
Improved Interpolation and System Integration for

FPGA-Based Molecular Dynamics Simulations∗

Yongfeng Gu Tom VanCourt Martin C. Herbordt

Department of Electrical and Computer Engineering

Boston University; Boston, MA 02215

EMail: {maplegu|tvancour|herbordt}@bu.edu

Abstract: FPGA-based acceleration of molecular
dynamics (MD) has been the subject of several re-
cent studies. Here we describe a new non-bonded
force computation pipeline implemented on a 2004-
era COTS FPGA board and its integration into the
ProtoMol MD code. There are several innovations:
a novel interpolation strategy; the introduction of
a “semi-floating point” format; and various issues
related to system integration. As a result, we are
able to model far more particle types, without rely-
ing on complex buffering, and obtain higher accu-
racy than previously. A two pipeline accelerator has
been implemented on a Xilinx VirtexII Pro VP70,
integrated into ProtoMol, and tested with an en-
zyme inhibitor model having 8000 particles and 26
particle types. Despite performing all O(n) work on
the host PC, as well as the data conversion and com-
munication overhead, this implementation yields a
5.5x speed-up over a 2.8GHz PC, and with accuracy
comparable to the serial code.

1 Introduction

Molecular dynamics (MD) simulations are increas-
ingly important in understanding the behavior of
chemical and biological systems. MD has therefore
become a staple of high-end computing [7], with
not only supercomputers and MPPs being applied,
but also with several machines being developed (in
part or entirely) for this application. The latter in-
clude the IBM Blue Gene/L [1, 5], the MD-GRAPE
[9], and the GRAPE-based Protein Explorer [14].
More recently, the viability of FPGA-based MD
simulation (FPGA/MD) was demonstrated [3, 6].
Despite avoiding standard double-precision floating

∗This work was supported in part by the NIH through
award #RR020209-01 and facilitated by donations from Xil-
inx Corporation. Web: http://www.bu.edu/caadlab.

point (DP) arithmetic, significant speed-ups were
achieved with little detriment to physical signifi-
cance.

Several issues remain to be solved before
FPGA/MD is likely to enter production use. We
address the following in this work:

• Number of particle types simulated. The
van der Waals (Lennard-Jones or LJ) force
computation depends on the types of the two
interacting atoms according to atomic species
(e.g. C, H, N, O) and chemical contexts (e.g.
O in C=O carboxyl moieties vs. O-H hydroxyl
groups). For the table-lookup method used
previously ([3, 6]), a separate table was used
for each combination of atom types. While vi-
able, complex memory exchanges are required.

• Simulation accuracy. Until FPGAs have a
number of hard-wired DP units, non-standard
arithmetic is likely to yield the most compet-
itive implementations. While previous studies
have shown these to be well-behaved, this is-
sue remains a concern with respect to general
acceptance.

• System integration. MD codes are highly
complex. Also, many MD functions (such as
computing the bonded forces) are best per-
formed on a microprocessor. FPGA implemen-
tations are therefore only viable (in the near
future) when integrated into existing systems.
Among the issues that must be addressed are
partitioning the code, developing interfaces,
and handling data translation. This must be
done while retaining a performance advantage.

We address these issues as follows. To avoid the
large number of look-up tables, we use one table

1

per r−x term and perform the rest of the LJ com-
putation explicitly. With respect to non-standard
arithmetic, although we still avoid DP, a number of
methods are applied to improve accuracy and assure
physical significance. These include non-uniform in-
terpolation intervals, use of higher order interpola-
tion, computing coefficients with orthogonal func-
tions, and use of “semi floating point” arithmetic.
System integration is demonstrated with ProtoMol
[10]: this implementation retains a 5.5× improve-
ment in total application performance (on 2004-era
hardware) with little if any compromise in accuracy
over the original code. Since the initial submission,
we have also implemented cell lists. Details will be
reported elsewhere, but we include here some initial
results.

At least one other issue remains to be ad-
dressed in FPGA/MD beyond the scope of this
work. In particular, we compute long range non-
bonded forces using cell lists with switching. Al-
though this method scales well, a full version of
FPGA/MD will likely include a more rigorous al-
gorithm (e.g. using Ewald sums). The significance
of the current work is in its advance in several areas
over the state-of-the-art, and because these meth-
ods will be integral to future optimized implementa-
tions. Broader significance is that it indicates that
contemporary MPP/SMP FPGA nodes are likely
to obtain a cost-effective speed-up.

2 Methods

2.1 MD Review

As described in previous work [6] (for more detail
see, e.g., [11]), MD is an iterative application of
Newtonian mechanics to ensembles of atoms and
molecules. MD simulations generally proceed in
phases, alternating between force computation and
motion integration. For motion integration the Ver-
let (or similar) method is typically used.

In general, the forces depend on the physical sys-
tem being simulated and may include LJ, Coulomb,
hydrogen bond, and various covalent bond terms:

Ftotal = F bond+F angle+F torsion+FHBond+Fnon−bond

Because the hydrogen bond and covalent terms
(bond, angle, and torsion) affect only neighboring
atoms, computing their effect is O(N) in the num-
ber of particles N being simulated. The motion
integration computation is also O(N). Although
some of these O(N) terms are easily computed on

an FPGA, their low complexity makes them likely
candidates for host processing.

The LJ force for particle i can be expressed as:

FLJ
i =

∑

j 6=i

εab

σ2

ab

{

12

(

σab

|rji|

)14

− 6

(

σab

|rji|

)8
}

rji

where the εab and σab are parameters related to the
types of particles, i.e. particle i is type a and par-
ticle j is type b. The Coulombic force can be ex-
pressed as:

FC
i = qi

∑

j 6=i

(

qj

|rji|3

)

rji

We implement both Coulombic and LJ forces on the
FPGA; we also implement multiple atom types.

2.2 New Force Computations

Because of the complexity of the LJ expression, and
because it is possible in principle for any two atoms
to interact this way, computing this force has been
problematic. Here we propose a new method of
force computation that changes what gets looked
up, the shape of the table, the interpolation mech-
anism, and the method of computing interpolation
coefficients.

Previous implementations of FPGA/MD have
used table look-up for the entire force as a function
of particle separation [3, 6]. This method is efficient
for uniform gasses where only a single table is re-
quired [3]. As the LJ force depends on atom types,
however, simulations of T different atom types re-
quire T 2 tables. Since table look-up is in the crit-
ical path, the tables must be in on-chip memory
(block RAMs) for FPGA/MD to be viable. In pre-
vious work we described a latency hiding technique
whereby tables are swapped as needed [6].

Here we propose a different method, used also
in some MD codes. Instead of implementing the
force pipeline with a single table look-up for the
entire force, we use two tables, one each for r−14 and
r−8. The advantage is using two tables instead of
T 2, thereby removing the need to swap tables; the
disadvantage is that several additional operations

must be executed to obtain FLJ
i .

We next describe an optimization to the look-
up tables themselves. The r−x expressions display
extreme changes in behavior over the range of possi-
ble interaction radii, as shown in Figure 1. It would
be an exorbitant and needless cost in table size to

section

Figure 1: Table look-up varies in precision across

r−k.

use the same number of coefficients and the same
step sizes in the well-behaved regions of the curve.
Rather, as in [3], each curve is divided into several
sections along the X-axis. Here, the length of each
section is twice that of the previous; however, each
section is cut into the same number interpolation
intervals N .

To improve the accuracy of the force computa-
tion, we interpolate using higher order terms. Here
we assume a Taylor expansion:

F (x) = f(a) + f ′(a)(x− a) +
f ′′(a)(x− a)2)

2!
+ . . . ;

in the next subsection we describe a more accurate
alternative. Point a is the left end of the interval.

When the interpolation is orderM , each interval
needs M + 1 coefficients, and each section needs
N ∗ (M + 1) coefficients. Since the section length
increases exponentially, extending the curve (in r)
only increases the size of coefficient memory very
slowly.

IncreasingM or N each improves simulation ac-
curacy. Interestingly, on the FPGA these two num-
bers have a resource cost in different components:
the main cost for finer intervals is in block RAMs,
while the main cost for higher order interpolation
is in hardware multipliers and registers. Table 1
gives a sample of the tradeoff effects. For our sys-
tem configuration, N = 128 and M = 3 appears to
be optimal.

2.3 Computing the Coefficients

We now show how to develop polynomial approxi-
mations to arbitrary functions so that the approxi-
mation is relatively easy to compute with economi-
cal use of FPGA resources. The FPGA will imple-
ment the approximation F of function f as a sum
of terms:

F (x) = a0 + a1x+ a2x
2 + a3x

3 (1)

Table 1: Shown is the trade-off between interval
size (N is the number of intervals per section) and

interpolation order M for r−14.

N M Average Error Maximum Error
32 4 2.55E-7 3.67E-6
64 4 7.35E-9 1.08E-7
64 3 3.74E-7 4.19E-6
128 3 2.56E-8 2.55E-7
128 2 2.27E-6 1.73E-5
512 2 3.32E-8 2.66E-7
512 1 1.17E-5 6.04E-5
2048 1 7.31E-7 3.76E-6

where the coefficients ai are stored separately for a
set of intervals that partition the x range of inter-
est. This form is desirable for FPGA implementa-
tion because the low powers of x require relatively
few hardware multipliers. In order to maintain ac-
curacy in F , it is defined as a piecewise function on
a set of intervals that partition the range of inter-
est, with coefficients ai for any interval chosen to
provide the best approximation of f on that inter-
val. The piecewise nature of F is taken for granted
in the remainder of this discussion. One obvious
way to create such an approximation on an interval
near point p is by truncating a Taylor series ex-
pansion (as was done above). When carried to an
infinite number of terms, this represents F exactly.
Truncating the series causes problems in accurate
approximation, however. In order to see how accu-
racy problems arise, consider the curves in Figure 2
illustrating the first few monomials xi.

Basic Monomials

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

X^2

X^3

X^4

X^5

X^6

X^7

X^8

Figure 2: Basic monomials.

3rd Order Interpolation

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

0 100 200 300 400 500 600

Number of Intervals per Section

lo
g

1
0

(r
e

la
ti

v
e

 R
M

S
 e

rr
o

r)

Hermite

Taylor

Orthogonal

Interpolation with 128 intervals per section

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

0 1 2 3 4 5
Interpolation Order

lo
g

1
0

(r
e

la
ti

v
e

 R
M

S
 e

rr
o

r)

Hermite

Taylor

Orthogonal

Figure 3: Interpolation comparisons.

All of the curves have the same general half-U
shape, and become increasingly similar as the de-
gree increases. In other words, the x2 or x3 term
of a low-order approximation is important in ap-
proximations of all higher-order Taylor terms. Said
differently, large coefficients of high-order Taylor
terms contribute heavily to the coefficients in the
low-order approximation. The i! denominator in
the Taylor series dominates for asymptotically large
i. Still, for the functions and ranges of current in-
terest (r−4 and r−7, 0.1 < r < 100), many Taylor
series terms i > 3 have appreciably large numer-
ators due to large binomial coefficients in (x − p)i

and large derivative values dif/dpi. As a result, the
truncated Taylor series omits many large high-order
terms that are important to approximation using
low-order polynomials. This is especially problem-
atic for the larger intervals where behavior may
worse even than that of linear interpolation.

Instead, we propose to approximate f using a
set of orthonormal functions on each interval. Fol-
lowing the conventions of linear algebra, orthogo-
nal functions p(x) and q(x) have the property that
p(x) · q(x) = 0, for a suitable definition of dot prod-
uct ‘·’. Likewise, normal functions p(x) have the
property that p(x) · p(x) = 1. A set of orthonormal
functions is a set in which all members are normal
and are orthogonal to all other members, and forms
a basis set that spans some space of functions. The
conventional dot product of two functions on some

interval [A,B] is defined as
∫ B

A
p(x)q(x)dx.

An approximation of f in terms of basis set bi

is a projection of f from some high-order function
space down into the low-order space spanned by
that set of basis functions. Because all terms in
f are involved in the projection into that basis, this
technique avoids the problem of skipping high-order
terms in f that contribute significantly to low-order
terms in the approximation. Because the intended
FPGA implementation uses polynomials of the form
in Equation 1, the set of basis functions is chosen to
span the function space {1, x, x2, x3}. For reasons
beyond the scope of current discussion, monomials
are not the most convenient set of basis functions for
spanning the space of cubic polynomials. Instead,
a set of orthogonal polynomials offers many advan-
tages. Gram-Schmidt orthogonalization is used to
generate such a set of orthonormal basis functions.
Initial computations show order-of-magnitude re-
ductions in error over the truncated Taylor coef-
ficients of the same degree.

Although orthogonal polynomial interpolation is
the best local approximation in each interval, the in-
terpolation polynomials are continuous only within
the interval. When transformed into Fourier space,
as is done in some long range force calculations,
spurious terms may result.

Piecewise Hermite interpolation is an improved
version of the original piecewise linear method.
Given two points on the target curve and their
derivatives {(x0, f(x0), f

′(x0)), (x1, f(x1), f
′(x1))},

a polynomial is required to go across these two
points with the same derivatives Since there are four
constraints, this polynomial is third order. The four

coefficients can be computed by solving the follow-
ing equations:

f(x0) = dx3
0 + cx2

0 + bx0 + a
f ′(x0) = 3dx

2
0 + 2cx0 + b

f(x1) = dx3
1 + cx2

1 + bx1 + a
f ′(x1) = 3dx

2
1 + 2cx1 + b

We compare the three higher order interpola-
tion methods—Taylor, Orthogonal, and Hermite—
by plotting their relative RMS error. In the left
graph of Figure 3, the number of intervals per sec-
tion varied; in the right graph, the order is varied.

2.4 Semi Floating Point

a

Format

Find most significant 1 to:

• get format

• extract a

• extract (x-a)

((C3*(x-a)+C2)*(x-a)+C1)*(x-a)+C0 Coefficient

Memory

r-14 or r-8

(x-a)

r2

Figure 4: Position of the leading 1 determines the
operand format in the interpolation pipeline.

We begin by observing that although the dy-
namic range of an entire r−x curve is, perhaps, 100
bits, the dynamic range of a particular section could
be only 9 bits. Also, the ranges of interpolation co-
efficients differ in different parts of the curve: they
have relatively large magnitudes in the left-hand
part of the curve, but lower magnitude in the right-
hand regions. That implies the need for different
numbers of bits to the left of the decimal point in
each region of the curve, to maintain roughly con-
stant accuracy. This optimization allows the same
precision in each section, but higher coefficient val-
ues in the ill-behaved sections (with numbers of the
form xxx.x) and lower values where the curve is flat-
ter (x.xxx). We call this modified numbering sys-
tem semi floating point: The binary point is able to
shift, but only a few places. The data path of the
interpolation pipeline is shown in Figure 4.

Once r2 is known, its interval is determined by
the position of the leading 1. The interval, in turn,
indicates the format. Finally, the format is used by
the adders and multipliers to align the operands.
The adder is shown in Figures 5; the multiplier is

Result

OP1

…

Adder OP1

Switcher

OP2

…

Adder OP2

Switcher

Adder Result

Switch

Format

Figure 5: Semi FP adder with explicit alignment.

analogous. The LJ pipeline uses 11 formats, the
Coulomb 14; as there is no overlap in formats, the
combined LJ/Coulomb pipeline uses 25 formats.
Comparison with floating point is presented in the
next section.

3 Implementation

The overall system consists of a PC with a 2.8 GHz
Xeon CPU with a WildstarII-Pro PCI board from
Annapolis Micro Systems (see Figure 6). The board
has two Xilinx Virtex-II-Pro XC2VP70 -5 FPGAs;
however, only one of the FPGAs was used. Proto-
Mol 2.03 was used (downloaded from the ProtoMol
website). The operating system was Windows-XP;
all codes were compiled using Microsoft Visual C++
.NET with performance optimization set to maxi-
mum. FPGA configurations were coded in VHDL
and synthesized with Synplicity integrated into the
Xilinx tool flow. Data transfer between host and
coprocessor was effected with the software support
library from Annapolis Microsystems. These trans-
fer routines are highly efficient with nearly the full
PCI bandwidth being used and little system over-
head.

ProtoMol is a high-performance MD framework
in C++ from Notre Dame University, and is de-
signed especially for ease of experimentation. Hard-
ware/Software partitioning was therefore simply a
matter of swapping out the appropriate routines
and replacing them with our own. Particle position
data are down- and up-loaded in DP; fixed point
conversion on both ends is done in the FPGA (the

Pj.Pos

A,B
r2

r-14 & r-8Pi.Type

Pj.Type

Parameter

Memory
A*r-14+B*r-8

Pi.Acc
Cut-off

Check

Interpolation

Pipeline

Periodic

Refolding

Pi.Pos
Distance

Squared

Figure 7: Force pipeline.

Host

Copro-

cessorAcceleration

Memory
Type

Memory

Force Pipeline Array

Force Parameters

Con

ver

ter

PCI Bus

ProtoMol

Con

ver

ter

Position

Memory

Control

Module

Figure 6: System block diagram.

“converters” shown in Figure 6). All motion inte-
gration, O(N) force computations, and energy com-
putations are performed with the original ProtoMol
code.

The overall FPGA pipeline is shown in Figure 7;
more details were presented earlier, or are available
in [6]. Currently two pipelines fit on the FPGA;
this is in contrast to the four pipelines previously
obtained. The reduction is due to the complex-
ity of the interpolation scheme. We have, however,
achieved four pipelines in synthesis-only with the
VP100; more should be possible with newer chips
and further optimization. The current design sup-
ports up to 32 atom types and 11,200 atoms. The
same pipeline is used for both LJ and Coulom-
bic force computations; coefficients, however, are
swapped. Following the conclusions of previous
work [6], 35 bits of precision are used, but in the
semi floating point representation described above.

The VP70 design currently runs at 75MHz.
Nearly all the slices are used; a large fraction, how-

ever, are apparently used by the synthesis tool for
optimization. In this design, 70% of the BRAMS
are used; in the previous four pipeline version nearly
all were.

Table 2: Shown is the resource usage in slices of
various components described in this paper.

Format Add Mul Pipeline Ttl
LogiCore DP 692 540 19566
LogiCore FP 329 139 6998
Semi fp 35-bit 70 390 n.a.
Integer 35-bit 18 400 n.a.
Combined semi, int n.a. n.a. 5624

We now compare the semi floating point to full
floating point implementations. For the latter we
use LogiCore Floating-point Operator v2.0 from
Xilinx [15]. Table 2 gives the number of slices for
various components. The final column gives the
number of slices for the three versions of the entire
non-bonded force pipeline. Our version uses some
integer units as well as the semi floating point, but
only at points in the computation where no preci-
sion can be lost. The SP and DP pipelines could
perhaps also be optimized this way, but the req-
uisite complex conversion might make this less ad-
vantageous than it is for the semi FP pipeline. A
comparison with respect to register use yields sim-
ilar results.

The conclusion for the VP70 is that two
pipelines can also be implemented using single pre-
cision floating point, but no more, and with a loss
of precision from 35 to 24 bits. As shown previously
[2, 6], this difference could be critical to simulation
accuracy. On the other hand, semi floating point
precision could scale at least up to 40 bits (without
serious optimization), with a slight reduction in op-
erating frequency. With respect to double precision:

Table 3: Results comparing original and accelerated
versions of ProtoMol.

Description PC only PC + FPGA
time/step time/step

All-to-all
no cut-off 15.1s 0.96s
all-to-all
cut-off at 10A 8.0s 0.96s
Non-Bonded forces
not computed 0.014s 0.022s
Cell list w/ size 5A
LJ,CL cut-off 10A 0.66s 0.12s

fitting even one pipeline is problematic. This expe-
rience matches that of two other studies [8, 12].

4 Performance and Accuracy

Clearly, accuracy of the calculation is a concern
when converting a floating point application to fixed
point arithmetic. Because of the inherently chaotic
nature of the calculation, “Obtaining a high degree
of accuracy in the trajectories is neither a realistic
nor a practical goal” [11]. Rather, quality assurance
in MD is determined by observing fidelity of emer-
gent physical properties. Perhaps the most common
of these is energy fluctuation (see, e.g., [4, 13]). Our
particular goal is therefore to achieve energy fluctu-
ation similar to the original calculations.

To measure energy fluctuation, the physical
model simulated was of bovine pancreatic trypsin
inhibitor in water, a model of approximately 1100
particles and 26 atom types, run for 10,000 time
steps. We say approximately, because the num-
ber of waters was varied within 10% between runs
to obtain an ensemble. Periodic boundary condi-
tions were used and switched cut-off at that size.
The original ProtoMol was compared with Proto-
Mol modified as described in the previous section.
After 10 runs we have found comparable energy
fluctuation between the two systems, with both be-
ing close to 0.014. If anything, it appears that the
FPGA version has slightly better accuracy, a phe-
nomenon we are still investigating.

To measure performance we compared full end-
to-end runs of the same model with 8192 particles
and 26 atom types. Again, the modified (FPGA)
ProtoMol still performs motion integration, bonded
force computation, and energy computation on the

host using the original code. When cell lists are
used, ProtoMol computes them on the host as well.
The simulation uses periodic boundary conditions
with a size of 64A x 50A x 50A. Results are shown
in Table 3. The first row shows LJ and Coulombic
forces being computed completely all-to-all. The
second is also all-to-all, but a cut-off is applied;
ProtoMol optimizes for this option. In the third
row, the non-bonded force computation is removed.
This is shown to indicate explicitly the part of the
computation that is not being accelerated with the
FPGA. The additional time for the PC + FPGA
version is due to the extra processing required to
format the cell-lists before transfer. The final row
shows the full implementation including cell-lists.

As stated previously, these simulations do not
include computation of long-range forces as would
usually be done, e.g. with Ewald sums. Also, the
FPGA is two years old. Using a bigger contempo-
rary FPGA with higher speed-grade would enable
twice the number of pipelines and higher operat-
ing frequency. Optimizing the design should yield
even greater speed-up. Together, these should dou-
ble the performance of the current implementation,
even accounting for the serial overhead.

5 Summary and Discussion

This work extends previous work in FPGA/MD in
three major directions: complexity of phenomena
modeled, accuracy of modeling compared to pro-
duction MD code, and integration with production
MD code. In particular we have achieved accuracy
comparable to the serial version while simulating a
biologically significant molecule. In the process, we
have given up some of the speed-ups described pre-
viously, which had been determined by measuring
acceleration of the non-bonded forces and motion
integration alone. The speed-up obtained here is
encouraging, especially considering the somewhat
dated technology used for the FPGA.

Recently, other work has appeared that also in-
tegrates reconfigurable computing into MD codes.
Kindratenko and Pointer [8] and Scrofano et al. [12]
both port the non-bonded force computations of ex-
isting codes to the SRC processor. Both also use the
SRC high-level language interface to implement the
FPGA configurations. Kindratenko’s work begins
with NAMD, while that of Scrofano’s begins with
their own code comprised of basic MD functions.
Both implement cell lists, while Kindratenko’s also

implements a table-lookup version of PME. A ma-
jor difference between that work and ours is in pre-
cision: both Kindratenko and Scrofano use single
precision floating point; Kindratenko also uses 32-
bit integer. Neither reports on the effect that this
difference would have on the quality of the MD sim-
ulations. Another difference is performance: Kin-
dratenko achieves a factor of 3× speed-up (using 2
FPGAs) over the original, highly optimized NAMD
code; Scrofano reports a 2× speed-up over their
own reference code. An advantage of both these
approaches over that presented here is the ease in
which large simulations can be conducted. Aug-
menting our current system to support large simu-
lations requires the implementation of off-chip (on-
board) swapping of cells. This is relatively straight-
forward, and the latency can easily be hidden.

We are in the process of deeper evaluation of
the issues related to the relationship between in-
terpolation method and physical significance. In
particular, we wish to separate out the physical
significance, if any, of the various aspects of the
scheme: non-uniform interpolation intervals, higher
order terms, and method of coefficient computa-
tion. Clearly large ensembles of experiments are
required, and on numerous quality assurance mea-
sures. While energy fluctation is the most common,
others are also used and will be examined.

Acknowledgments. We would like to
thank the ProtoMol group, first for pro-
viding the code under open source license
(http://protomol.sourceforge.net), and also for
answering questions that arose during this work.
We also thank the anonymous reviewers for their
many helpful suggestions.

References

[1] Allen, F., and et al. Blue Gene: a vision for pro-
tein science using a petaflop supercomputer. IBM
Systems Journal 40, 2 (2001), 310–327.

[2] Amisaki, T., Fujiwara, T., Kusumi, A., Miyagawa,
H., and Kitamura, K. Error evaluation in the de-
sign of a special-purpose processor that calculates
nonbonded forces in molecular dynamics simula-
tions. Journal of Computational Chemistry 16, 9
(1995), 1120–1130.

[3] Azizi, N., Kuon, I., Egier, A., Darabiha, A., and
Chow, P. Reconfigurable molecular dynamics sim-
ulator. In FCCM (2004), pp. 197–206.

[4] Barth, E., and Schlick, T. Overcoming stability
limitations in biomolecular dynamics. I. combining
force splitting via extrapolation with Langevin dy-

namics in LN. J. Chemical Physics 109, 5 (1998),
1617–1632.

[5] Fitch, B., and et al. Blue Matter: Strong scaling of
molecular dynamics on Blue Gene/L. Tech. Rep.
RC23688 (W0508-035) Computer Science, IBM
Research Division, 2005.

[6] Gu, Y., VanCourt, T., and Herbordt, M. C. Accel-
erating molecular dynamics simulations with con-
figurable circuits. IEE Proceedings on Computers

and Digital Technology 153, 3 (2006), 189–195.

[7] High-End Computing Revitalization Task Force.
Federal plan for high-end computing, 2004.

[8] Kindratenko, V., and Pointer, D. A case study
in porting a production scientific supercomput-
ing application to a reconfigurable computer. In
Field-programmable Custom Computing Machines

(2006).

[9] Komeiji, Y., Uebayasi, M., Takata, R., Shimizu,
A., Itsukashi, K., and Taiji, M. Fast and accurate
molecular dynamics simulation of a protein using a
special-purpose computer. J. Comp. Chem. 18, 12
(1997), 1546–1563.

[10] Matthey, T. ProtoMol, an object-oriented frame-
work for prototyping novel algorithms for molecu-
lar dynamics. ACM TMS 30, 3 (2004), 237–265.

[11] Rapaport, D. The Art of Molecular Dynamics Sim-

ulation. Cambridge University Press, 2004.

[12] Scrofano, R., Gokhale, M., Trouw, F., and
Prasanna, V. A hardware/software approach to
molecular dynamics on reconfigurable computers.
In Field-programmable Custom Computing Ma-

chines (2006).

[13] Stuart, S., Zhou, R., and Berne, B. Molecular dy-
namics with multiple time scales: The selection of
efficient reference system propagators. J. Chemical
Physics 105, 4 (1996), 1426–1436.

[14] Taiji, M., Narumi, T., Ohno, Y., Futatsugi, N.,
Suenaga, A., Takada, N., and Konagaya, A. Pro-
tein Explorer: A petaflops special-purpose com-
puter system for molecular dynamics simulations.
In Supercomputing (2003).

[15] Xilinx, Inc. Product Specification — Xilinx Logi-

Core Floating Point Operator v2.0, 2006.

