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Abstract: We describe a new pipeline for computing
non-bonded forces and its integration into the Proto-
Mol molecular dynamics (MD) code. There are sev-
eral innovations: a novel interpolation strategy, includ-
ing use of higher order terms; coefficient generation
with orthonormal functions; the introduction of “semi-
floating point” numbering; and various issues related to
system integration. As a result, we are able to model
far more particle types, without relying on complex
buffering, and obtain higher accuracy than previously.
A two pipeline accelerator has been implemented on
a 2004-era Xilinx VirtexII Pro VP70, integrated into
ProtoMol, and tested with an enzyme inhibitor model
having 8000 particles and 26 particle types. Despite
performing all O(n) work on the host PC, as well as
the data conversion and communication overhead, this
implementation yields 5.5× to 15.7× speed-ups over a
2.8GHz PC (depending on whether cell lists are used),
and with accuracy comparable to the serial code.

1 Introduction
Several issues remain to be solved before FPGA imple-
mentations of MD simulation are likely to enter pro-
duction use; we address the following here:

• The number of particle types simulated.

The van der Waals (Lennard-Jones or LJ) force
computation depends on atom type. For the table-
lookup method used previously ([1, 2]), a sepa-
rate table is required for each combination of atom
types. This requires complex memory exchanges.

• Simulation accuracy. Until FPGAs have a
number of hard-wired floating point units, non-
standard arithmetic is likely to yield the most com-
petitive implementations. This leads to concerns
about general acceptance.

• System integration. MD codes are highly com-
plex, and many MD functions are best performed
on a microprocessor. FPGA implementations
must therefore be integrated an existing system.
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This report describes an FPGA implementation of MD
acceleration that addresses all of these issues. We
demonstrate a 5.5× to 15.7× improvement, depend-
ing on whether cell lists are used, in total application
performance for the widely used ProtoMol MD code
[4]. Moreover, there is no compromise in accuracy.

Beyond the scope of this work is use of transform-
based methods for long-range forces.

2 Methods
We have implemented a complete MD system based
on ProtoMol: motion updates and bonded forces are
computed on the host using the original system, while
the LJ and Coulomb forces are computed on the FPGA.
In this abstract we concentrate on describing the LJ
force implementation; that of the Coulomb interaction
is analogous and uses much of the same hardware. The
LJ force for particle i can be expressed as:

FLJ
i =

∑

j 6=i

εab

σ2

ab

{

12

(

σab

|rji|

)14

− 6

(

σab

|rji|

)8
}

rji

where εab and σab are parameters related to the types of
particles, i.e. particle i is type a and j is type b. These
are short range forces, attractive or repulsive accord-
ing to distances between the interacting atoms, which
vary in strength according to the types of interacting
atoms. Because of the complexity of the LJ expression,
and because it is possible in principle for any two atoms
to interact this way, this step has previously been par-
ticularly problematic.
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Figure 1: Table look-up varies in precision across r−k.

The r−14 and r−8 expressions both display extreme
changes in behavior over the range of possible inter-
action radii, as shown in Figure 1. It would be an
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exorbitant and needless cost in table size to use the
same number of coefficients and the same step sizes in
the well-behaved regions of the curve. Also, the ranges
of interpolation coefficients differ in different parts of
the curve: they have relatively large magnitudes in the
left-hand part of the curve, but lower magnitude in the
right-hand regions. That implies the need for different
numbers of bits to the left of the decimal point in each
region of the curve, to maintain roughly constant accu-
racy. This implementation of interpolation divides the
curve into multiple sections of different sizes, represent-
ing regions of the curve that have different numerical
behavior. Sections of the curve have power-of-two sizes,
and differ in the following ways:

• Step sizes differ between sections, although each
section has the same number of steps,

• Numbers of non-zero coefficients in the Taylor ex-
pansion are different, with more terms stored in
the more ill-behaved sections, and

• Positions of the radix points differ between sec-
tions (“semi floating point”), although they are
constant within sections.

This last optimization allows the same precision in each
section, but higher coefficient values in the ill-behaved
sections (with numbers of the form xxx.x) and lower
values where the curve is flatter (x.xxx).

Varying precision of the look-up table was used by
Azizi et al. for the entire LJ force [1]. The method here
has several advantages over that approach. Although
two look-up tables are required (for the 8 and 14 terms,
respectively), in the other method a different look-up
table is required for every combination of atom types,
resulting in potentially hundreds of tables. The other
advantages include the integration of higher order in-
terpolation and the use of “semi floating point.” These
combined optimizations result in substantial savings in
area over double precision floating point, but with little
if any sacrifice in simulation accuracy [3].

3 Implementation
The LJ and Coulomb forces were implemented on an
Annapolis Microsystems WildstarII-Pro board, which
has two Xilinx Virtex-II Pro XC2VP70 -5 FPGAs.
Only one of the FPGAs is currently used. Particle
data are transferred between board and host PC using
DMA routines from the Annapolis Micro Systems soft-
ware library. Currently two pipelines fit on the chip;
this is in contrast to the four pipelines previously ob-
tained [2]. We have, however, achieved four pipelines
with the VP100; more should be possible with newer
chips and further optimization. The design supports
up to 32 atom types and 11,200 atoms. Larger simula-
tions are possible by using off-chip/on-board memory.

Using higher order interpolation involves a trade-
off between the table size and the order of the inter-
polation. Interestingly, these two terms are limited by
different resource types: block RAMs are critical for
table size while multipliers and logic slices bound in-
terpolation order. Currently the optimal is 3rd order
interpolation with 128 intervals per section.
The accelerator was integrated into ProtoMol 2.03

by replacing the LJ and Coulomb force modules with
the FPGA version. Particle position data are down-
and up-loaded in double precision floating point; fixed
point conversion on both ends is done in the FPGA.

4 Performance and Accuracy
Accuracy is a concern when a numbering system is
modified. Because of the inherently chaotic nature of
the calculation, “Obtaining a high degree of accuracy
in the trajectories is neither a realistic nor a practi-
cal goal” [5]. Instead, the goal is to maintain accu-
racy, as measured by energy fluctuations, no worse

than the accuracy of the original calculations. This has
been achieved for a model of bovine pancreatic trypsin
inhibitor in water, a model of 1101 particles run for
10,000 time steps. After 10 runs we have found com-
parable energy fluctuation between the original and ac-
celerated systems, with both being close to 0.014.
For performance we compared full end-to-end runs

of the same model with 8000 particles and 26 atom
types. For all-to-all force computation with no cut-off,
the PC-only implementation takes 15.1s per time-step,
the FPGA-accelerated version 0.96s (15.7× speed-up).
With cell lists and cut-offs enabled on both versions
(5A cells, 10A cut-off), the time-steps are reduced dras-
tically: they take 0.66s on the PC and 0.12s on the PC
plus FPGA (5.5× speed-up). If instead of the VP70 a
higher speed-grade VP100 were used, post place-and-
route estimates indicate that these speed-ups would
double.
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