
Single Pass, BLAST-Like, Approximate String Matching on FPGAs∗

Martin C. Herbordt Josh Model Yongfeng Gu Bharat Sukhwani Tom VanCourt

Department of Electrical and Computer Engineering

Boston University; Boston, MA 02215

EMail: {herbordt|jtmodel|maplegu|bharats|tvancour}@bu.edu

Abstract: Approximate string matching is funda-
mental to bioinformatics, and has been the subject
of numerous FPGA acceleration studies. We ad-
dress issues with respect to FPGA implementations of
both BLAST- and dynamic-programming- (DP) based
methods. Our primary contributions are two new algo-
rithms for emulating the seeding and extension phases
of BLAST. These operate in a single pass through a
database at streaming rate (110 Maa/sec on a VP70
for query sizes up to 600 and 170 Maa/sec on a Virtex4
for query sizes up to 1024), and with no preprocessing
other than loading the query string. Further, they use
very high sensitivity with no slowdown. While cur-
rent DP-based methods also operate at streaming rate,
generating results can be cumbersome. We address this
with a new structure for data extraction. We present
results from several implementations.

1 Introduction
Approximate string matching (AM) is essential to
many important applications. For example, bioinfor-
matics applications use AM to find similarities between
DNA (nucleotide) or protein (amino acid) sequences
that have diverged through mutation or in the course of
evolution. Hamming distance, the number of differing
characters, is one way to measure differences between
two strings, but does not tolerate insertions or deletions
(indels). More generalized scoring is based on the prob-
ability of particular character mutations and includes
indels; it can be handled using dynamic programming
(DP) techniques. These have complexity O(mn) for
two strings of size m and n, respectively.
With the exploding size of biological databases,

DP algorithms have often proven to be impractical.
This has spawned heuristic O(n) algorithms, the most
famous being BLAST, as well as a host of hard-
ware implementations, particularly of DP methods

∗This work was supported in part by the NIH through award
#RR020209-01 and facilitated by donations from Xilinx Corpo-
ration. Web: http://www.bu.edu/caadlab.

[2, 3, 6, 9, 10, 12, 15, 16, 20, 23]. Somewhat surpris-
ingly, perhaps, little of this hardware is in general use.
We now summarize the state-of-the-art in FPGA-

based AM. DP-based methods are optimal in the sense
that with m processing cells, their complexity is pro-
portional the data transfer rate O(n). Their draw-
backs, which have prevented their adoption, are their
brittleness and the lack of platforms available to the
primary users. The first of these issues has been ad-
dressed in another recent study [22], while the lat-
ter is rapidly being addressed with the proliferation
of FPGA-based computational platforms.
BLAST implementations have so far been based

closely on the original algorithm [5, 14, 18]. These
are substantially faster than the serial version and al-
low for easy integration into well established systems.
They have two drawbacks, however. The first is that
they require multiple passes, versus the single pass of
the DP-based methods. The second is that in order
to process indels, another pass (e.g., using DP) is re-
quired, albeit on only a fraction of the database.
There is another significant difference between the

FPGA versions of DP and BLAST. Whereas FPGA
BLAST easily returns any number of the highest scor-
ing alignments, FPGA DP only returns one, or at most,
a small number.
Solutions to these issues are the subject of this pa-

per. We present two FPGA BLAST algorithms that
both operate in a single pass at streaming rate. Both
algorithms also have very high sensitivity with no per-
formance penalty. Indels are still handled indepen-
dently. We also present a structure that can be ap-
pended to FPGA DP that efficiently extracts high-
scoring local alignments. All of these have been imple-
mented on an FPGA development board with a Xilinx
Virtex-II Pro XC2VP70 -5 FPGA.

2 Review and motivation
The discussion in the next two subsections covers
well-known material; for more detail, please see, e.g.,
Durbin et al. [8] or Gusfield [11].

1

2.1 Alignment scoring theory

Sequences, or (more commonly) parts of sequences, are
considered to have a possible biological relationship if
the scoring procedure outlined here yields a score hav-
ing statistical significance. Typically, one of the se-
quences has unknown function (e.g. a hypothesized
gene) while the other is the database being searched
for matches. We refer to the former as the query se-
quence of length m and the latter as the database of
length n.
Since the query is matched with only part of the

database at a time, it is convenient to talk about scor-
ing a possible alignment of the two sequences. Fre-
quently, we are interested in the best possible matches
of any subsequence of the query with the database, a
process called local alignment. More precisely, an align-
ment of two sequences is a one-one correspondence be-
tween their characters, without reordering, but with
the possibility of a number of insertions or deletions
(i.e., gaps or indels).
The basis of alignment scoring is that character

matches can be scored independently, and then com-
bined into an alignment score. Each possible match
has an independently generated score, with positive
scores for exact or close matches and negative scores
for mismatches. These scores are available a priori.
We refer to the sequence of initial character-

character scores as the ScoreSequence for the align-
ment. If no indels are considered, then the alignment is
said to be ungapped, and the alignment score is gener-
ated by summing the score sequence. Gaps are handled
by adding a penalty per gap based on the length of the
gap. Usually the first indel in a gap is assigned a larger
penalty than its successors; various, generally simple,
functions are used to generate gap penalties.

2.2 Scoring algorithms

A simple procedure for scoring ungapped alignments
“slides” the database over the query, and then, for
each alignment, computes the score. This results in an
O(mn) algorithm. Finding the maximum local align-
ment can be done with the same complexity using the
following procedure:

SimpleScoring

Traverse ScoreSequence

Add next score to current score

If current total > max score, update max score

If current total score < 0, set current total to 0

The naive extension of the above algorithm to deal
with gaps has potentially unbounded complexity, but a
clever technique based on dynamic programming (DP)
reduces the complexity back to O(mn). Variations
yield the well-known Needleman-Wunsch and Smith-

Waterman algorithms, for global and local alignment,
respectively. The basic idea is now described.

G C G A T C T

G
C
A
T
T
T
A

Alignment: GCGATcT-
GC-ATtTA

Figure 1: Alignment example: Indels are indicated by
hyphens; mismatches by lower case.

The Needleman-Wunsch algorithm for aligning two
strings is normally presented as a 2D array, such as
that shown in Figure 1. Each axis represents one of the
strings to be aligned, and steps along each axis repre-
sent character positions within the string. Throughout
this paper we use the convention that the query string
is along the vertical dimension and the database along
the horizontal. The algorithm proceeds as if there were
a cursor in each string. When both cursors step con-
currently, that represents a match in one character po-
sition, whether or not the characters in that position
are the same. If one string’s cursor steps but the other
cursor holds its position, that represents a character in
the first string being skipped, i.e. a gap being opened
in the comparison.
The alignment shown is drawn as one path through

the 2D array of possibilities. Finding the highest scor-
ing alignment is an iterative process that scores all cells
of the array and determines the highest-scoring path
through the array. Comparison starts as if the cursors
in the two strings were set to position 0, the position
just before the first character in each string. The score
Si,j for grid cell (i, j) is computed using the following

recurrence relation [8]:

Si,j =

if (i, j) = 0, 0 0 (1)
else if i = 0 S0,j−1 − Sgap (2)
else if j = 0 Si−1,0 − Sgap (3)

else max

Si−1,j−1 + s(qi, ri) (4)
Si−1,j − Sgap (5)
Si,j−1 − Sgap (6)

Line (1) is the base step of the recurrence, Lines
(2) and (3) represent the left end-gap, and Lines (4-6)
represent the interior of the array. There, the decision
is made to extend the alignment by one position along
both strings (4), or to assume a gap in one string or

the other (5 or 6). The comparison function s(qi, rj)
determines goodness of match between two characters,
qi and rj . The Sgap value represents the penalty for
skipping a character in performing the alignment; the
more common affine function, Sgap = Sopen+Scont∗len,
only increases the complexity of the recurrence slightly.
The score at the lower right corner, Sm,n, repre-

sents the end-to-end goodness of match between the
two strings. When asking the question, “Is string A
more similar to B or to C?”, the result depends only
on the scores for the A/B alignment and the A/C align-
ment. Other times, however, the experimenter is inter-
ested in seeing which parts of the two strings are sim-
ilar. In that case, a second (traceback) pass is made
over the computation array, starting with that final
score Sm,n, and following the highest preceding score
back to the origin. Local alignment requires only slight
modification to the recurrence relation.

database

q
u
e
ry

Figure 2: Shown is a tableau formed by all-to-all
character matching, and used in DP-based methods.
Matches tend to cluster along alignments of biological
interest (after Figure 5.5 in Korf, et al. [13]).

Although O(mn) is a remarkable improvement over
the naive algorithms, it is still far too great for large
databases. A heuristic algorithm, BLAST, generally
runs in O(n) time, and is often sufficiently sensitive.
BLAST is based on an observation about the typical
distribution of high-scoring character matches in the
DP alignment tableau (see Figure 2). There are rela-
tively few overall, and only a small fraction are promis-
ing. This promising fraction is often recognizable as
proximate line segments parallel to the main diagonal.
We now sketch the classic BLAST algorithm [1].

There are three phases: identifying contiguous high
scores (parallel to the main diagonal), extending them
along the diagonal, and attempting to merge nearby
extensions which may or may not be on the same di-
agonal. The third phase, which accounts for gaps, is
nowadays often replaced by a pass of Smith-Waterman
on the regions of the database identified as of possible
interest. The O(mn) complexity of Smith-Waterman is

not as significant when only run on small parts of the
database; this (effectively) makes this final pass O(m2)
where m << n.
Detail of the first two phases follows. The first is

called seeding and identifies positions in the database
where a group of contiguous characters (a word) have
a high match score against a word in the query string.
Although the word size W is a variable, the most com-
mon sizes are 3 for amino acids and 11 for nucleitides.
The seed threshold T is also a variable. The second
phase extends the seeds using the SimpleScoring proce-
dure outlined above. There is one difference, however:
rather than extending until the current score reaches
zero, extension is curtailed when the current score is X
(another variable) less than the maximum.
In order to reduce the number of seeds that are

extended, many implementations add another filtering
step: seeds are not extended unless there is another
collinear seed within some number of characters (un-
gapped), usually 40.

0 1 2 3

1 2 3

2 3 N-2 N-1

3 N-2 N-1 N

N-2 N-1 N

N-2 N-1 N

N-1 N

N N N N N

N-1 N-1 N-1 N-1

N-2 N-2 N-2 N-2 N-2

A B

Figure 3: Shown is a dynamic programming based com-
putation array. (A) 2D structure of the computation,
showing the order in which grid cells can be evaluated.
(B) Linear computation structure corresponding to the
evaluatable cells at one time step.

2.3 FPGA algorithms

The O(mn) complexity of the DP algorithms spawned
not only heuristic alternatives, but also a raft of special
purpose hardware to accelerate the original algorithm
[2, 3, 6, 9, 10, 12, 15, 16, 20, 23]. Most implementations
follow the construction shown in Figure 3. Because
of the dependencies in the DP recurrence, computa-
tion can proceed in a wave-front along the diagonal as
shown in Figure 3a. Only the computation cells on
that diagonal require hardware: Figure 3b shows those
computation cells, along with the storage for the pre-
vious results on which those computations depend. If
the number of cells is greater than m, the size of the
query string (see e.g. [22]), the FPGA algorithm runs
in O(n). The constant is the time-per-character re-
quired to pump the database through the array.

database

q
u
e
ry

D
P

sy
st
ol
ic

ar
ra

y

…

A B

database

q
u
e
ry BLAST

systolic
array

…

Figure 4: Alignment tableau showing distinction between DP and BLAST systolic arrays. While both hold the
query string, and traverse the tableau one character at a time, the flow of the database through the array is reversed.

There have been fewer BLAST implementations,
perhaps because the software version is already fast.
Still, the importance of the application and the poten-
tial for additional performance make its acceleration an
important topic. Current published FPGA implemen-
tations concentrate on the first two passes and closely
follow the serial algorithm [5, 14, 18]. The algorithm
used by TimeLogic [21] is not publically available.

3 Single Pass BLAST

3.1 Motivation

From the previous section, it appears that direct
FPGA implementations of BLAST (FPGA/BLAST)
have a hard time competing with FPGA-based DP
(FPGA/DP). FPGA/DP requires only a single pass
(and no preprocessing), and handles gaps. In
this section we address the former issue with two
FPGA/BLAST algorithms that operate at streaming
or near streaming rate.
Still, why FPGA/BLAST when FPGA/DP is al-

ready so fast? Although it is not possible to be asymp-
totically faster (as in the serial case), the basic cell
turns out to be simpler. This has two consequences:
cycle time, and the number of processing cells—and so
the size of the query string—that can fit on the chip.
Another issue is cultural: BLAST is widely used and
well understood.
“BLAST” has been used to describe a variety of al-

gorithms based on the description in the previous sec-
tion. There are two issues here. The first is that, as
the third pass is already the highly efficient FPGA/DP,
we do not include that (in this section). As a conse-
quence, gaps need not be considered. The second issue
is that the algorithms in this section make some of the
sensitivity parameters irrelevent. In particular, in the
algorithms below, many aspects of very high sensitiv-
ity are achieved with no impact on performance. This
has multiple benefits. It yields an even more drastic
improvement in performance over serial performance

with comparable settings. Also, alignments are likely
to be returned that have been missed with sensitivity
parameters set at their nominal levels.

3.2 Algorithm basics

Before describing the algorithms themselves, we make
an observation about a fundamental distinction be-
tween DP and BLAST-like methods. The DP wave-
front keeps track of the highest scoring m paths, in-
dependent of their twists and turns; therefore, the DP
systolic array is perpendicular to the main alignment
diagonal (as shown in Figure 4a).
In contrast, BLAST-like methods look for matches

(seeds), and then extend these seeds along the align-
ment diagonals. Reducing this to first principles, we
could do the equivalent work (with much more pro-
cessing, but with maximal sensitivity) by successively
processing each alignment diagonal in its entirety, e.g.,
by using SimpleScoring. A sketch of a systolic imple-
mentation is shown in Figure 4b. The result, however,
would be O(m) processing time for each of n align-
ments; impossibly slower, even than the serial BLAST
algorithm. It is possible, however, to create a stream-
ing FPGA/BLAST based on this structure, as we now
show. We now present two basic ideas, followed by a
“strawman” algorithm.

1. The structure in Figure 4b is used to perform m
character matches in parallel and so generate, in a sin-
gle cycle, the ScoreSequence for a particular ungapped
alignment. The hardware to implement this for typical
queries is a fraction of a typical high-end FPGA. The
only non-obvious detail is that, since the query string
is held in place, only a single column of the matching
array needs to be associated with each element, not the
entire table (i.e. 20 entries rather than 400).

2. The hardware to implement SimpleScoring con-
sists primarily of the m cells needed to store the Score-

Sequence as it awaits processing. The processing then

takes m cycles.

SimpleScoring2 – TwoDSystolicBLAST

Construction: One m-length one-dimensional match-

scoring array and m copies of a SimpleScoring processor,

each with associated m-length FIFOs.

On each cycle i:
1. Generate the ScoreSequence for alignment i
2. Transfer the ScoreSequence to the i%mth FIFO

3. Foreach of m SimpleScoring processors, process

the next score.

This algorithm clearly performs ungapped align-
ments with maximal sensitivity and at the streaming
rate of one entire alignment per cycle. Just as clearly,
the requirement of m2 register elements makes it im-
practical for FPGAs in the forseeable future. We now
show two ways of addressing this problem and reducing
the logic requirement, including computational storage
(but not including the database!) to O(m).

8-2-3 -3 -3 -1 8-2

M

C

C

G

L

W

K

W

K

W

W

M

Y

Y

F

FC

Leaf Leaf Leaf Leaf

Intern. Intern.

Intern.

alignment score

Figure 5: Shown is the TreeBLAST algorithm. The
systolic array holds the query string while the database
flows through systolically. Scores are evaluated by
pipelined, level-by-level, tree traversal.

3.3 TreeBLAST

3.3.1 Description

The key idea behind TreeBLAST is that SimpleScor-
ing can be performed with iterative merging using a
tree structure (as shown in the lower part of Figure 5),
and that the tree nodes require only a small amount of
logic. Further, the tree structure can be pipelined level-
by-level. As a result, ungapped alignment scores of
maximum sensitivity are generated every cycle. Most
significantly, only m − 1 nodes are required; these fit
on current FPGAs for all but the largest queries.
As with TwoDSystolicBLAST, TreeBlast begins

with a one dimensional systolic array that outputs

broadside the m character-character ScoreSequence.
These match scores are then iteratively combined into
subsequence scores using the following logic. Note that
only four words of storage are required, but that there
are two different node types. The latter reflects the na-
ture of the algorithm, with basis and induction steps.

Procedure TreeBLAST

Structure Node

LeftRunScore // score of run being extended

// to the left. if 0, then no

// active run

RightRunScore // same for right extension.

MaxScore // score of maximal local alignment

// within sequence covered by this

// node.

Sum // Sum of all character scores within

// sequence covered by this node

LeafNode // Generate the first level of tree

// from input scores (left & right)

Sum = left + right

IF (left >= 0 && right >= 0)

RightRunScore = LeftRunScore = MaxScore = Sum

IF (left < 0 && right < 0)

RightRunScore = LeftRunScore = MaxScore = 0

IF (left >= 0 && right < 0)

LeftRunScore = MaxScore = left

IF (SUM > 0) RightRunScore = Sum

ELSE RightRunScore = 0

IF (left < 0 && right >= 0)

RightRunScore = MaxScore = right

IF (Sum > 0) LeftRunScore = Sum

ELSE LeftRunScore = 0

NonLeafNode // Generate Left and Right

LeftRunScore = Max(Left.LeftRunScore,

Right.LeftRunScore+Left.Sum)

RightRunScore = Max(Right.RightRunScore,

Left.RightRunScore+Right.Sum)

Max = Max(Left.Max,Right.Max

Left.RightRunScore+Right.LeftRunScore)

Sum = Left.Sum + Right.Sum

3.3.2 Proof of correctness

The idea is that a small amount of information about
any ScoreSequence is sufficient to characterize, with
that same information, a concatenation between two
such sequences. As this information includes the score
of the maximum local alignment, this procedure is suf-
ficient to find the maximum local alignment within any
sequence constructed by pair-wise concatenation of any
number of subsequences. We begin with some defini-
tions. The score of sequence x is denoted with “|x|.”
Basic is the idea of a run. A run is a sequence being
evaluated with, say SimpleScoring, that currently has
a positive score, and so can be extended by a further
merge. Somewhat tricky is that runs can possibly be

extended in either direction.
cover ≡ The subsequence of the original ScoreSequence
that is “covered” by a node.
maximum ≡ A subsequence that comprises the maxi-
mally scoring local alignment within a sequence. The
maximum for a cover can be null.
lrun, rrun ≡ Sequences of characters that, if extended,
could result in a new maximum. Runs have direction:
an lrun extends to the left from a maximum, an rrun

extends to the right. The right end character of an
rrun is the right end character of the sequence. The
opposite is true of lruns.
remainder, runmax ≡ A run consists of two parts: the se-
quence runmax comprising a local maximum (perhaps,
but not necessarily, the maximum); and a remainder se-
quence that causes its score to be < | runmax |.
Also, 0 ≤ |run| ≤ |maximum| and any |remainder| ≤ 0.
When we concatenate two sequences to form a new
sequence, we refer to attributes xxx of the the inputs
as L.xxx and R.xxx, and of the output as N.xxx.

Theorem: TreeBLAST performs the ungapped align-
ment shown in SimpleScoring in a single pass and O(m)
space. The score of the maximum local ungapped align-
ment for the alignment of the query sequence with
the m + ith m-length subsequence of the database
appears in variable Max of the root node in cycle
m+ i+ logm+ 1.
Proof: Following the algorithm, we use an induction
with a basis and induction steps. The basis step is ex-
ecuted by the leaf nodes, the induction steps by the
internal nodes. The proof builds up through four Lem-
mas: the first three refer to the inductive (merging)
steps, the fourth to the basis step. We begin by exam-
ining what happens in a simplified case: merging an
arbitrary lrun and rrun into lrun‖rrun.

Lemma 1: For two runs L.rrun and R.lrun that are
merged to form the sequence L.rrun‖R.lrun:
|N.maximum| =

Max(|L.rrun‖R.lrun|,|R.lrunmax|,|L.rrunmax|).
ProofL1: Clearly |R.lrunmax| and |L.rrunmax| are pos-
sible values for |N.maximum|. No other subsequences
of L.rrun or R.lrun are candidates: if they were, then
they would be the L.rrunmax and R.lrunmax respec-
tively. All other candidates are extensions of either
L.rrun or R.lrun into the other sequence. Lemma 1
claims that of all the extensions of, say, L.rrun, only the
entire concatenation with R.lrun can be N.maximum.
The proof requires showing that no extension of L.rrun,
other than all of R.lrun, can have a higher score than
the terms shown. The other direction is analogous.
Using the above notation, we partition

R.lrun and rewrite the concatenation as follows:
L.rrun‖R.lremainder‖R.lrunmax. There are now three
cases to be considered. It must be shown that

N.maximum cannot be any of the following:
1. L.rrun concatenated exactly with R.lremainder.
2. L.rrun extended a character within R.lremainder.
3. L.rrun extended through R.lremainder to a character
within R.lrunmax, but short of the end.

Case 1: R.lremainder < 0, so appending all of it to L.rrun

does give N.maximum.
Case 2: We rewrite R.lremainder as an arbitrary con-
catenation R.l.lremainder‖R.r.lremainder. Now for Case
2 to be true,
|L.rrun|+ |R.l.lremainder| >
|L.rrun|+ |R.l.lremainder|+ |R.r.lremainder|+ |R.lrunmax|
But then 0 > |R.r.lremainder| + |R.lrunmax| and
|R.r.lremainder| would be more negative than
|R.lrunmax| is positive. This is impossible, how-
ever, since it implies that R.lrun would have been—at
some point during its construction—extended through
a negative score, which violates the definition of local
alignment.
Case 3: We rewrite R.lrunmax as the concatenation
R.l.lrunmax‖R.r.lrunmax. For Case 3 to be true,
|R.l.lrunmax| > |R.l.lrunmax|+ |R.r.lrunmax|.
But this is impossible because then |R.r.lrunmax| < 0
and |R.lrunmax| would not be maximal.

Lemma 2: For two runs L.rrun and R.lrun that are
being merged to form the sequence L.rrun ‖ R.lrun, the
score of the new rrun is given by
|N.rrun| =Max(|R.lrunmax|,|L.rrun‖R.sum|)
and R.lrunmax = R.maximum = R.rrun.
ProofL2: Either N.rrun is L.rrun extended all the way
through R.lrun, or it is R.rrun. The latter is the same
as R.lrunmax and R.maximum. With this lemma, the
following two starting points of N.rrun are not allowed:
(i) somewhere in L.rrun other than at the beginning,
and (ii) somewhere in R.lrun other than the beginning
of R.lrunmax. For (i), this would require discarding part
of L.rrunmax; for (ii), this would mean adding part of
R.lremainder. The rest of the argument follows in the
style of ProofL1.

Lemma 3: Given two arbitrary sequences L. and R.,
both with known scores for maximum, lrun, rrun, and
sum. Then their concatenation yields N. with the same
scores computed as indicated in the procedure Tree-
BLAST.
ProofL3: |N.| = |L.| + |R.| is immediate. The other
two parts follow from Lemmas 1 and 2 and the induc-
tion. Observe that any sequence is the concatenation
of the following parts, any of which can be null:
lremainder lrunmax seq1 maximum seq2 negseq2 rrunmax

rremainder.
If maximum is not the same as rrunmax or lrunmax, then
scores of seq1 and seq2 are both more negative than
the score of maximum is positive. More importantly,
the complexity of the sequence does not change the

induction, i.e., that we know the scores of lrun, rrun,

maximum and sum. Then
|N.maximum| =

Max(|L.rrun‖R.lrun|,|R.lrunmax|,|L.rrunmax|).
follows by the same method as Lemma 1, and
|N.rrun| =Max(|R.rrun|,|L.rrun‖R.sum|)
follows by the same method as Lemma 2.

Lemma 4: The leaf nodes correctly compute, for se-
quences of size 2, the scores for lrun, rrun, maximum,

and sum. The leaf nodes therefore provide the basis
for the induction.
ProofL4: Follows by inspection.

8-2-3 -3 -3 -1 8-2

M

C

C

G

L

W

K

W

K

W

W

M

Y

Y

F

FC

Alignment of Interest?

FIFO 1
Scoring

Unit 1…

FIFO k
Scoring

Unit k

Figure 6: Shown is the structure of the ServerBLAST
algorithm. The systolic array holds the query string
while the database flows through systolically. Align-
ments of interest are detected and passed on to the
array of scoring servers.

3.4 ServerBLAST

3.4.1 Description

The ServerBLAST structure is shown in Figure 6; it
consists of three parts:
1. The same 1D systolic array as in TreeBLAST. The
array holds the query string while the database passes
through systolically at a rate of one character per cycle.
The ScoreSequence for each alignment is determined in
a single cycle and fed broadside to the next stage.
2. Alignment of interest (AOI) checker. The scoring
sequence is evaluated in a single cycle to determine
whether it is of sufficient interest for extension. Cur-
rently, the AOI checker looks for a single seed. The
word sizeW and threshold T are parameters. The AOI
checker, together with stage 1, comprise a dynamic in-
stantiation of the BLAST seeding phase. Instead of
simply tallying hits in a data structure, however, we
forward the entire ScoreSequence directly to stage 3
for immediate processing.

3. k “servers” as in SimpleScoring2. If the Score-
Sequence represents an AOI, then the entire ScoreSe-
quence is fed broadside into the next available server.
This stage emulates the BLAST extension phase.
The idea behind ServerBLAST is to stream the

database through the systolic array, while the k servers
process only the relatively infrequent AOIs. As long as
the servers are not all busy, the database streams with-
out pausing. If all the servers are busy and an AOI is
encountered, the database stream must wait until a
server becomes free.

Throughput versus Applied Load

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Applied load as fraction of capacity

T
h

ro
u

g
h

p
u

t
in

 d
a
ta

b
a
s
e
 c

h
a
rc

te
rs

 p
e
r

s
e
c
o

n
d

k = 2

k = 5

k = 10

k = 20

k = 50

Figure 7: Shown is a graph of ServerBLAST perfor-
mance: throughput versus applied load for various
numbers of servers k.

3.4.2 Performance

ServerBLAST depends on the classic BLAST assump-
tion of low seed rates. We now examine how this as-
sumption applies here. We first examine what the per-
formance is with certain stochastic assumptions in a
queuing simulation. Then we see how these are met.
The service time Ts is deterministic and equal to

the length of the query string. The arrival rate λ is the
frequency of AOIs per alignment and depends on the
database and query. For the queuing simulation, we
assume exponentially distributed arrivals.
In the first approximation, if λ < k/Ts, then

ServerBLAST may operate at nearly full streaming
rate. Whether it actually does or not depends on the
distribution of AOIs in the database. If λ > k/Ts,
then ServerBLAST reduces to a k-way parallel proces-
sor: the total processing time of the database is equal
to the total number AOIs ×Ts/k.
We observe that ServerBLAST resembles anMG/k

queuing system with finite queues (size = 1). Queu-
ing systems with multiple servers generally flatten

the applied load versus average latency graph, and
ServerBLAST is no exception. What we are interested
in, however, is somewhat different: the average latency
per alignment.
We now describe Figure 7, a graph of throughput

versus applied load for various k from 2 to 50. The
query size (Ts) = 512, but the graphs do not change
appreciably over plausible sizes. Capacity is the maxi-
mum throughput of AOIs; the applied load is normal-
ized to fraction-of-capacity and is = λ × Ts/k. Note
that unlike systems with infinite queues, it makes sense
for the arrival rate to be higher than the service rate.
For all k, we observe the “first approximation” behav-
ior: what varies is where the transition is made from
fully streaming (throughput = 1 alignment/cycle), to
k − way server (throughput = 1 / (applied-load-as-a-
fraction-of-capacity)). For all k, the transition has been
made completely by the time applied load approaches
2 times capacity. Systems with k = 2 begin the transi-
tion around .4; for higher k, the transition is not begun
until the applied load approaches 1.
For a real simulation, we aligned the LIM2 protein

(about 200 AAs) against the e coli database (1.7M
AAs). We used the BLOSUM62 scoring matrix, and
set the seed threshold at 14. We found that approxi-
mately one out of eleven alignments was an AOI. The
distribution was somewhat more regular than exponen-
tial with the effect of moving the transition towards a
higher applied load. Note that for the applied load to
be less than the capacity, k should be at least 20. This
is plausible for high-end current generation FPGAs. A
k of 10, however, is still sufficient to achieve a through-
put of .5 alignments per cycle.
For higher λ, or substantial larger amino acid query

strings (nucleitide units are much smaller), a different
AlignmentofInterest? design is appropriate. The most
obvious alternative is to require two seeds per align-
ment, rather than only one. A simple structure is pos-
sible that (effectively) sets the BLAST seed separation
parameter to 0. If the new AlignmentofInterest? unit
is pipelined through p stages, then the additional chip
area is equal to p of the k servers. We currently es-
timate fewer than 5 cycles this unit. Given that it
reduces λ by a large factor (more than 10× in our e

coli simulation), this is the likely way to go.

4 Filtering

The FPGA/BLAST algorithms of the previous sec-
tion have the additional advantage that high scoring
results are easily extracted. For TreeBLAST, a pri-
ority queue is simply appended to the root of the
tree; for ServerBLAST, the structure is only slightly
more complicated. DP-based methods, however, are
not amenable to such simple structures. The reason
(illustrated in Figure 2) is that the FPGA/DP array

N N N N N

N-1 N-1 N-1 N-1

N-2 N-2 N-2 N-2 N-2

N N N

N-1 N-1

N-2 N-2 N-2

N-1

Leaf Leaf Leaf Leaf

Intern. Intern.

Intern.

max alignment score Priority queue

Figure 8: Shown is the DP filtering structure appended
to the DP systolic array. The highest local alignments
percolate towards the root where they are entered into
a priority queue.

processes m alignments simultaneously; in contrast,
FPGA/BLAST only processes one. As a result, the
FPGA/DP array is sufficient to retrieve only a single
maximum, not the other highest scoring alignments.
This situation is rectified by appending a priority

tree to the DP systolic array from Figure 3 (as shown
in Figure 8). The inputs to the leaf nodes are the cur-
rent local maxima in each node of the systolic array.
On each cycle, the scores in each child node are com-
pared with that in the parent node, and exchanged if
necessary so that the maximum of the three ends up
in the parent node. This way, the highest alignment
scores percolate to the root of the tree. The root score
is then entered into a priority queue as is done with the
FPGA/BLAST algorithms.
The number of local alignments retrieved, as with

the FPGA/BLAST algorithms, is limited only by the
size of the priority queue and the frequency with which
it is drained. Note that it is possible for the priority
tree to lose high scoring local alignments, but only with
very low probability. For this to happen, several inde-
pendent high scoring local alignments would need to
be generated in adjoining leaf nodes on the same cycle.
The area cost of the priority tree is significantly less

than the base FPGA/DP array.

5 Implementation and Results
Our primary target system is an Annapolis Microsys-
tems WildstarII-Pro board with two Xilinx Virtex-II
Pro XC2VP70 -5 FPGAs. Only one of the FPGAs
is currently used. The board has a 133MHz 32-bit

PCI interface and, for these experiments, is housed
in a Dell workstation-class PC with a 2.8GHz Xeon
processor, 2GB of memory, and running Windows XP.
The databases are stored on a 150 GB IDE-connected
NTFS drive. Database sequences are streamed using
DMA code from the Annapolis Micro Systems software
library. The routines used for disk I/O and perfor-
mance measurement are the C++ fstream libraries and
“Dskspd” utility from Microsoft. We have also config-
ured TreeBLAST onto a Xilinx XC4VLX160 through
post place-and-route. None of the designs has been
optimized beyond using good digital design practices:
e.g., no floor planning has been done.
The primary metrics for the FPGA component of

performance are size of the query that can fit on
chip, the operating frequency, and, in the case of
ServerBLAST, the number of servers that fits on chip.
We have so far considered only protein alignment; nu-
cleic acid alignment is far simpler, but in some cases
may require more resources per query. For protein
queries, we have a target size of 1024: this appears
to support the vast majority of such queries [7]. In
any case, the query size is based on basic biology and
so unlikely to change much, whereas the next gener-
ation of FPGAs will allow us effortlessly to increase
the hardware resources applied. Also, it is often possi-
ble to partition large queries (e.g., for database versus
database queries) into constituent sequences.
TreeBLAST. For TreeBLAST, we index the scoring
arrays using the block RAMs (BRAMs). By using dual
porting and overlapping the indexing, we score four
amino acid pairs per block RAM per cycle; therefore
the BRAM count limits the query size to slightly over
1200. The limiting factor, however, is the number of
slices. For the VP70, a tree can be built that supports
queries up to size 600 with cycle time of 9ns, yield-
ing performance of 110M database amino acids per
second (Maa/sec). We have also implemented Tree-
BLAST with a “folded tree.” This allows us to use
each systolic array cell for multiple character evalua-
tions, with a proportional reduction in throughput. In
the singly-folded version, queries of up to size 1200 can
be processed at 55Maa/sec.
We have also implemented TreeBLAST on a Xilinx

XC4VLX160 through post place-and-route. Here, we
achieve our target sequence size of 1024 without fold-
ing. The clock delay is 5.6ns for a throughput of 178
Maa/sec. This last design uses 90% of the slices, 88%
of the block RAMs, and 78% of the lookup tables.
ServerBLAST. Recall that ServerBLAST uses the
same front end as TreeBLAST. The other critical re-
source comes from trying to maximize k, the number of
servers. For query size of 600, we easily achieve k = 5
and 100Mhz operating frequency. For smaller queries,
such as LIM2/e coli (previously described), k can be
much larger.

DP. In previous work we implemented a large num-
ber of variations of FPGA/DP [22]. Perhaps the most
“vanilla” of these holds a query of size 150 and has an
operating frequency of 40MHz. The database is pro-
cessed at one character per cycle.
DP-plus-filtering. Adding the priority tree filtering
network yields an operating frequency of 33MHz and a
query size of 120.
ServerBLAST, DP, and DP-plus-filtering should all

benefit analogously to TreeBLAST when implemented
on the Xilinx XC4VLX160.
Operation of TreeBLAST-based alignment.

Query sequence, database, and scoring matrix are spec-
ified by the user. The FPGA is initialized with the
query sequence and scoring matrix. The database is
streamed from disk or memory through the FPGA;
high scores and their corresponding database position
are returned. Conversion from raw scores to final out-
put is done using code derived from the NCBI source.
Planned, but not yet completed, the highest-scoring
sequences will be sent on to the second FPGA on the
board for gapped alignment using a DP algorithm.
Validation. We chose to simulate blastp. Ecoli was
the source of our query strings, and drosophilia the sub-
ject (as per http://www.bioperf.org/). Ten sequences
from ecoli were chosen at random and concatenated
into a query sequence. The drosophila database was
left in FASTA format. Parameters were as follows:
neighborhood size = 3, threshold for seed extension =
11, dropoff for ungapped extension = 7 bits, reporting
cutoff = 66 (Raw Score). Our validation target was
NCBI BLAST for Win32 version 2.2.13. Ungapped
BLAST was run, and an e-value threshold was cho-
sen to yield the same reporting cutoff (S3 value in the
NCBI BLAST report) as our simulator. Since we were
not calculating sum statistics for collinear alignments
in our simulator, the significant alignments from the
NCBI report which passed under the e-value thresh-
old due to a lower sum statistic, rather than a lower
raw score, were manually discarded. Under these con-
ditions, identical pairwise alignments were obtained for
two sets of 10 queries.
Performance. The total execution time consists pri-
marily of the time to stream the database from ei-
ther memory or disk through the FPGA. Memory ver-
sus disk depends on the relative sizes of memory and
database. In our configuration, we achieved a trans-
fer rate from disk to FPGA of 55MB/sec, and mem-
ory to FPGA of 320 MB/sec. As long as the query
fits on chip, latency = database size/“bottleneck rate.”
In our configuration (VP70 -5), queries with respect
to the FASTA NR amino acid database (1.8GB) were
processed in the following times: 16.4 seconds (direct)
and 32.8 seconds (folded). The estimated time for the
same configuration using an XC4VLX160 is 12.4 sec-
onds. Smaller databases are proportionally faster. Pa-

rameter settings are equivalent to most sensitive.
Comparison with alternatives. NCBI BLAST was
installed on the same PC. Queries of size 1K required 7
minutes, 37 seconds format time and 9 minutes, 23 sec-
onds run time. Only a small fraction of this time was
used for disk access. The same queries to the NCBI
server using the standard web interface required be-
tween 20 and 30 seconds. The NCBI server consists of
several hundred CPUs [17]. Individual queries are pro-
cessed by multiple (but not all) resources; databases
are often cached in memory [19].

6 Discussion and Future Work
We have presented two algorithms for accelerated
FPGA/BLAST, as well as an extension to FPGA/DP
that eases data extraction. Our hardware implemen-
tations show that most common queries, as observed
in the workload at the NCBI servers [7], fit on cur-
rent generation FPGAs. The BLAST cell is somewhat
smaller and simpler than the DP cell: FPGA/BLAST
queries can be four times larger, and FPGA/BLAST
operation is three times faster, than FPGA/DP. On
the other hand, FPGA/DP handles gaps. Combining
TreeBlast with FPGA/DP, where the latter handles
only the highest scoring alignments, provides high per-
formance gapped alignment.
In previous work we determined FPGA/DP to be

150× to 400× faster than PC implementations. Such
a determination is harder with BLAST: performance
is highly workload dependent, both in query size and
selection; e.g., the latter allows databases to be cached
in memory. Even so, for cases in which the FPGA
implementation is at a disadvantage, we have achieved
performance comparable to that of the dedicated server
farm at NCBI. And, the performance of the FPGA-
based system is independent of sensitivity.
Work remains in analyzing the biological implica-

tions of increased sensitivity.
The extension to larger systems (i.e., for higher

throughput and lower response time) is immediate:
queries and the databases are partitioned across mul-
tiple PC/FPGA components. The methods described
here are also compatible with integrated approaches,
as is being carried out Muriki et al. [18], and with
embedding directly into an I/O device [4].
Performance limits of this approach are determined

by disk I/O, FPGA interface, and FPGA operating fre-
quency. Standard system techniques should enable disk
I/O rates of 1GB using conventional desktop systems.
The FPGA interface in a dedicated system (e.g. NU-
MALink in the SGI/RASC) is advertised to support
this rate. Current generation FPGAs are likely to be
limited to 500MHz, however, setting the overall limit
per FPGA at 500Maa/sec. A realistic per-FPGA goal,
given current technology, is perhaps half that.

References

[1] Altschul, S., Gish, W., Miller, W., Myers, E., and Lip-
man, D. Basic local alignment search tool. Journal of

Molecular Biology 215 (1990), 403–410.

[2] Bluethgen, H.-M., and Noll, T. A programmable
processor for approximate string matching with high
throughput rate. In Proc. ASAP (2000), pp. 309–316.

[3] Borah, M., Bajwa, R., Hannenhalli, S., and Irwin, M.
A SIMD solution to the sequence comparison problem
on the MGAP. In Proc. ASAP (1994), pp. 336–345.

[4] Chamberlain, R. Embedding applications within a
storage appliance. In Proc. HPEC (2005).

[5] Chang, C. BLAST implementation on BEE2.

[6] Chow, E., Hunkapiller, T., and Peterson, J. Biological
information signal processor. In Proc. ASAP (1991).

[7] Coulouris, G. BLAST benchmarks. NCBI/NLM/NIH
Presentation, June 2005.

[8] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G.
Biological sequence analysis. Cambridge University
Press, Cambridge, U.K., 1998.

[9] Dydel, S., and Bala, P. Large scale protein sequence
alignment using FPGA reprogrammable logic devices.
In Field Programmable Logic and Applications (2004).

[10] Guccione, S., and Keller, E. Gene matching using
JBits. In Proc. FPL (2002), pp. 1168–1171.

[11] Gusfield, D. Algorithms on Strings, Trees, and Se-

quences: Computer Science and Computational Biol-

ogy. Cambridge U. Press, Cambridge, U.K., 1997.

[12] Hoang, D. Searching genetic databases on SPLASH 2.
In Proc. FCCM (1993), pp. 185–191.

[13] Korf, I., Yandell, M., and Bedell, J. BLAST: An

Essential Guide to the Basic Local Alignment Search

Tool. O’Reilly and Associates, 2003.

[14] Krishnamurthy, P., Buhler, J., Chamberlain, R.,
Franklin, M., Gyang, K., and Lancaster, J. Biose-
quence similarity search on the Mercury system. In
Proc. ASAP (2004), pp. 365–375.

[15] Liptov, R., and Lopresti, D. Comparing long strings
on a short systolic array. In Systolic Arrays, W. Moore,
A. McCabe, and R. Uquhart, Eds. Adam Hilger, 1986.

[16] Lopresti, D. P-NAC: A systolic array for comparing
nucleic acid sequences. IEEE Computer 20, 7 (1987).

[17] McGinnis, S., and Madder, T. BLAST: at the core of
a powerful and diverse set of sequence analysis tools.
Nucleic Acids Research 32 (2004), Web Server Issue.

[18] Muriki, K., Underwood, K., and Sass, R. RC-BLAST:
Towards an open source hardware implementation. In
Proceedings of the International Workshop on High

Performance Computational Biology (2005).

[19] NCBI. Programming with BLAST: BLAST scripting.
NCBI/NLM/NIH Presentation, February 2005.

[20] Roberts, L. New chip may speed genome analysis. Sci-

ence 244, 4905 (1989), 655–656.

[21] Time Logic Corp. Web Site. www.timelogic.com, 2003.

[22] VanCourt, T., and Herbordt, M. Families of FPGA-
based accelerators for approximate string matching.
Microprocessors and Microsystems in press (2006).

[23] Yu, C., Kwong, K., Lee, K., and Leong, P. A Smith-
Waterman systolic cell. In Field Programmable Logic

and Applications (2003), pp. 375–384.

