
APPLICATION-SPECIFIC MEMORY INTERLEAVING FOR FPGA-BASED GRID
COMPUTATIONS: A GENERAL DESIGN TECHNIQUE*

Tom VanCourt and Martin Herbordt

Boston University, Department of Electrical and Computer Engineering
 8 St. Mary’s St., Boston MA USA 02215

 email: {tvancour, herbordt} @ bu.edu

ABSTRACT

Many compute-intensive applications generate single result
values by accessing clusters of nearby points in grids of
one, two, or more dimensions. Often, the performance of
FGPA implementations of such algorithms would benefit
from concurrent, non-interfering access to all points in each
cluster. When clusters contain dozens of points and access
patterns are irregular, multiported memories are infeasible
and vector-oriented approaches are inapplicable. Instead,
the grid points may be distributed across multiple
interleaved memory banks so that, when accessing any
cluster, each point comes from a different memory bank.
We present a general technique based on the application’s
multidimensional indexing rather than linearized memory
addresses. This technique maps the cluster structure into a
custom, interleaved memory using the FPGA’s multiple on-
chip RAMs and configurable data paths. Case studies
demonstrate rectangular and non-rectangular grids of
different dimensions, including performance vs. resource
tradeoffs when cluster sizes are not powers of two.

1. INTRODUCTION

FGPA accelerators are entering the main stream of high
performance computing. Researchers have demonstrated
impressive performance gains using FPGA acceleration,
100-1000× in some applications. These applications have
generally been hand coded by skilled logic designers,
however. They are generally built as point solutions to
particular problems or families of problems. Few if any
techniques are available for the general problem of applying
FPGAs to arbitrary computing problems in ways that use
the unique features of FPGAs to their full potential. In
contrast, the last fifty years of software development, with
millions of developers worldwide, has a large body of
accepted techniques, applicable to computing problems of
many kinds.
 This paper presents a configurable family of memory
structures useful for many applications in FPGA-based
computing. It is applicable to problems in solid modeling

and visualization, computational chemistry, cellular
automata, discrete solutions to differential equations, and
many other staples of high-performance computing. Such
applications may have idiosyncratic computation pipelines,
but share one common feature: each output value depends
on input from a cluster of neighboring grid points, where
dimensionality of the grid and the neighborhood of points
in a cluster vary by application. In the applications of
interest, computation throughput would be improved if all
points in the cluster could be fetched in one memory cycle.
The contributions of this work create a step by step process
for mapping application-specific reference patterns to
memory structures with application-specific interleaving.
The resulting memory stores grid points non-redundantly in
multiple RAMs, allowing single-cycle, parallel access to all
points in any one cluster. This kind of interleaving takes
advantage of the FPGA’s unique resources. It uses dozens
or hundreds of the independently addressable RAMs in the
FPGA, it can be configured according to the unique
characteristics of each computation, and it relies on the
FPGA’s native ability to create custom interconnection
networks with data path widths into the thousands of bits.
 This technique for application-aware memory
interleaving is described as follows. First, we present a
number of applications built around computations of the
kind being addressed, followed by a brief survey of related
work in traditional memory structures and in FPGA-based
computing. Next, we present case studies of interleaved
memories purpose-built for applications with different
patterns of memory access. These examples lay the
groundwork for a systematic design process that creates
interleaved memories tailored to the specific needs of each
different application. We conclude with discussion of
FPGA-specific features that can improve performance or
reduce resource utilization.

2. MOTIVATING APPLICATIONS

Many compute-intensive applications share a common
characteristic: each step in the computation depends on an
access cluster of points the grid, close to each other, in
fixed positions relative to each other, and always used
together in the computation. This broad description covers

* This work was supported in part by NIH award #RR020209-01
and was facilitated by donations from Xilinx Corporation.

many different kinds of problem in one, two, or more
dimensions, including:
⋅ Molecular dynamics. Particle-mesh models of molecule

behavior appear in many applications. They use grids to
approximate the vector fields representing forces that act
on the atoms. At every time step, interactions between
each atom and the force grid define the behavior of the
molecule as a whole. Atom positions generally do not
align to the grid points at which force values are
computed, so 3D interpolation is necessary. Tricubic
interpolation using modified B-splines has been found
effective [11], and requires 64 grid points in a 4×4×4
neighborhood around each atom.

⋅ Image processing. Morphological operators in two [6]
and three [9] dimensions have long been staples in image
processing, as have convolution kernels of various sizes
[5]. In either case, the kernel defines an access cluster for
fetching points from the pixel grid being processed.
Sparse kernels, containing don’t-care patterns or zero
coefficients, are common and of special interest. They
ignore pixel values in parts of the image region they
cover, creating application-specific opportunities for
optimization.

⋅ Volume rendering. Ray-casting algorithms [13] traverse a
3D grid of values representing the optical characteristics
at each point in a 3D field, such as opacity or color in a
plume of smoke. Figure 1 shows how a ray samples the
field, generally at off-grid points requiring 3D
interpolation. Related algorithms have also been found
useful in three-axis rotation of volumetric models for in
silico drug screening [12].

⋅ Cellular automata. One-, two-, or three- dimensional
grids approximate many kinds of physical phenomena.
At each time step, the new state of each grid cell depends
on its previous value and on the values of some set of
neighboring cells.

⋅ Red-black relaxation. Gauss-Seidel relaxation alternates
between even- and odd-numbered grid cells. This avoids
the need for duplicate memory arrays and avoids
numerical problems that arise from computing with
incomplete updates to the grid.

These few examples show just a few of the ways in which
grid-based computations differ from each other. First, they
differ in the number of dimensions of the grid. Second, they
differ in the number and position of points in the cluster
required at each step. Third, they do not always allow
regular or predictable order of access to successive clusters

of points. Ray-casting, for example, may traverse the grid
along any diagonal. Molecular dynamics, except when
dealing with crystals, uses atoms having irregular
distributions of position. Some systems for FPGA
computation have been able to avoid memory bandwidth
problems by heavy reuse of data fetched in tightly
controlled sequences [10]. Although effective in some
cases, that approach fails for applications that access
memory in unpredictable order.
 When performing any of these computations,
parallelization often requires that multiple points in one
cluster be available together, possibly all of them. A von
Neumann architecture inherently degrades performance in
these cases, requiring that the points be accessed
sequentially even when used concurrently. Concurrent
access to all of the points, implemented with a structure like
that in Figure 2, would give significant performance
improvement.
 Although different applications have access clusters of
different size and organization, each application has a fixed,
predictable access cluster. A good FPGA implementation
would use the FPGA’s many on-chip RAMs for concurrent
access to the different points in an access cluster. Ideally,
the RAMs would have non-redundant content and high
utilization of the bits in each of the RAMs used. Case
studies in section 4 show memory structures that meet these
goals for a few specific applications. Then, section 5 shows
a general approach for designing a memory structure
specific to the geometry of any application’s access cluster.

3. RELATED WORK

Processor designers have long faced problems caused by
CPUs that are able to issue memory requests faster than
they can be fulfilled by the memory. Memory interleaving,
improves memory bandwidth by dividing memory into
separate banks able to process different requests
concurrently. As early as 1968, SIMD processors such as
the ILLIAC IV [1] used interleaving to support reading of
multiple memory words in one access cycle. Other
implementations, such as those in the CDC 6400 [4],
accessed only one word per cycle. Each memory bank
required multiple cycles for reading one word, however, so
this allowed concurrency by overlapping several multi-
cycle access latencies. Whether the implementation used
broad parallelism as in the ILLIAC, pipelined parallelism
as in the CDC 6400, or a combination, high performance

Memory

subsystem (x, y)

A
B
C

Figure 1. One grid coordinate
accesses a cluster of points

Figure 2. Ray casting:
interpolation at off-grid points

depended on concurrent activity in multiple memory banks.
Pipelined parallelism has historically been more widespread
than broad parallelism, because it is compatible with
systems that have only one memory access bus. Broad
parallelism demands multiple paths from memory to the
processing elements, implying high hardware cost when
implemented in traditional technologies.
 Successful parallelism implied that no concurrent
memory accesses would collide with each other by
requiring service from the same bank of memory [3]. Many
clever techniques have been proposed for reducing the
probability of collisions between concurrent memory
accesses, such as prime numbers of memory banks [10] or
pseudorandom mapping of memory addresses to memory
banks [14]. These approaches all implement a fixed
structure, without respect to any particular application.
They also have the intent of breaking up regularities in the
application’s data access pattern, so as to reduce the
probability of delay-causing collisions at any one bank of
memory
 Modern FPGAs support different premises for the
design of high-performance memory systems:
1. They impose essentially no cost for high-order memory

interleaving, since FPGAs already have hundreds of
independent RAM banks on chip.

2. For the same reason, current FPGAs impose essentially
no cost for broad parallel access to their internal RAMs,
as long as fetched data is used by on-chip processing
elements. The many memory ports and connectivity
resources required for broad parallelism already exist in
the FPGA fabric, waiting to be exploited.

3. FPGAs are inherently configurable, so there is no
hardware cost in creating memory structures unique to
each application, something impossible for any fixed
architecture.

4. Most importantly, an FPGA can implement memory
structures in terms of the application’s indexing strategy
and dimensionality, not just in terms of an arbitrary set of
memory addresses.

4. CASE STUDIES

These examples show just a few kinds of interleaved
memories, demonstrating access clusters of different
dimension, size, and geometric character. In each case, the

goal is to create a memory subsystem that accepts one grid
index as input, and outputs a cluster of grid points (A, B, C,
…), as illustrated in Figure 2.

4.1. Bilinear interpolation

Error! Reference source not found. shows a point P
misaligned to 2D grid. The data value at that point is to be
computed using bilinear interpolation used the cluster of
points (A, B, C, D). The interpolation itself is not of interest
at present, only access to the cluster of points needed at that
step.
 The access cluster consists of points at coordinates (x,
y), (x+1, y), (x, y+1), and (x+1, y+1), where point A is
considered the origin of the cluster. It is clear that the x and
x+1 index pair includes one odd and one even address, and
likewise for the y coordinates. Suppose that four RAM
banks1 are available, numbered 0 to 3. Assign each grid
point to a RAM bank according to the LSBs of the
coordinates, as shown in Error! Reference source not
found..

Table 1. Mapping grid points to RAM banks

x LSB y LSB RAM bank

0 0 0
0 1 1
1 0 2
1 1 3

At any one cycle, the four RAM banks can each produce
one value needed for an access cluster, so the entire cluster
can be accessed at one time. Two problems remain:
generating the addresses for each of the RAM banks and
aligning the RAM output into some fixed order for
presentation to the nest stage of the computation.
 In order to understand these two problems, it is helpful
to treat the RAM array as a tile that covers the entire grid,
as shown in Figure 4. The position of each RAM within the
tile is fixed, but there is a different correspondence between
the set of RAM banks and the (A, B, C, D) tuple according
to the position of the access cluster relative to the tile.

1 RAM banks are logical, not physical structures, implemented

using as many of the FPGA’s block RAM resources as needed.

A

B D

C

P

Figure 4. Cluster of points accessed to
compute P using bilinear interpolation

0
1

2
3

A
B

C
D

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

Figure 3. Numbered RAMs tiling the computation grid,
 and access cluster ABCD within the tiling.

Figure 4 shows the positions of each RAM bank within the
basic tile, and the image of each RAM bank in the tiles that
cover the grid. This shows an example where access cluster
ABCD has its lower-left corner at grid coordinate (3,2),
assuming 0-based indexing. The cluster aligns to the tile
border in the y direction, but straddles the tile border in the
x direction, so that A corresponds to RAM bank 2, B to
bank 3, C to bank 0, and D to bank 1. For each value within
the cluster, the RAM address depends on which instance of
the basic tile it touches, is may differ if (as here) the cluster
crosses tile boundaries. The mapping between RAM banks
and cluster values depends on alignment between the
cluster and the tile pattern.
 For convenience, the grid coordinate of the access
cluster as a whole is taken to be the coordinate of its lower-
left corner. After extracting the least significant bits (LSBs)
from the cluster’s x and y coordinates, two-dimensional
array indexing is converted into a linear memory address in
the usual way:

 Addr = NY * x’ + y’ Equation 1.

where Addr is the memory address, NY is the size of the Y
dimension of the array, and x’ and y’ are the indices after
removal one LSB from each. For convenience, this memory
address is written as [x’, y’], where square brackets
distinguish the memory address from a grid coordinate.
 The cluster accesses indices x and x+1. That requires
access to memory locations based on x’ and (x+1)’, i.e.
with the LSBs removed. If the original x is even, then
(x+1)’ = x’. If x is odd, then (x+1)’ = x’+1. Addresses for
RAMs 2 and 3 use x’; addresses for RAMs 0 and 1 use
(x+1)’ which may have a different value. The same
reasoning applies to y indices, but for RAM pairs 0,2 and
1,3. The address for each RAM, then is given by Table 2.

For ease of implementation, the computation section fed
by this memory array assumes that the four values are
presented in fixed order: A, B, C, D. If (x, y) is (even, even),
then RAM 0 generates A. If (x, y) is (even, odd), then the A

output comes from RAM 1. Likewise, RAM 2 supplies A
for (odd, even) values and RAM 3 supplies A for (odd,
odd). The following table shows which RAM provides each
of the four outputs according to the even/odd states of the
indices:

Table 3. RAM to output mapping by (x,y) LSBs

Out even,even even,odd odd,even odd,odd
A 0 1 2 3
B 1 0 3 2
C 2 3 0 1
D 3 2 1 0

 Each row of this table can be written as a multiplexer
(or mux). The mux’s output is one of the points in the
cluster, A, B, C, or D. Data inputs to the mux come from
one of the RAMs, 0, 1, 2, or 3. Select control for the
multiplexer comes from the combination of x and y LSBs.
 At this point, the design of the interleaved memory
array is complete. Figure 5 shows its internal structure. The
subsystem is indexed using the (x, y) coordinate that
represents the position of the access cluster. The blocks
labeled +1? in the Address generation section perform the
conditional increment operations of Table 2. The resulting
index values are combined in various ways to generate the
addresses to the RAM banks in the RAM array section.
Each RAM bank generates its output, which is passed to the
Output alignment section where the logic of Table 3 is
implemented.
 This over-all structure is used in every interleaved
memory system described in this paper. When a new
interleaving is created for a different application, only the
following features differ:
⋅ Index variables. Figure 3 shows (x,y) grid indexing for a

2D computation. Problems of 1, 3, or other dimension
have different numbers of indices.

⋅ LSBs. In this example, one LSB is extracted from each
index variable. Other applications extract two or more
LSBs, and some extract different numbers of LSBs from
different indices.

⋅ Address generation. This application conditionally
increments index values according to odd or even index
values. Other applications conditionally increment
according to other tests, and combine grid coordinates
into memory addresses in different ways.

Table 2. RAM addresses for bilinear interleaving

RAM bank Address
0 [if x even then x’ else x’+1,

 if y even then y’ else y’+1]
1 [if x even then x’ else x’+1, y’]
2 [x’, if y even then y’ else y’+1]
3 [x’, y’]

+1?

+1? x

y Address
generation

RAM
array 2

C

3

D

0

A

1

B

Output
alignment

LSBs

Figure 5. Interleaved memory for broad parallelism

⋅ RAM array. The number of RAMs depends on the
interleaving required for the particular application.

⋅ Output multiplexing. This has one output per element of
the access cluster, a number that differs for different
applications. The mapping of RAMs to outputs also
varies, according to application-specific uses of the index
LSBs.

In addition, the number of bits in the index values, RAM
addresses, and data words may also vary between
applications.

4.2. Tricubic interpolation

The motivating application for this case study comes from
molecular dynamics [11]. It represents potential fields
acting on atoms as values stored in a grid, with 3D
interpolation used to determine the field values at off-grid
points representing atoms. The authors observe that cubic
interpolation gives better results than linear interpolation.
Instead of a 2×2×2 access cluster of grid points around each
atom, however, tricubic interpolation requires a 4×4×4 set
of grid points.
 This extends the first case study, bilinear interpolation,
in two directions. First, it uses three index values (x, y, z)
rather than two. Second, it requires four points in each axis
for finding the cubic equation to interpolate, rather than the
two needed for linear interpolation. Again, the interpolation
arithmetic is not of interest for purposes of current
discussion. We describe only the interleaved memory
needed for fetching the full set of 4×4×4=64 values in each
access cluster.
 Since there are 64 values in each access cluster,
interleaving requires 64 RAMs to ensure non-interfering
access to all values in the cluster. The cluster is a 4×4×4
cube, with the same indexing behavior in the x, y, and z
axes. We examine the x axis first, then treat the other axes
in analogous ways.
 Each access cluster fetches values from indices x, x+1,
x+2, and x+3. Examine the two LSBs: each possible value

(0, 1, 2, and 3) occurs once in this group, so those LSBs
will be used for output multiplexing. The x’ values are x
index values stripped of their LSBs, as in the bilinear case,
but this application strips two LSBs rather than one.
 Considered modulo 4, there are four possible starting
points for the access cluster, shown in Figure 6. If the
cluster starts at a 0 mod 4 boundary, then all four x’ values
are the same. If the cluster starts at a 1 mod 4 boundary,
then (x+3)’=x’+1 for RAM bank 0, and so on for starting
offsets 2 and 3 mod 4.
 Table 4 corresponds to Table 2, but shows one index
only. The full form of Table 4 has 64 entries, one for each
of the RAMs, and handles cases for all combinations of x, y
and z offsets mod 4.

Table 4. x’ address increments by x offset.

RAM Address

0 [if x mod 4 ≥ 1 then x’+1 else x’]
1 [if x mod 4 ≥ 2 then x’+1 else x’]
2 [if x mod 4 = 3 then x’+1 else x’]
3 [x’]

The Output alignment section of Figure 5 is also
implemented in this application. This time, however,
Output alignment has 64 data inputs, 64 outputs, and 6 bits
of selection control, two LSBs from each of the three
indices.
 A naïve implementation would built the section in terms
of 64-input muxes. Straightforward synthesis generates a
huge amount of logic for that mux, and repeats it for each
bit in each of the 64 output words. The implementation
shown in Figure 7 takes advantage of application-specific
knowledge of the selection value, i.e. that it is composed of
three two-bit fields. When synthesized for Xilinx FPGAs,
this cascade uses six slices per data bit, instead of 32 for the
64-input mux.
 This application demonstrates the value of FPGAs in
creating interleaved memory structures. First, the FPGAs
like the Xilinx Virtex family easily satisfy the need for 64
independently accessible memory busses. The VP100 chips
in that family have over 400 RAMs available, but even 64
memory busses would be expensive in competing
technologies. Second, even if data words are only 16 bits
each, every cluster access fetches 64*16=1024 bits of data

0 1 2 3 0 1 2

RAM address x’ RAM address x’+1

x x+1 x+2 x+3

Figure 7. RAM addresses: x' or x'+1
depending on initial offset

X0:1 Z0:1Y0:1

Output

Figure 6. 64:1 mux, axis by axis

– a 1Kbit transfer. Again, the FPGA’s connectivity
resources can handle this word size readily, but it would be
problematic to handle in many other implementation
technologies.

4.3. Hexagonal grids

Hexagonal grids rather than rectangular ones arise in some
problems. The following diagram show an access cluster
within a hexagonal grid:
 This presents two problems. The first is that the grid
must be mapped to a rectangular structure to simplify 2D
array indexing. That problem is solved in Figure 8B, which
shows the cluster centered on grid cell 2b. The second
problem is that the access cluster is not a power of two in
size. Instead, its bounding box is 3×3. It is possible to
perform mod-3 and divide-by-three arithmetic on the grid
indices, if the logic delays in addressing are acceptable.
 Another way to think of this cluster is as a 7-element
subset of 4×4 RAM array. This makes address computation
easy, but require 16 RAM banks for accessing a cluster of
size 7. The additional RAMs may, at first glance, look like
130% overhead in the RAM allocation. On the other hand,
adding those RAMs reduces the amount of addressing
logic, possibly including block multipliers, so reduces the
delay in the addressing logic path. Also, depending on the
total capacity of the RAM array, those RAM resources
could have been required anyway, in order to provide the
total number of words required for the memory structure. It
is also worth noting that the Xilinx VP100 contains over
400 RAMs. Resource tradeoffs differ between applications,
but this can be an effective use of additional RAM to
reduce logic delays and reduce consumption of other FPGA
resources.
 Assuming the 4×4 RAM array, implementation is now
straightforward. Address generation logic resembles that
used in the tricubic interpolation example, but simplified to
two dimensions. The Output alignment section has 16 data
inputs, 7 data outputs, and 4 selection bits (two LSBs from
x and two from y).

5. DESIGNING THE INTERLEAVED STRUCTURE

Design of the interleaved memory proceeds in a regular
sequence of steps:
1. Define the access cluster used by the application. In

cases like the hexagonal grid example, this may require
some effort in converting the grid to a rectangular form.

2. Round the cluster size up to the next power of two in
each dimension. Allocate one RAM bank per rounded-up
cluster element to the RAM array of Figure 5.

3. Create the Address generation network following the
examples leading to Table 2 and Table 4.

4. Create an output mapping table like Table 3, with one
output per element in the actual access cluster (not
rounded up). Use that table to create the Output
alignment section of the array.

Step 1 requires insight into the application’s unique pattern
of memory reference. This may involve tradeoff decisions
if the FPGA implementation requires partitioning the
application in ways that affect memory access. As in the
hexagonal grid example, additional insight may be needed
for mapping the application to a rectangular grid. After that,
generation of the interleaved memory system follows in a
straightforward way.
 This approach can be modified in many ways, to make
better use of available resources or to take advantage of
features unique to a particular model of FPGA.

5.1. Multiported RAM

Block RAMs in many FPGA families have two
independently addressable read ports. These can be used, in
some designs, to reduce the number of RAMs needed for
the RAM array of Figure 6.
 Consider the array of four RAM banks used in the
bilinear interpolation case study of section 4. The bank
number for each of the four RAMs in that example is
constructed from the LSBs of the x and y grid coordinates,
as shown in Table 1.
 This can also be implemented with two dual ported
RAMs, named 01 and 23. RAM addresses [x’, y’] are built
from the x and y values stripped of their LSBs, as before.
The difference is that RAM 01 holds grid points for all
points with even y coordinates and RAM 23 holds all points
that have odd y coordinates. Then treat port 0 of RAM 01
the same way as RAM 0 from the original example, RAM
01 port 1 as RAM 1, and so on.

5.2. Broad parallel writing

The discussion so far has assumed that grid computations
are dominated by read access to stored grid values. That is
not true in all phases of grid-based computations, however.
Figure 9 shows the cycle that occurs in particle-mesh (PM)
molecular dynamics models.

1a
1b

2b
1c

2c
2d

2a

1d

3b
3c

3d
3a

1a 1b 1c

2a 2b 2c

3b

A: Hexagonal grid
B: cluster around 2b

mapped to rectangular grid

Figure 8. Hexagonal access cluster
mapped to rectangular grid

 One phase of the calculation updates the grid of
Coulombic potential values by summing the spatial
distributions of each particle’s charge [8]. Each particle’s
charge affects a large spatial region, so must update many
points in the grid. In order to use broad parallelism at this
step, multiple grid points must be modified. In some
implementations, this requires a second multiplexing
network similar to the Output alignment of Figure 5, but
arranged to map data input clusters to RAM banks rather
than RAM to output.

5.3. Non-2N RAM arrays

The case studies of section 4 refer to the LSBs of grid
coordinates and to coordinate values stripped of their LSBs.
These, of course, are optimizations of x mod k or ⎣x/k⎦,
where k is some power of two. That is a convenience only,
not a fundamental restriction on the values that may be used
for the RAM array. With some additional complexity in the
address generation logic, other integer sizes of RAM array
can be accommodated.
 For example, the case study on hexagonal grids defines
an access cluster that fits a 3×3 bounding box, requiring 9
RAM banks. The RAM array was rounded up to 4×4,
requiring 16 RAM banks, potentially an increase of 78% in
RAM allocation. As noted earlier, the additional RAM
banks represent an addition of RAM hardware that reduces
access times and address generation logic. Different time
and resource tradeoffs might favor the following solution.
 In building the memory for a 3×3 RAM array, the
addressing logic of Equation 1 has to be interpreted slightly
differently. The NY value becomes 3, x’ becomes ⎣x/3⎦, and
y’ becomes ⎣y/3⎦. Direct division of ⎣x/3⎦ in digital logic is
inconvenient. Instead, the same net effect comes from
multiplying x by 1/3 in fixed-point format, i.e. 0.0101…2,
where enough bits of precision are maintained to make
x×1/3 exactly ⎣x/3⎦ over the entire range of x values used by
the application. One 18×18 block multiplier can handle
x×1/3 with enough accuracy to cover a 17-bit range of
coordinates, and multipliers can be ganged for wider index
ranges.
 The LSBs of x and y in fact represent x mod NX and y
mod NY, for RAM array size NX × NY. In the case of the 3×3
RAM array for the hexagonal grid, the mod 3 residue is
required in both coordinate values. Like division, the
arithmetic modulus can be computed with a modest amount
of logic.

 Start with the observation that
 (a + b) mod 3 = ((a mod 3) + (b mod 3)) mod 3,
which extends recursively to any number of addends. Take
the binary representation of x to be … x8 x4 x2 x1, where xJ
is the bit of weight J in positional notation. Then x mod 3 =

x1 mod 3 = 0 or 1
+ x2 mod 3 = 0 or 2
+ x4 mod 3 = 0 or 1
+ x8 mod 3 = 0 or 2
+ … …

Coefficients 1 and 2 are the possible values of 2N mod 3,
and other coefficients would appear if the RAM array
dimension were some value other than 3. The sum
computed in this way grows only slowly: it is never more
than 15 for a ten-bit grid coordinate. A small lookup table
can readily provide the mod 3 residue of that sum.
 Given these changes of interpretation, the directions of
section 5 can be used with one modification: step 2 does not
round up. The steps in this example are:
1. Define the access cluster. In this case, the 7-point access

cluster for the hexagonal grid is used.
2. Take the bounding box (3×3) of the access cluster to be

the dimension of the RAM array.
3. Create the Address generation network:

RAM Address
00 [if x mod 3 > 0 then ⎣x/3⎦+1 else ⎣x/3⎦,

 if y mod 3 > 0 then ⎣y/3⎦+1 else ⎣y/3⎦]
01 [if x mod 3 > 0 then ⎣x/3⎦+1 else ⎣x/3⎦,

 if y mod 3 > 1 then ⎣y/3⎦+1 else ⎣y/3⎦]
02 [if x mod 3 > 0 then ⎣x/3⎦+1 else ⎣x/3⎦, ⎣y/3⎦]
10 [if x mod 3 > 1 then ⎣x/3⎦+1 else ⎣x/3⎦,

 if y mod 3 > 0 then ⎣y/3⎦+1 else ⎣y/3⎦]
11 [if x mod 3 > 1 then ⎣x/3⎦+1 else ⎣x/3⎦,

 if y mod 3 > 1 then ⎣y/3⎦+1 else ⎣y/3⎦]
12 [if x mod 3 > 1 then ⎣x/3⎦+1 else ⎣x/3⎦, ⎣y/3⎦]
20 [⎣x/3⎦, if y mod 3 > 0 then ⎣y/3⎦+1 else ⎣y/3⎦]
21 [⎣x/3⎦, if y mod 3 > 1 then ⎣y/3⎦+1 else ⎣y/3⎦]
22 [⎣x/3⎦, ⎣y/3⎦]

4. Create the Output alignment network. Construct a table
(not shown) where each row represents one of the 7
outputs. Each column represents one of the 9 possible
offsets between output cluster and RAM array, specified
by a different x mod 3, y mod 3 pair. Each table element
is the RAM bank that provides data to that output at that
offset. Implement each row of the table as a 9:1 mux
generating one of the cluster values.

6. SUMMARY AND FUTURE DIRECTIONS

Memory interleaving is a well-known technique for
improving the bandwidth of a memory system by
increasing parallelism. Pipelined parallelism has
traditionally been more common than broad parallelism
because it requires less interconnection hardware for

Vector field
updates particle

positions

Particle
charges update

vector field

Figure 9. Particle-mesh calculation cycle (after [8])

implementation. Whether for pipelined or broad
parallelism, standard memory interleaving is based on the
memory addresses only, and application knowledge
consists of broad assumptions about the behavior of many
dissimilar applications.
 This paper presents a widely applicable technique for
creating interleaved memory structures that take advantage
of the unique strengths of FPGAs. The technique creates
memory interleaving structures that offer broad parallel
access to the clusters of data used by an application, based
on knowledge of the application’s memory reference
patterns. These memories store data without replicated
storage of data values and without wasted memory
locations, ensuring efficient use of FPGA resources. We are
currently developing tools for automatic creation of these
interleaved memory structures.
 Extensions to this basic scheme are possible. In
particular, there are applications in which a grid is used
multiple ways, e.g. is updated, then is used in a force field
calculation, as in molecular mechanics applications. It is not
necessarily the case that both kinds of memory reference
use the same access clusters. Elaborations of the techniques
shown in section 5 may be able to reuse one memory array
with addressing and alignment sections that suit access
clusters of different characteristics. We are also exploring
additional optimizations that appear to be possible with
some sparse access clusters, where RAM array sizes may
be reduced by taking advantage of the holes in the cluster.
 Memory interleaving for FPGA-based computing is also
effective for improving memory bandwidth and parallelism
in the computation stages. FPGA computing differs from
traditional computing in a few critical ways. First, FPGAs
offer massive on-chip memory parallelism at essentially no
cost. Second, because they are configurable, they can
implement interleaving strategies tuned to the specifics of
each application, sometime more than one strategy in
different parts of the circuit. Third, FPGAs support the wide
data words, 1Kbit or more, needed for access clusters
covering dozens of grid points. Fourth, because every
FPGA computation is an application-specific circuit design,
the application’s logical indexing is accessible to the
memory designer, not just its sequence of address
references. These features, memory and connection
resources, configurability, and application knowledge,
create unique opportunities for optimizing the FPGA’s
memory implementation to the application at hand. This
paper presents a step by step technique for creating such
memories, applicable to many families of compute
intensive applications, not just volume rendering, image
processing, and computational chemistry.

7. REFERENCES

[1] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L.
Slotnick, and R. A. Stokes. “The Illiac IV Computer.” IEEE
Trans Computers 17(8), Aug 1968

[2] A.P.W. Böhm, B. Draper, W. Najjar, J. Hammes, R. Rinker,
M. Chawathe, and C. Ross. “One-step Compilation of Image
Processing Applications to FPGAs”. IEEE Symposium on
Field-Programmable Custom Computing. 2001

[3] P. Budnik and D. J. Kuck. “The Organization of Parallel
Memories” IEEE Trans Computers 20(12)1566-1578, Dec
1971

[4] Control Data Corporation. “Control Data 6400/6500/6600
Computer Systems Reference Manual.” 1969

[5] B. K. Davies. “Machine Vision: Theory, Algorithms, and
Practicalities.” Morgan Kaufmann. 2005.

[6] E. R. Dougherty. “An Introduction to Morphological Image
Processing.” SPIE Optical Engineering Press. 1992

[7] D. S. Ebert and R. E. Parent. “Rendering and animation of
gaseous phenomena by combining fast volume and scanline
A-buffer techniques”. Proceedings of the 17th Annual
Conference on Computer Graphics and Interactive
Techniques SIGGRAPH '90

[8] P. Gibbon and G. Sutmann. “Long-Range Interactions in
Many-Particle Systems.” In Quantum Simulations of Many-
Body Systems: From Theory to Algorithms. NIC Series
10:467-506. 2002

[9] P. P. Jonker. “Morphological Image Processing:
Architecture and VLSI Design.” Kluwer Technische Boeken
B. V. 1992

[10] D. H. Lawrie. “Access and Alignment of Data in an Array
Processor”. IEEE Trans. Computers 24(12), Dec 1975.

[11] D. Oberlin, Jr. and H. A. Scheraga. “B-Spline Method for
Energy Minimization in Grid-Based Molecular Mechanics
Calculations”. J. Computational Chemistry 19(1)71-85.
1998.

[12] T. VanCourt, Y. Gu, V. Mundada, and M. Herbordt. “Rigid
Molecule Docking: FPGA Reconfiguration for Alternative
Force Laws.” European Journal of Applied Signal
Processing, to appear 2006

[13] A. Watt and M. Watt. “Advanced Animation and Rendering
Technique.” Addison Wesley. 1992

[14] S. Weis. “An aperiodic storage scheme to reduce memory
conflicts in vector processors.” Proc. International
Symposium on Computer Architecture. 1989

