have hundreds of 
independent RAM banks on chip.  

2. For the same reason, current FPGAs impose essentially 
no cost for broad parallel access to their internal RAMs, 
as long as fetched data is used by on-chip processing 
elements. The many memory ports and connectivity 
resources required for broad parallelism already exist in 
the FPGA fabric, waiting to be exploited.  

3. FPGAs are inherently configurable, so there is no 
hardware cost in creating memory structures unique to 
each application, something impossible for any fixed 
architecture.  

4. Most importantly, an FPGA can implement memory 
structures in terms of the application’s indexing strategy 
and dimensionality, not just in terms of an arbitrary set of 
memory addresses. 

4. CASE STUDIES 

These examples show just a few kinds of interleaved 
memories, demonstrating access clusters of different 
dimension, size, and geometric character. In each case, the 

goal is to create a memory subsystem that accepts one grid 
index as input, and outputs a cluster of grid points (A, B, C, 
…), as illustrated in Figure 2. 

4.1. Bilinear interpolation 

Error! Reference source not found. shows a point P 
misaligned to 2D grid. The data value at that point is to be 
computed using bilinear interpolation used the cluster of 
points (A, B, C, D). The interpolation itself is not of interest 
at present, only access to the cluster of points needed at that 
step. 
 The access cluster consists of points at coordinates (x, 
y), (x+1, y), (x, y+1), and (x+1, y+1), where point A is 
considered the origin of the cluster. It is clear that the x and 
x+1 index pair includes one odd and one even address, and 
likewise for the y coordinates. Suppose that four RAM 
banks1 are available, numbered 0 to 3. Assign each grid 
point to a RAM bank according to the LSBs of the 
coordinates, as shown in Error! Reference source not 
found.. 

Table 1. Mapping grid points to RAM banks 

x LSB y LSB RAM bank 

0 0 0 
0 1 1 
1 0 2 
1 1 3 

At any one cycle, the four RAM banks can each produce 
one value needed for an access cluster, so the entire cluster 
can be accessed at one time. Two problems remain: 
generating the addresses for each of the RAM banks and 
aligning the RAM output into some fixed order for 
presentation to the nest stage of the computation. 
 In order to understand these two problems, it is helpful 
to treat the RAM array as a tile that covers the entire grid, 
as shown in Figure 4. The position of each RAM within the 
tile is fixed, but there is a different correspondence between 
the set of RAM banks and the (A, B, C, D) tuple according 
to the position of the access cluster relative to the tile. 

                                                           
1  RAM banks are logical, not physical structures, implemented 

using as many of the FPGA’s block RAM resources as needed. 
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Figure 4 shows the positions of each RAM bank within the 
basic tile, and the image of each RAM bank in the tiles that 
cover the grid. This shows an example where access cluster 
ABCD has its lower-left corner at grid coordinate (3,2), 
assuming 0-based indexing. The cluster aligns to the tile 
border in the y direction, but straddles the tile border in the 
x direction, so that A corresponds to RAM bank 2, B to 
bank 3, C to bank 0, and D to bank 1. For each value within 
the cluster, the RAM address depends on which instance of 
the basic tile it touches, is may differ if (as here) the cluster 
crosses tile boundaries. The mapping between RAM banks 
and cluster values depends on alignment between the 
cluster and the tile pattern. 
  For convenience, the grid coordinate of the access 
cluster as a whole is taken to be the coordinate of its lower-
left corner. After extracting the least significant bits (LSBs) 
from the cluster’s x and y coordinates, two-dimensional 
array indexing is converted into a linear memory address in 
the usual way:  

 Addr = NY * x’ + y’  Equation 1. 

where Addr is the memory address, NY is the size of the Y 
dimension of the array, and x’ and y’ are the indices after 
removal one LSB from each. For convenience, this memory 
address is written as [x’, y’], where square brackets 
distinguish the memory address from a grid coordinate. 
 The cluster accesses indices x and x+1. That requires 
access to memory locations based on x’ and (x+1)’, i.e. 
with the LSBs removed. If the original x is even, then 
(x+1)’ = x’. If x is odd, then (x+1)’ = x’+1. Addresses for 
RAMs 2 and 3 use x’; addresses for RAMs 0 and 1 use 
(x+1)’ which may have a different value. The same 
reasoning applies to y indices, but for RAM pairs 0,2 and 
1,3. The address for each RAM, then is given by Table 2. 

For ease of implementation, the computation section fed 
by this memory array assumes that the four values are 
presented in fixed order: A, B, C, D. If (x, y) is (even, even), 
then RAM 0 generates A. If (x, y) is (even, odd), then the A 

output comes from RAM 1. Likewise, RAM 2 supplies A 
for (odd, even) values and RAM 3 supplies A for (odd, 
odd). The following table shows which RAM provides each 
of the four outputs according to the even/odd states of the 
indices: 

Table 3. RAM to output mapping by (x,y) LSBs 

Out even,even even,odd odd,even odd,odd 
A 0 1 2 3 
B 1 0 3 2 
C 2 3 0 1 
D 3 2 1 0 

 Each row of this table can be written as a multiplexer 
(or mux). The mux’s output is one of the points in the 
cluster, A, B, C, or D. Data inputs to the mux come from 
one of the RAMs, 0, 1, 2, or 3. Select control for the 
multiplexer comes from the combination of x and y LSBs.  
 At this point, the design of the interleaved memory 
array is complete. Figure 5 shows its internal structure. The 
subsystem is indexed using the (x, y) coordinate that 
represents the position of the access cluster. The blocks 
labeled +1? in the Address generation section perform the 
conditional increment operations of Table 2.  The resulting 
index values are combined in various ways to generate the 
addresses to the RAM banks in the RAM array section. 
Each RAM bank generates its output, which is passed to the 
Output alignment section where the logic of Table 3 is 
implemented. 
 This over-all structure is used in every interleaved 
memory system described in this paper. When a new 
interleaving is created for a different application, only the 
following features differ: 
⋅ Index variables. Figure 3 shows (x,y) grid indexing for a 

2D computation. Problems of 1, 3, or other dimension 
have different numbers of indices. 

⋅ LSBs. In this example, one LSB is extracted from each 
index variable. Other applications extract two or more 
LSBs, and some extract different numbers of LSBs from 
different indices. 

⋅ Address generation. This application conditionally 
increments index values according to odd or even index 
values. Other applications conditionally increment 
according to other tests, and combine grid coordinates 
into memory addresses in different ways. 

Table 2. RAM addresses for bilinear interleaving 

RAM bank Address 
0 [if x even then x’ else x’+1, 

 if y even then y’ else y’+1] 
1 [if x even then x’ else x’+1, y’] 
2 [x’, if y even then y’ else y’+1] 
3 [x’, y’] 
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Figure 5. Interleaved memory for broad parallelism 



⋅ RAM array. The number of RAMs depends on the 
interleaving required for the particular application.  

⋅ Output multiplexing. This has one output per element of 
the access cluster, a number that differs for different 
applications. The mapping of RAMs to outputs also 
varies, according to application-specific uses of the index 
LSBs. 

In addition, the number of bits in the index values, RAM 
addresses, and data words may also vary between 
applications. 

4.2. Tricubic interpolation 

The motivating application for this case study comes from 
molecular dynamics [11]. It represents potential fields 
acting on atoms as values stored in a grid, with 3D 
interpolation used to determine the field values at off-grid 
points representing atoms. The authors observe that cubic 
interpolation gives better results than linear interpolation. 
Instead of a 2×2×2 access cluster of grid points around each 
atom, however, tricubic interpolation requires a 4×4×4 set 
of grid points.  
 This extends the first case study, bilinear interpolation, 
in two directions. First, it uses three index values (x, y, z) 
rather than two. Second, it requires four points in each axis 
for finding the cubic equation to interpolate, rather than the 
two needed for linear interpolation. Again, the interpolation 
arithmetic is not of interest for purposes of current 
discussion. We describe only the interleaved memory 
needed for fetching the full set of 4×4×4=64 values in each 
access cluster. 
 Since there are 64 values in each access cluster, 
interleaving requires 64 RAMs to ensure non-interfering 
access to all values in the cluster. The cluster is a 4×4×4 
cube, with the same indexing behavior in the x, y, and z 
axes. We examine the x axis first, then treat the other axes 
in analogous ways. 
 Each access cluster fetches values from indices x, x+1, 
x+2, and x+3. Examine the two LSBs: each possible value 

(0, 1, 2, and 3) occurs once in this group, so those LSBs 
will be used for output multiplexing. The x’ values are x 
index values stripped of their LSBs, as in the bilinear case, 
but this application strips two LSBs rather than one.  
 Considered modulo 4, there are four possible starting 
points for the access cluster, shown in Figure 6. If the 
cluster starts at a 0 mod 4 boundary, then all four x’ values 
are the same. If the cluster starts at a 1 mod 4 boundary, 
then (x+3)’=x’+1 for RAM bank 0, and so on for starting 
offsets 2 and 3 mod 4. 
 Table 4 corresponds to Table 2, but shows one index 
only. The full form of Table 4 has 64 entries, one for each 
of the RAMs, and handles cases for all combinations of x, y 
and z offsets mod 4. 

Table 4. x’ address increments by x offset. 

RAM Address 

0 [if x mod 4 ≥ 1 then x’+1 else x’] 
1 [if x mod 4 ≥ 2 then x’+1 else x’] 
2 [if x mod 4 = 3 then x’+1 else x’] 
3 [x’] 

The Output alignment section of Figure 5 is also 
implemented in this application. This time, however, 
Output alignment has 64 data inputs, 64 outputs, and 6 bits 
of selection control, two LSBs from each of the three 
indices.  
 A naïve implementation would built the section in terms 
of 64-input muxes. Straightforward synthesis generates a 
huge amount of logic for that mux, and repeats it for each 
bit in each of the 64 output words. The implementation 
shown in Figure 7 takes advantage of application-specific 
knowledge of the selection value, i.e. that it is composed of 
three two-bit fields. When synthesized for Xilinx FPGAs, 
this cascade uses six slices per data bit, instead of 32 for the 
64-input mux. 
 This application demonstrates the value of FPGAs in 
creating interleaved memory structures. First, the FPGAs 
like the Xilinx Virtex family easily satisfy the need for 64 
independently accessible memory busses. The VP100 chips 
in that family have over 400 RAMs available, but even 64 
memory busses would be expensive in competing 
technologies. Second, even if data words are only 16 bits 
each, every cluster access fetches 64*16=1024 bits of data 

0 1 2 3 0 1 2 

RAM address x’ RAM address x’+1 

x x+1 x+2 x+3 

Figure 7.  RAM addresses: x' or x'+1 
depending on initial offset 
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Figure 6.  64:1 mux, axis by axis 



– a 1Kbit transfer. Again, the FPGA’s connectivity 
resources can handle this word size readily, but it would be 
problematic to handle in many other implementation 
technologies. 

4.3. Hexagonal grids 

Hexagonal grids rather than rectangular ones arise in some 
problems. The following diagram show an access cluster 
within a hexagonal grid: 
 This presents two problems. The first is that the grid 
must be mapped to a rectangular structure to simplify 2D 
array indexing. That problem is solved in Figure 8B, which 
shows the cluster centered on grid cell 2b. The second 
problem is that the access cluster is not a power of two in 
size. Instead, its bounding box is 3×3. It is possible to 
perform mod-3 and divide-by-three arithmetic on the grid 
indices, if the logic delays in addressing are acceptable. 
 Another way to think of this cluster is as a 7-element 
subset of 4×4 RAM array. This makes address computation 
easy, but require 16 RAM banks for accessing a cluster of 
size 7. The additional RAMs may, at first glance, look like 
130% overhead in the RAM allocation. On the other hand, 
adding those RAMs reduces the amount of addressing 
logic, possibly including block multipliers, so reduces the 
delay in the addressing logic path. Also, depending on the 
total capacity of the RAM array, those RAM resources 
could have been required anyway, in order to provide the 
total number of words required for the memory structure. It 
is also worth noting that the Xilinx VP100 contains over 
400 RAMs. Resource tradeoffs differ between applications, 
but this can be an effective use of additional RAM to 
reduce logic delays and reduce consumption of other FPGA 
resources. 
 Assuming the 4×4 RAM array, implementation is now 
straightforward. Address generation logic resembles that 
used in the tricubic interpolation example, but simplified to 
two dimensions. The Output alignment section has 16 data 
inputs, 7 data outputs, and 4 selection bits (two LSBs from 
x and two from y). 

5. DESIGNING THE INTERLEAVED STRUCTURE 

Design of the interleaved memory proceeds in a regular 
sequence of steps: 
1. Define the access cluster used by the application. In 

cases like the hexagonal grid example, this may require 
some effort in converting the grid to a rectangular form. 

2. Round the cluster size up to the next power of two in 
each dimension. Allocate one RAM bank per rounded-up 
cluster element to the RAM array of Figure 5. 

3. Create the Address generation network following the 
examples leading to Table 2 and Table 4. 

4. Create an output mapping table like Table 3, with one 
output per element in the actual access cluster (not 
rounded up). Use that table to create the Output 
alignment section of the array. 

Step 1 requires insight into the application’s unique pattern 
of memory reference. This may involve tradeoff decisions 
if the FPGA implementation requires partitioning the 
application in ways that affect memory access. As in the 
hexagonal grid example, additional insight may be needed 
for mapping the application to a rectangular grid. After that, 
generation of the interleaved memory system follows in a 
straightforward way. 
 This approach can be modified in many ways, to make 
better use of available resources or to take advantage of 
features unique to a particular model of FPGA. 

5.1. Multiported RAM 

Block RAMs in many FPGA families have two 
independently addressable read ports. These can be used, in 
some designs, to reduce the number of RAMs needed for 
the RAM array of Figure 6. 
 Consider the array of four RAM banks used in the 
bilinear interpolation case study of section 4. The bank 
number for each of the four RAMs in that example is 
constructed from the LSBs of the x and y grid coordinates, 
as shown in Table 1. 
 This can also be implemented with two dual ported 
RAMs, named 01 and 23. RAM addresses [x’, y’] are built 
from the x and y values stripped of their LSBs, as before. 
The difference is that RAM 01 holds grid points for all 
points with even y coordinates and RAM 23 holds all points 
that have odd y coordinates. Then treat port 0 of RAM 01 
the same way as RAM 0 from the original example, RAM 
01 port 1 as RAM 1, and so on. 

5.2. Broad parallel writing 

The discussion so far has assumed that grid computations 
are dominated by read access to stored grid values. That is 
not true in all phases of grid-based computations, however. 
Figure 9 shows the cycle that occurs in particle-mesh (PM) 
molecular dynamics models. 
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 One phase of the calculation updates the grid of 
Coulombic potential values by summing the spatial 
distributions of each particle’s charge [8]. Each particle’s 
charge affects a large spatial region, so must update many 
points in the grid. In order to use broad parallelism at this 
step, multiple grid points must be modified. In some 
implementations, this requires a second multiplexing 
network similar to the Output alignment of Figure 5, but 
arranged to map data input clusters to RAM banks rather 
than RAM to output. 

5.3. Non-2N RAM arrays 

The case studies of section 4 refer to the LSBs of grid 
coordinates and to coordinate values stripped of their LSBs. 
These, of course, are optimizations of x mod k or ⎣x/k⎦, 
where k is some power of two. That is a convenience only, 
not a fundamental restriction on the values that may be used 
for the RAM array. With some additional complexity in the 
address generation logic, other integer sizes of RAM array 
can be accommodated. 
 For example, the case study on hexagonal grids defines 
an access cluster that fits a 3×3 bounding box, requiring 9 
RAM banks. The RAM array was rounded up to 4×4, 
requiring 16 RAM banks, potentially an increase of 78% in 
RAM allocation. As noted earlier, the additional RAM 
banks represent an addition of RAM hardware that reduces 
access times and address generation logic. Different time 
and resource tradeoffs might favor the following solution. 
 In building the memory for a 3×3 RAM array, the 
addressing logic of Equation 1 has to be interpreted slightly 
differently. The NY value becomes 3, x’ becomes ⎣x/3⎦, and 
y’ becomes ⎣y/3⎦. Direct division of ⎣x/3⎦ in digital logic is 
inconvenient. Instead, the same net effect comes from 
multiplying x by 1/3 in fixed-point format, i.e. 0.0101…2, 
where enough bits of precision are maintained to make 
x×1/3  exactly ⎣x/3⎦ over the entire range of x values used by 
the application. One 18×18 block multiplier can handle 
x×1/3 with enough accuracy to cover a 17-bit range of 
coordinates, and multipliers can be ganged for wider index 
ranges. 
 The LSBs of x and y in fact represent x mod NX and y 
mod NY, for RAM array size NX × NY. In the case of the 3×3 
RAM array for the hexagonal grid, the mod 3 residue is 
required in both coordinate values. Like division, the 
arithmetic modulus can be computed with a modest amount 
of logic.  

 Start with the observation that  
  (a + b) mod 3 = ((a mod 3) + (b mod 3)) mod 3, 
which extends recursively to any number of addends. Take 
the binary representation of x to be … x8 x4 x2 x1, where xJ  
is the bit of weight J in positional notation. Then x mod 3 =  

x1 mod 3 = 0 or 1 
+ x2 mod 3 = 0 or 2 
+ x4 mod 3 = 0 or 1 
+ x8 mod 3 = 0 or 2 
+    …        … 

Coefficients 1 and 2 are the possible values of 2N mod 3, 
and other coefficients would appear if the RAM array 
dimension were some value other than 3. The sum 
computed in this way grows only slowly: it is never more 
than 15 for a ten-bit grid coordinate. A small lookup table 
can readily provide the mod 3 residue of that sum.  
 Given these changes of interpretation, the directions of 
section 5 can be used with one modification: step 2 does not 
round up. The steps in this example are: 
1. Define the access cluster. In this case, the 7-point access 

cluster for the hexagonal grid is used. 
2. Take the bounding box (3×3) of the access cluster to be 

the dimension of the RAM array. 
3. Create the Address generation network: 

RAM Address 
00 [ if  x mod 3 > 0 then ⎣x/3⎦+1 else ⎣x/3⎦, 

  if  y mod 3 > 0 then ⎣y/3⎦+1 else ⎣y/3⎦ ] 
01 [ if  x mod 3 > 0 then ⎣x/3⎦+1 else ⎣x/3⎦, 

  if  y mod 3 > 1 then ⎣y/3⎦+1 else ⎣y/3⎦ ] 
02 [ if  x mod 3 > 0 then ⎣x/3⎦+1 else ⎣x/3⎦, ⎣y/3⎦ ] 
10 [ if  x mod 3 > 1 then ⎣x/3⎦+1 else ⎣x/3⎦, 

  if  y mod 3 > 0 then ⎣y/3⎦+1 else ⎣y/3⎦ ] 
11 [ if  x mod 3 > 1 then ⎣x/3⎦+1 else ⎣x/3⎦, 

  if  y mod 3 > 1 then ⎣y/3⎦+1 else ⎣y/3⎦ ] 
12 [ if  x mod 3 > 1 then ⎣x/3⎦+1 else ⎣x/3⎦, ⎣y/3⎦ ] 
20 [ ⎣x/3⎦, if  y mod 3 > 0 then ⎣y/3⎦+1 else ⎣y/3⎦ ] 
21 [ ⎣x/3⎦, if  y mod 3 > 1 then ⎣y/3⎦+1 else ⎣y/3⎦ ] 
22 [ ⎣x/3⎦, ⎣y/3⎦ ] 

4. Create the Output alignment network. Construct a table 
(not shown) where each row represents one of the 7 
outputs. Each column represents one of the 9 possible 
offsets between output cluster and RAM array, specified 
by a different x mod 3, y mod 3 pair. Each table element 
is the RAM bank that provides data to that output at that 
offset. Implement each row of the table as a 9:1 mux 
generating one of the cluster values. 

6. SUMMARY AND FUTURE DIRECTIONS 

Memory interleaving is a well-known technique for 
improving the bandwidth of a memory system by 
increasing parallelism. Pipelined parallelism has 
traditionally been more common than broad parallelism 
because it requires less interconnection hardware for 
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Particle 
charges update 

vector field 

Figure 9.  Particle-mesh calculation cycle (after [8])



implementation. Whether for pipelined or broad 
parallelism, standard memory interleaving is based on the 
memory addresses only, and application knowledge 
consists of broad assumptions about the behavior of many 
dissimilar applications.  
 This paper presents a widely applicable technique for 
creating interleaved memory structures that take advantage 
of the unique strengths of FPGAs. The technique creates 
memory interleaving structures that offer broad parallel 
access to the clusters of data used by an application, based 
on knowledge of the application’s memory reference 
patterns. These memories store data without replicated 
storage of data values and without wasted memory 
locations, ensuring efficient use of FPGA resources. We are 
currently developing tools for automatic creation of these 
interleaved memory structures. 
 Extensions to this basic scheme are possible. In 
particular, there are applications in which a grid is used 
multiple ways, e.g. is updated, then is used in a force field 
calculation, as in molecular mechanics applications. It is not 
necessarily the case that both kinds of memory reference 
use the same access clusters. Elaborations of the techniques 
shown in section 5 may be able to reuse one memory array 
with addressing and alignment sections that suit access 
clusters of different characteristics. We are also exploring 
additional optimizations that appear to be possible with 
some sparse access clusters, where RAM array sizes may 
be reduced by taking advantage of the holes in the cluster. 
 Memory interleaving for FPGA-based computing is also 
effective for improving memory bandwidth and parallelism 
in the computation stages. FPGA computing differs from 
traditional computing in a few critical ways. First, FPGAs 
offer massive on-chip memory parallelism at essentially no 
cost. Second, because they are configurable, they can 
implement interleaving strategies tuned to the specifics of 
each application, sometime more than one strategy in 
different parts of the circuit. Third, FPGAs support the wide 
data words, 1Kbit or more, needed for access clusters 
covering dozens of grid points. Fourth, because every 
FPGA computation is an application-specific circuit design, 
the application’s logical indexing is accessible to the 
memory designer, not just its sequence of address 
references. These features, memory and connection 
resources, configurability, and application knowledge, 
create unique opportunities for optimizing the FPGA’s 
memory implementation to the application at hand. This 
paper presents a step by step technique for creating such 
memories, applicable to many families of compute 
intensive applications, not just volume rendering, image 
processing, and computational chemistry. 
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