
Application-Specific Memory Interleaving Enables High Performance in
FPGA-based Grid Computations1

Tom VanCourt and Martin C. Herbordt

Boston University, ECE Department
8 St. Mary’s St., Boston MA 02215

{tvancour, herbordt} @ bu.edu

1 This work was supported in part by NIH award #RR020209-01 and was facilitated by donations from Xilinx Corporation

Abstract

Current generations of FPGAs create possibilities for
innovative, application-specific computation pipelines.
In many cases, the pipeline can fully exploit the
FPGA’s parallelism only when multiple operands are
available concurrently, requiring clusters of values to
be fetched from memory. These clusters of values often
have fixed organization, as in the eight grid points
around an off-grid position that are needed for 3D
interpolation of a value at that position. We present a
technique for creating custom interleaving of the
FPGA’s on-chip memories, giving access to the entire
cluster of values in one memory cycle. This technique
works on grids of 2, 3, or more dimensions, on many
non-rectangular grids, and on cluster organization
specific to each application. We report the initial
version of a design tool that inputs the relative
positions of grid points in the access cluster, and
produces synthesizable HDL code for the custom-
interleaved memory.

1. Introduction

FGPA accelerators are now entering the main
stream of high performance computing. To date, these
applications have generally been hand coded by skilled
logic designers as point solutions to specific problems
or families of problems. Unlike software-based
application development, with over fifty years of
experience and accepted practice, FPGA-based
application development suffers a near-total lack of
tools and techniques applicable across many families
of computing problems.

This work addresses FPGA-based computations
that use regular grids of data points, where each step of
the computation uses a cluster of nearby points. In the
applications of interest, full use of the FPGA’s
potential parallelism requires concurrent access to all
of the points in that cluster. We present an orderly
technique that creates custom-interleaved memories for
specific clusters, constructed so that all points in that
application’s access cluster can be fetched in one

memory cycle. This technique takes full advantage of
the FPGA’s many independently addressable on-chip
RAMs, its high degree of fine-grained parallelism, its
ease of application-specific configurability, and its
capacity for data path widths into the thousands of bits.
This technique is applicable to grids of 1, 2, 3, or more
dimensions and to access clusters of arbitrary layout,
making it a widely reusable tool for FPGA-based
computing. In order to simplify use of this kind of
memory interleaving, we have built a tool for creating
application-specific interleaved memories and
matching testbenches.

2. Motivating applications

Grid-based calculations with regular access clusters
arise in many kinds of applications. Bi- and tri-linear
interpolation, based on clusters of points at the vertices
of a square or cube, occurs in volume rendering and
ray-casting algorithms. Interpolation also occurs in
physics and chemistry applications, where forces
computed at grid points must be applied to off-grid
particles. Red-black relaxation of nonlinear systems
examines the four orthogonal neighbors around each
point in the grid. Image processing applications use
morphological operators and convolutions, which
access some (possibly sparse) set of points in an image
grid. Cellular automata in one, two, or three
dimensions perform updates based on different
patterns of neighboring values.

3. Related work

Memory interleaving has been used since the 1960s,
either for broad parallel access to multiple words at the
same time [1], or for pipelined parallelism of single
accesses with overlapping latency periods [2]. Either
way, the intent is to improve memory performance by
avoiding concurrent, interfering accesses to any one
memory bank. General purpose processors can not take
advantage of knowledge about any of their
applications, however. Also, their fixed structure
makes it impossible to adjust to the different behavior
of different applications. In contrast, developers of

FPGA-based applications have intimate knowledge of
each application, and assume that they will reconfigure
the FPGA’s on-chip memories for each application.

Allocation of multiple memories for FPGA-based
systems is also well studied. For example, tools have
been developed for automated placement of different
arrays into different memories, in order to reduce the
number of memory cycles needed [3] for calculations
involving multiple arrays and variables. Our work
differs in that its goal is to partition a single array so as
to guarantee single-cycle access to specific subsets of
array elements.

4. Example: Bilinear interpolation

Fig. 1 shows a candidate for memory interleaving,
the cluster of points A, B, C, D needed for bilinear
interpolation of point P. One X axis coordinate in the
cluster is odd and the other is even, and the same is
true in the Y axis. It is clear, by inspection, that the grid
points can be partitioned by their (X, Y) indices into an
array of (even, even), (even, odd), (odd, even), (odd,
odd) memory banks. In that case each access to a four-
point cluster requires one point from each RAM bank.

If the cluster of Fig. 1 spans X coordinates 3 and 4,
then points A and B must come from odd-X memory
banks, and points C and D from even-X banks. A
different cluster covering X coordinates 2 and 3 would
have the opposite mapping of A,B and C,D to even-X
and odd-X memory banks. The same is also true in the
Y axis, so point A, according to the coordinate base of
the cluster, may be supplied by any of the four memory
banks. This is easily handled with a multiplexer
downstream of the memory array for each of the output
values A, B, C, D.

Since the least significant bits (LSBs) select the
RAM from which a value is taken, RAM addresses are
based only on the ⎣X/2⎦ and ⎣Y/2⎦ values, i.e. stripped
of their LSBs. A cluster that covers X∈{3, 4} has the
same ⎣X/2⎦ for all X coordinates, but a cluster covering
X∈{3, 4} has must compute RAM addresses using two
different values of ⎣X/2⎦. This means that RAM
addresses are computed differently for each RAM,
according to the LSBs of the indices in each dimension
– a conditional increment of the X value used for
address generation, according to offset of the cluster
relative to the RAM array.

Figure 2 shows the general structure of the
interleaved memory: address generation for each of the
RAMs, the RAM array itself, and output multiplexing
to align RAM output to specific members of the access
cluster. That structure is the same for any number of
dimensions of indexing, and for any organization of
output cluster. Different implementations will differ in
the number of RAMs, the number of LSBs chosen, and
the number and organization of output multiplexers.
These specifics depend on the application-specific
number of indexing dimensions, the extent of the
access cluster in each dimension, and the number of
points in the access cluster.

5. Conclusions

We present an orderly technique for creating
custom parallel-access memories for a range of
applications, using design resources that are plentiful
in current FPGAs. These address the needs of grid-
based calculations in which a cluster of nearby points
must be accessed for one step of a calculation. Such
applications occur widely in image processing, data
visualization, numerical computing, computational
chemistry, and other fields. As a result, memory
structures in this family have potentially wide
applicability. In order to make this technique widely
accessible, we have implemented some of its variations
in a Java-based design tool, which is available at
http://www.bu.edu/caadlab.

6. References

[1] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L.
Slotnick, and R. A. Stokes. “The Illiac IV Computer”. IEEE
Transactions on Computers 17(8), August 1968

[2] Control Data Corporation. Control Data 6400/6500/6600
Computer Systems Reference Manual. 1969.

[3] M. B. Gokhale and J. M. Stone. “Automatic Allocation of
Arrays to Memories in FPGA Processors With Multiple
Memory Banks.” Proc. FCCM 1999

Figure 1. Cluster of grid
points for computing P by

bilinear interpolation A

B D

C
P

Output
alignment

+1?
+1? x

y
Addressing

& conditional
increment

RAM
array LSBs

Figure 2. Interleaved memory for broad

	1. Introduction
	2. Motivating applications
	3. Related work
	4. Example: Bilinear interpolation
	5. Conclusions
	6. References

